summaryrefslogtreecommitdiffstats
path: root/drivers/acpi/Makefile
Commit message (Collapse)AuthorAgeFilesLines
* ACPI / processor: Introduce ARCH_MIGHT_HAVE_ACPI_PDCHanjun Guo2014-07-211-0/+1
| | | | | | | | | | | | | | | | | | | The use of _PDC is deprecated in ACPI 3.0 in favor of _OSC, as ARM platform is supported only in ACPI 5.0 or higher version, _PDC will not be used in ARM platform, so make Make _PDC only for platforms with Intel CPUs. Introduce ARCH_MIGHT_HAVE_ACPI_PDC and move _PDC related code in ACPI processor driver into a single file processor_pdc.c, make x86 and ia64 select it when ACPI is enabled. This patch also use pr_* to replace printk to fix the checkpatch warning and factor acpi_processor_alloc_pdc() a little bit to avoid duplicate pr_err() code. Suggested-by: Robert Richter <rric@kernel.org> Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* ACPI / scan: always register ACPI LPSS scan handlerRafael J. Wysocki2014-05-301-1/+1
| | | | | | | | | | | | Prevent platform devices from being created for ACPI LPSS devices if CONFIG_X86_INTEL_LPSS is unset by compiling out the LPSS scan handler's callbacks only in that case and still compiling its device ID list in and registering the scan handler in either case. This change is based on a prototype from Zhang Rui. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
* ACPI / scan: always register memory hotplug scan handlerRafael J. Wysocki2014-05-301-1/+1
| | | | | | | | | | | | | | | | | | Prevent platform devices from being created for ACPI memory device objects if CONFIG_ACPI_HOTPLUG_MEMORY is unset by compiling out the memory hotplug scan handler's callbacks only in that case and still compiling its device ID list in and registering the scan handler in either case. Also unset the memory hotplug scan handler's .attach() callback if acpi_no_memhotplug is set, but still register the scan handler to avoid creating platform devices for ACPI memory devices in that case too. This change is based on a prototype from Zhang Rui. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
* ACPI / scan: always register container scan handlerRafael J. Wysocki2014-05-301-1/+1
| | | | | | | | | | | | | Prevent platform devices from being created for ACPI containers if CONFIG_ACPI_CONTAINER is unset by compiling out the container scan handler's callbacks only in that case and still compiling its device ID list in and registering the scan handler in either case. This change is based on a prototype from Zhang Rui. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
* ACPI / PNP: use device ID list for PNPACPI device enumerationZhang Rui2014-05-301-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ACPI can be used to enumerate PNP devices, but the code does not handle this in the right way currently. Namely, if an ACPI device object 1. Has a _CRS method, 2. Has an identification of "three capital characters followed by four hex digits", 3. Is not in the excluded IDs list, it will be enumerated to PNP bus (that is, a PNP device object will be create for it). This means that, actually, the PNP bus type is used as the default bus type for enumerating _HID devices in ACPI. However, more and more _HID devices need to be enumerated to the platform bus instead (that is, platform device objects need to be created for them). As a result, the device ID list in acpi_platform.c is used to enforce creating platform device objects rather than PNP device objects for matching devices. That list has been continuously growing recently, unfortunately, and it is pretty much guaranteed to grow even more in the future. To address that problem it is better to enumerate _HID devices as platform devices by default. To this end, change the way of enumerating PNP devices by adding a PNP ACPI scan handler that will use a device ID list to create PNP devices for the ACPI device objects whose device IDs are present in that list. The initial device ID list in the PNP ACPI scan handler contains all of the pnp_device_id strings from all the existing PNP drivers, so this change should be transparent to the PNP core and all of the PNP drivers. Still, in the future it should be possible to reduce its size by converting PNP drivers that need not be PNP for any technical reasons into platform drivers. Signed-off-by: Zhang Rui <rui.zhang@intel.com> [rjw: Rewrote the changelog, modified the PNP ACPI scan handler code] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
* ACPI: Revert "ACPI: Remove CONFIG_ACPI_PROCFS_POWER and cm_sbsc.c"Lan Tianyu2014-05-061-0/+1
| | | | | | | | | | | The commit 1e2d9cd and 7d7ee95 remove ACPI Proc Battery directory and breaks some old userspace tools. This patch is to revert 7d7ee95. Fixes: 7d7ee958867a (ACPI: Remove CONFIG_ACPI_PROCFS_POWER and cm_sbsc.c) Cc: 3.13+ <stable@vger.kernel.org> # 3.13+ Signed-off-by: Lan Tianyu <tianyu.lan@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* Merge tag 'pm+acpi-3.13-rc1' of ↵Linus Torvalds2013-11-141-1/+0
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull ACPI and power management updates from Rafael J Wysocki: - New power capping framework and the the Intel Running Average Power Limit (RAPL) driver using it from Srinivas Pandruvada and Jacob Pan. - Addition of the in-kernel switching feature to the arm_big_little cpufreq driver from Viresh Kumar and Nicolas Pitre. - cpufreq support for iMac G5 from Aaro Koskinen. - Baytrail processors support for intel_pstate from Dirk Brandewie. - cpufreq support for Midway/ECX-2000 from Mark Langsdorf. - ARM vexpress/TC2 cpufreq support from Sudeep KarkadaNagesha. - ACPI power management support for the I2C and SPI bus types from Mika Westerberg and Lv Zheng. - cpufreq core fixes and cleanups from Viresh Kumar, Srivatsa S Bhat, Stratos Karafotis, Xiaoguang Chen, Lan Tianyu. - cpufreq drivers updates (mostly fixes and cleanups) from Viresh Kumar, Aaro Koskinen, Jungseok Lee, Sudeep KarkadaNagesha, Lukasz Majewski, Manish Badarkhe, Hans-Christian Egtvedt, Evgeny Kapaev. - intel_pstate updates from Dirk Brandewie and Adrian Huang. - ACPICA update to version 20130927 includig fixes and cleanups and some reduction of divergences between the ACPICA code in the kernel and ACPICA upstream in order to improve the automatic ACPICA patch generation process. From Bob Moore, Lv Zheng, Tomasz Nowicki, Naresh Bhat, Bjorn Helgaas, David E Box. - ACPI IPMI driver fixes and cleanups from Lv Zheng. - ACPI hotplug fixes and cleanups from Bjorn Helgaas, Toshi Kani, Zhang Yanfei, Rafael J Wysocki. - Conversion of the ACPI AC driver to the platform bus type and multiple driver fixes and cleanups related to ACPI from Zhang Rui. - ACPI processor driver fixes and cleanups from Hanjun Guo, Jiang Liu, Bartlomiej Zolnierkiewicz, Mathieu Rhéaume, Rafael J Wysocki. - Fixes and cleanups and new blacklist entries related to the ACPI video support from Aaron Lu, Felipe Contreras, Lennart Poettering, Kirill Tkhai. - cpuidle core cleanups from Viresh Kumar and Lorenzo Pieralisi. - cpuidle drivers fixes and cleanups from Daniel Lezcano, Jingoo Han, Bartlomiej Zolnierkiewicz, Prarit Bhargava. - devfreq updates from Sachin Kamat, Dan Carpenter, Manish Badarkhe. - Operation Performance Points (OPP) core updates from Nishanth Menon. - Runtime power management core fix from Rafael J Wysocki and update from Ulf Hansson. - Hibernation fixes from Aaron Lu and Rafael J Wysocki. - Device suspend/resume lockup detection mechanism from Benoit Goby. - Removal of unused proc directories created for various ACPI drivers from Lan Tianyu. - ACPI LPSS driver fix and new device IDs for the ACPI platform scan handler from Heikki Krogerus and Jarkko Nikula. - New ACPI _OSI blacklist entry for Toshiba NB100 from Levente Kurusa. - Assorted fixes and cleanups related to ACPI from Andy Shevchenko, Al Stone, Bartlomiej Zolnierkiewicz, Colin Ian King, Dan Carpenter, Felipe Contreras, Jianguo Wu, Lan Tianyu, Yinghai Lu, Mathias Krause, Liu Chuansheng. - Assorted PM fixes and cleanups from Andy Shevchenko, Thierry Reding, Jean-Christophe Plagniol-Villard. * tag 'pm+acpi-3.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (386 commits) cpufreq: conservative: fix requested_freq reduction issue ACPI / hotplug: Consolidate deferred execution of ACPI hotplug routines PM / runtime: Use pm_runtime_put_sync() in __device_release_driver() ACPI / event: remove unneeded NULL pointer check Revert "ACPI / video: Ignore BIOS initial backlight value for HP 250 G1" ACPI / video: Quirk initial backlight level 0 ACPI / video: Fix initial level validity test intel_pstate: skip the driver if ACPI has power mgmt option PM / hibernate: Avoid overflow in hibernate_preallocate_memory() ACPI / hotplug: Do not execute "insert in progress" _OST ACPI / hotplug: Carry out PCI root eject directly ACPI / hotplug: Merge device hot-removal routines ACPI / hotplug: Make acpi_bus_hot_remove_device() internal ACPI / hotplug: Simplify device ejection routines ACPI / hotplug: Fix handle_root_bridge_removal() ACPI / hotplug: Refuse to hot-remove all objects with disabled hotplug ACPI / scan: Start matching drivers after trying scan handlers ACPI: Remove acpi_pci_slot_init() headers from internal.h ACPI / blacklist: fix name of ThinkPad Edge E530 PowerCap: Fix build error with option -Werror=format-security ... Conflicts: arch/arm/mach-omap2/opp.c drivers/Kconfig drivers/spi/spi.c
| * ACPI: Remove CONFIG_ACPI_PROCFS_POWER and cm_sbsc.cLan Tianyu2013-10-121-1/+0
| | | | | | | | | | | | | | | | There is no user of cm_sbs.c and CONFIG_ACPI_PROCFS_POWER. So remove them. Prepare for removing /proc/acpi Signed-off-by: Lan Tianyu <tianyu.lan@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* | ACPI, x86: Extended error log driver for x86 platformChen, Gong2013-10-231-0/+2
|/ | | | | | | | | | | | This H/W error log driver (a.k.a eMCA driver) is implemented based on http://www.intel.com/content/www/us/en/architecture-and-technology/enhanced-mca-logging-xeon-paper.html After errors are captured, more detailed platform specific information can be got via this new enhanced H/W error log driver. Most notably we can track memory errors back to the DIMM slot silk screen label. Signed-off-by: Chen, Gong <gong.chen@linux.intel.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
* i2c: move ACPI helpers into the coreMika Westerberg2013-08-231-1/+0
| | | | | | | | | | | | | This follows what has already been done for the DeviceTree helpers. Move the ACPI helpers from drivers/acpi/acpi_i2c.c to the I2C core and update documentation accordingly. This also solves a problem reported by Jerry Snitselaar that we can't build the ACPI I2C helpers as a module. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
* Merge branch 'acpi-assorted'Rafael J. Wysocki2013-06-281-0/+1
|\ | | | | | | | | | | | | | | | | | | | | * acpi-assorted: ACPI / EC: Add HP Folio 13 to ec_dmi_table in order to skip DSDT scan ACPI: Add CMOS RTC Operation Region handler support ACPI: Remove unused flags in acpi_device_flags ACPI: Remove useless initializers ACPI / battery: Make sure all spaces are in correct places ACPI: add _STA evaluation at do_acpi_find_child() ACPI / EC: access user space with get_user()/put_user()
| * ACPI: Add CMOS RTC Operation Region handler supportLan Tianyu2013-06-271-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On HP Folio 13-2000, the BIOS defines a CMOS RTC Operation Region and the EC's _REG methord accesses that region. Thus an appropriate address space handler must be registered for that region before the EC driver is loaded. Introduce a mechanism for adding CMOS RTC address space handlers. Register an ACPI scan handler for CMOS RTC devices such that, when a device of that kind is detected during an ACPI namespace scan, a common CMOS RTC operation region address space handler will be installed for it. References: https://bugzilla.kernel.org/show_bug.cgi?id=54621 Reported-and-tested-by: Stefan Nagy <public@stefan-nagy.at> Signed-off-by: Lan Tianyu <tianyu.lan@intel.com> Cc: 3.9+ <stable@vger.kernel.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* | Merge branch 'acpi-hotplug'Rafael J. Wysocki2013-06-281-0/+1
|\ \ | |/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | * acpi-hotplug: ACPI: Do not use CONFIG_ACPI_HOTPLUG_MEMORY_MODULE ACPI / cpufreq: Add ACPI processor device IDs to acpi-cpufreq Memory hotplug: Move alternative function definitions to header ACPI / processor: Fix potential NULL pointer dereference in acpi_processor_add() Memory hotplug / ACPI: Simplify memory removal ACPI / scan: Add second pass of companion offlining to hot-remove code Driver core / MM: Drop offline_memory_block() ACPI / processor: Pass processor object handle to acpi_bind_one() ACPI: Drop removal_type field from struct acpi_device Driver core / memory: Simplify __memory_block_change_state() ACPI / processor: Initialize per_cpu(processors, pr->id) properly CPU: Fix sysfs cpu/online of offlined CPUs Driver core: Introduce offline/online callbacks for memory blocks ACPI / memhotplug: Bind removable memory blocks to ACPI device nodes ACPI / processor: Use common hotplug infrastructure ACPI / hotplug: Use device offline/online for graceful hot-removal Driver core: Use generic offline/online for CPU offline/online Driver core: Add offline/online device operations
| * ACPI / processor: Use common hotplug infrastructureRafael J. Wysocki2013-05-121-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Split the ACPI processor driver into two parts, one that is non-modular, resides in the ACPI core and handles the enumeration and hotplug of processors and one that implements the rest of the existing processor driver functionality. The non-modular part uses an ACPI scan handler object to enumerate processors on the basis of information provided by the ACPI namespace and to hook up with the common ACPI hotplug infrastructure. It also populates the ACPI handle of each processor device having a corresponding object in the ACPI namespace, which allows the driver proper to bind to those devices, and makes the driver bind to them if it is readily available (i.e. loaded) when the scan handler's .attach() routine is running. There are a few reasons to make this change. First, switching the ACPI processor driver to using the common ACPI hotplug infrastructure reduces code duplication and size considerably, even though a new file is created along with a header comment etc. Second, since the common hotplug code attempts to offline devices before starting the (non-reversible) removal procedure, it will abort (and possibly roll back) hot-remove operations involving processors if cpu_down() returns an error code for one of them instead of continuing them blindly (if /sys/firmware/acpi/hotplug/force_remove is unset). That is a more desirable behavior than what the current code does. Finally, the separation of the scan/hotplug part from the driver proper makes it possible to simplify the driver's .remove() routine, because it doesn't need to worry about the possible cleanup related to processor removal any more (the scan/hotplug part is responsible for that now) and can handle device removal and driver removal symmetricaly (i.e. as appropriate). Some user-visible changes in sysfs are made (for example, the 'sysdev' link from the ACPI device node to the processor device's directory is gone and a 'physical_node' link is present instead and a corresponding 'firmware_node' is present in the processor device's directory, the processor driver is now visible under /sys/bus/cpu/drivers/ and bound to the processor device), but that shouldn't affect the functionality that users care about (frequency scaling, C-states and thermal management). Tested on my venerable Toshiba Portege R500. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Toshi Kani <toshi.kani@hp.com>
* | Merge tag 'pm+acpi-3.10-rc3' of ↵Linus Torvalds2013-05-251-1/+1
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management and ACPI fixes from Rafael Wysocki: - Additional CPU ID for the intel_pstate driver from Dirk Brandewie. - More cpufreq fixes related to ARM big.LITTLE support and locking from Viresh Kumar. - VIA C7 cpufreq build fix from Rafał Bilski. - ACPI power management fix making it possible to use device power states regardless of the CONFIG_PM setting from Rafael J Wysocki. - New ACPI video blacklist item from Bastian Triller. * tag 'pm+acpi-3.10-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: ACPI / video: Add "Asus UL30A" to ACPI video detect blacklist cpufreq: arm_big_little_dt: Instantiate as platform_driver cpufreq: arm_big_little_dt: Register driver only if DT has valid data cpufreq / e_powersaver: Fix linker error when ACPI processor is a module cpufreq / intel_pstate: Add additional supported CPU ID cpufreq: Drop rwsem lock around CPUFREQ_GOV_POLICY_EXIT ACPI / PM: Allow device power states to be used for CONFIG_PM unset
| * | ACPI / PM: Allow device power states to be used for CONFIG_PM unsetRafael J. Wysocki2013-05-221-1/+1
| |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, drivers/acpi/device_pm.c depends on CONFIG_PM and all of the functions defined in there are replaced with static inline stubs if that option is unset. However, CONFIG_PM means, roughly, "runtime PM or suspend/hibernation support" and some of those functions are useful regardless of that. For example, they are used by the ACPI fan driver for controlling fans and acpi_device_set_power() is called during device removal. Moreover, device initialization may depend on setting device power states properly. For these reasons, make the routines manipulating ACPI device power states defined in drivers/acpi/device_pm.c available for CONFIG_PM unset too. Reported-by: Zhang Rui <rui.zhang@intel.com> Reported-and-tested-by: Michel Lespinasse <walken@google.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: 3.9+ <stable@vger.kernel.org>
* | dma: acpi-dma: parse CSRT to extract additional resourcesAndy Shevchenko2013-05-141-1/+0
|/ | | | | | | | | | Since we have CSRT only to get additional DMA controller resources, let's get rid of drivers/acpi/csrt.c and move its logic inside ACPI DMA helpers code. Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
* ACPI / scan: Add special handler for Intel Lynxpoint LPSS devicesRafael J. Wysocki2013-03-211-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Devices on the Intel Lynxpoint Low Power Subsystem (LPSS) have some common features that aren't shared with any other platform devices, including the clock and LTR (Latency Tolerance Reporting) registers. It is better to handle those features in common code than to bother device drivers with doing that (I/O functionality-wise the LPSS devices are generally compatible with other devices that don't have those special registers and may be handled by the same drivers). The clock registers of the LPSS devices are now taken care of by the special clk-x86-lpss driver, but the MMIO mappings used for accessing those registers can also be used for accessing the LTR registers on those devices (LTR support for the Lynxpoint LPSS is going to be added by a subsequent patch). Thus it is convenient to add a special ACPI scan handler for the Lynxpoint LPSS devices that will create the MMIO mappings for accessing the clock (and LTR in the future) registers and will register the LPSS devices' clocks, so the clk-x86-lpss driver will only need to take care of the main Lynxpoint LPSS clock. Introduce a special ACPI scan handler for Intel Lynxpoint LPSS devices as described above. This also reduces overhead related to browsing the ACPI namespace in search of the LPSS devices before the registration of their clocks, removes some LPSS-specific (and somewhat ugly) code from acpi_platform.c and shrinks the overall code size slightly. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Mike Turquette <mturquette@linaro.org>
* ACPI: add support for CSRT tableMika Westerberg2013-01-191-0/+1
| | | | | | | | | | | | | | | | | | | | Core System Resources Table (CSRT) is a proprietary ACPI table that contains resources for certain devices that are not found in the DSDT table. Typically a shared DMA controller might be found here. This patch adds support for this table. We go through all entries in the table and make platform devices of them. The resources from the table are passed with the platform device. There is one special resource in the table and it is the DMA request line base and number of request lines. This information might be needed by the DMA controller driver as it needs to map the ACPI DMA request line number to the actual request line understood by the hardware. This range is passed as IORESOURCE_DMA resource. Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* ACPI / PCI: Move the _PRT setup and cleanup code to pci-acpi.cRafael J. Wysocki2013-01-031-1/+1
| | | | | | | | | | | | | Move the code related to _PRT setup and removal and to power resources from acpi_pci_bind() and acpi_pci_unbind() to the .setup() and .cleanup() callbacks in acpi_pci_bus and remove acpi_pci_bind() and acpi_pci_unbind() that have no purpose any more. Accordingly, remove the code related to device .bind() and .unbind() operations from the ACPI PCI root bridge driver. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Yinghai Lu <yinghai@kernel.org> Acked-by: Toshi Kani <toshi.kani@hp.com>
* Merge branch 'acpi-dev-pm' into acpi-enumerationRafael J. Wysocki2012-11-271-1/+2
|\ | | | | | | | | Subsequent commits in this branch will depend on 'acpi-dev-pm' material.
| * ACPI / PM: Move routines for adding/removing device wakeup notifiersRafael J. Wysocki2012-11-151-1/+2
| | | | | | | | | | | | | | | | | | ACPI routines for adding and removing device wakeup notifiers are currently defined in a PCI-specific file, but they will be necessary for non-PCI devices too, so move them to a separate file under drivers/acpi and rename them to indicate their ACPI origins. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* | i2c / ACPI: add ACPI enumeration supportMika Westerberg2012-11-231-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | ACPI 5 introduced I2cSerialBus resource that makes it possible to enumerate and configure the I2C slave devices behind the I2C controller. This patch adds helper functions to support I2C slave enumeration. An ACPI enabled I2C controller driver only needs to call acpi_i2c_register_devices() in order to get its slave devices enumerated, created and bound to the corresponding ACPI handle. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* | ACPI: Move device resources interpretation code from PNP to ACPI coreRafael J. Wysocki2012-11-151-0/+1
| | | | | | | | | | | | | | | | | | | | | | Move some code used for parsing ACPI device resources from the PNP subsystem to the ACPI core, so that other bus types (platform, SPI, I2C) can use the same routines for parsing resources in a consistent way, without duplicating code. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com> Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
* | ACPI: Add support for platform bus typeMika Westerberg2012-11-151-0/+1
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | With ACPI 5 it is now possible to enumerate traditional SoC peripherals, like serial bus controllers and slave devices behind them. These devices are typically based on IP-blocks used in many existing SoC platforms and platform drivers for them may already be present in the kernel tree. To make driver "porting" more straightforward, add ACPI support to the platform bus type. Instead of writing ACPI "glue" drivers for the existing platform drivers, register the platform bus type with ACPI to create platform device objects for the drivers and bind the corresponding ACPI handles to those platform devices. This should allow us to reuse the existing platform drivers for the devices in question with the minimum amount of modifications. This changeset is based on Mika Westerberg's and Mathias Nyman's work. Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: H. Peter Anvin <hpa@zytor.com> Acked-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* ACPI: Reorder IPMI driver before any other ACPI driversMatthew Garrett2012-10-161-1/+4
| | | | | | | | | | Drivers may make calls that require the ACPI IPMI driver to have been initialised already, so make sure that it appears earlier in the build order. Signed-off-by: Matthew Garrett <mjg@redhat.com> Signed-off-by: Corey Minyard <cminyard@mvista.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* ACPI: Add support for exposing BGRT dataMatthew Garrett2012-03-301-0/+1
| | | | | | | | | | | ACPI 5.0 adds the BGRT, a table that contains a pointer to the firmware boot splash and associated metadata. This simple driver exposes it via /sys/firmware/acpi in order to allow bootsplash applications to draw their splash around the firmware image and reduce the number of jarring graphical transitions during boot. Signed-off-by: Matthew Garrett <mjg@redhat.com> Signed-off-by: Len Brown <len.brown@intel.com>
* ACPI: Remove ./drivers/acpi/atomicio.[ch]Myron Stowe2012-01-211-1/+0
| | | | | | | | | | With the conversion of atomicio's routines in place (see commits 6f68c91c55e and 700130b41f4), atomicio.[ch] can be removed, replacing the APEI specific pre-mapping capabilities with the more generalized versions that drivers/acpi/osl.c provides. Signed-off-by: Myron Stowe <myron.stowe@redhat.com> Signed-off-by: Len Brown <len.brown@intel.com>
* ACPI, Record ACPI NVS regionsHuang Ying2012-01-171-1/+2
| | | | | | | | | | | | | | | Some firmware will access memory in ACPI NVS region via APEI. That is, instructions in APEI ERST/EINJ table will read/write ACPI NVS region. The original resource conflict checking in APEI code will check memory/ioport accessed by APEI via general resource management mechanism. But ACPI NVS region is marked as busy already, so that the false resource conflict will prevent APEI ERST/EINJ to work. To fix this, this patch record ACPI NVS regions, so that we can avoid request resources for memory region inside it. Signed-off-by: Huang Ying <ying.huang@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
* Merge branch 'release' of ↵Linus Torvalds2011-05-291-0/+1
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6 * 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6: ACPI EC: remove redundant code ACPI: Add D3 cold state ACPI: processor: fix processor_physically_present in UP kernel ACPI: Split out custom_method functionality into an own driver ACPI: Cleanup custom_method debug stuff ACPI EC: enable MSI workaround for Quanta laptops ACPICA: Update to version 20110413 ACPICA: Execute an orphan _REG method under the EC device ACPICA: Move ACPI_NUM_PREDEFINED_REGIONS to a more appropriate place ACPICA: Update internal address SpaceID for DataTable regions ACPICA: Add more methods eligible for NULL package element removal ACPICA: Split all internal Global Lock functions to new file - evglock ACPI: EC: add another DMI check for ASUS hardware ACPI EC: remove dead code ACPICA: Fix code divergence of global lock handling ACPICA: Use acpi_os_create_lock interface ACPI: osl, add acpi_os_create_lock interface ACPI:Fix goto flows in thermal-sys
| * ACPI: Split out custom_method functionality into an own driverThomas Renninger2011-05-291-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With /sys/kernel/debug/acpi/custom_method root can write to arbitrary memory and increase his priveleges, even if these are restricted. -> Make this an own debug .config option and warn about the security issue in the config description. -> Still keep acpi/debugfs.c which now only creates an empty /sys/kernel/debug/acpi directory. There might be other users of it later. Signed-off-by: Thomas Renninger <trenn@suse.de> Acked-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: rui.zhang@intel.com Signed-off-by: Len Brown <len.brown@intel.com>
* | Move ACPI power meter driver to hwmonJean Delvare2011-05-251-1/+0
|/ | | | | | | | | | | | | As discussed earlier, the ACPI power meter driver would better live in drivers/hwmon, as its only purpose is to create hwmon-style interfaces for ACPI 4.0 power meter devices. Users are more likely to look for it there, and less likely to accidentally hide it by unselecting its dependencies. Signed-off-by: Jean Delvare <khali@linux-fr.org> Acked-by: "Darrick J. Wong" <djwong@us.ibm.com> Acked-by: Guenter Roeck <guenter.roeck@ericsson.com> Cc: Len Brown <lenb@kernel.org>
* Merge branch 'ipmi' into releaseLen Brown2011-01-121-0/+1
|\
| * IPMI/ACPI: Add the IPMI opregion driver to enable ACPI to access BMC controllerZhao Yakui2010-12-141-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ACPI 4.0 spec adds the ACPI IPMI opregion, which means that the ACPI AML code can also communicate with the BMC controller. This is to install the ACPI IPMI opregion and enable the ACPI to access the BMC controller through the IPMI message. It will create IPMI user interface for every IPMI device detected in ACPI namespace and install the corresponding IPMI opregion space handler. Then it can enable ACPI to access the BMC controller through the IPMI message. The following describes how to process the IPMI request in IPMI space handler: 1. format the IPMI message based on the request in AML code. IPMI system address. Now the address type is SYSTEM_INTERFACE_ADDR_TYPE IPMI net function & command IPMI message payload 2. send the IPMI message by using the function of ipmi_request_settime 3. wait for the completion of IPMI message. It can be done in different routes: One is in handled in IPMI user recv callback function. Another is handled in timeout function. 4. format the IPMI response and return it to ACPI AML code. At the same time it also addes the module dependency. The ACPI IPMI opregion will depend on the IPMI subsystem. Signed-off-by: Zhao Yakui <yakui.zhao@intel.com> cc: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Corey Minyard <cminyard@mvista.com> Signed-off-by: Len Brown <len.brown@intel.com>
* | PM / ACPI: Move NVS saving and restoring code to drivers/acpiRafael J. Wysocki2011-01-071-1/+1
|/ | | | | | | | | | The saving of the ACPI NVS area during hibernation and suspend and restoring it during the subsequent resume is entirely specific to ACPI, so move it to drivers/acpi and drop the CONFIG_SUSPEND_NVS configuration option which is redundant. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Len Brown <len.brown@intel.com>
* Merge branch 'linus' into releaseLen Brown2010-08-151-0/+1
|\ | | | | | | | | | | | | Conflicts: drivers/acpi/debug.c Signed-off-by: Len Brown <len.brown@intel.com>
| * ACPI: Provide /sys/kernel/debug/ec/...Thomas Renninger2010-08-031-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch provides the same information through debugfs, which previously was provided through /proc/acpi/embedded_controller/*/info This is the gpe the EC is connected to and whether the global lock gets used. The io ports used are added to /proc/ioports in another patch. Beside the fact that /proc/acpi is deprecated for quite some time, this info is not needed for applications and thus can be moved to debugfs instead of a public interface like /sys. Signed-off-by: Thomas Renninger <trenn@suse.de> CC: Alexey Starikovskiy <astarikovskiy@suse.de> CC: Len Brown <lenb@kernel.org> CC: linux-kernel@vger.kernel.org CC: linux-acpi@vger.kernel.org CC: Bjorn Helgaas <bjorn.helgaas@hp.com> CC: platform-driver-x86@vger.kernel.org Signed-off-by: Matthew Garrett <mjg@redhat.com>
* | ACPI: remove deprecated ACPI procfs I/FZhang Rui2010-08-151-2/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Rmove deprecated ACPI procfs I/F, including /proc/acpi/debug_layer /proc/acpi/debug_level /proc/acpi/info /proc/acpi/dsdt /proc/acpi/fadt /proc/acpi/sleep because the sysfs I/F is already available and has been working well for years. Signed-off-by: Zhang Rui <rui.zhang@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
* | ACPI: introduce drivers/acpi/sysfs.cZhang Rui2010-08-151-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Introduce drivers/acpi/sysfs.c. code for ACPI sysfs I/F, including #ifdef ACPI_DEBUG /sys/module/acpi/parameters/debug_layer /sys/module/acpi/parameters/debug_level /sys/module/acpi/parameters/trace_method_name /sys/module/acpi/parameters/trace_debug_layer /sys/module/acpi/parameters/trace_debug_level /sys/module/acpi/parameters/trace_state #endif /sys/module/acpi/parameters/acpica_version /sys/firmware/acpi/tables/ /sys/firmware/acpi/interrupts/ is moved to this file. No function change in this patch. Signed-off-by: Zhang Rui <rui.zhang@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
* | ACPI: introduce drivers/acpi/debugfs.cZhang Rui2010-08-141-0/+1
|/ | | | | | | | | | | | | | | | | | | Introduce drivers/acpi/debugfs.c. Code for ACPI debugfs I/F, i.e. /sys/kernel/debug/acpi/custom_method, is moved to this file. And make ACPI debugfs always built in, even if CONFIG_ACPI_DEBUG is cleared. BTW:this adds about 400bytes code to ACPI, when CONFIG_ACPI_DEBUG is cleared. [uaccess.h build fix from Andrew Morton <akpm@linux-foundation.org>] Signed-off-by: Zhang Rui <rui.zhang@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
* ACPI Hardware Error Device (PNP0C33) supportHuang Ying2010-05-191-0/+1
| | | | | | | | | | | | | | | Hardware Error Device (PNP0C33) is used to report some hardware errors notified via SCI, mainly the corrected errors. Some APEI Generic Hardware Error Source (GHES) may use SCI on hardware error device to notify hardware error to kernel. After receiving notification from ACPI core, it is forwarded to all listeners via a notifier chain. The listener such as APEI GHES should check corresponding error source for new events when notified. Signed-off-by: Huang Ying <ying.huang@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
* ACPI, APEI, PCIE AER, use general HEST table parsing in AER firmware_first setupHuang Ying2010-05-191-1/+0
| | | | | | | | | | | | | Now, a dedicated HEST tabling parsing code is used for PCIE AER firmware_first setup. It is rebased on general HEST tabling parsing code of APEI. The firmware_first setup code is moved from PCI core to AER driver too, because it is only AER related. Signed-off-by: Huang Ying <ying.huang@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Acked-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Len Brown <len.brown@intel.com>
* ACPI, APEI, APEI supporting infrastructureHuang Ying2010-05-191-0/+2
| | | | | | | | | | | | | | | | | | | | | | APEI stands for ACPI Platform Error Interface, which allows to report errors (for example from the chipset) to the operating system. This improves NMI handling especially. In addition it supports error serialization and error injection. For more information about APEI, please refer to ACPI Specification version 4.0, chapter 17. This patch provides some common functions used by more than one APEI tables, mainly framework of interpreter for EINJ and ERST. A machine readable language is defined for EINJ and ERST for OS to execute, and so to drive the firmware to fulfill the corresponding functions. The machine language for EINJ and ERST is compatible, so a common framework is defined for them. Signed-off-by: Huang Ying <ying.huang@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
* ACPI, IO memory pre-mapping and atomic accessingHuang Ying2010-05-191-0/+1
| | | | | | | | | | | | | | | | | | Some ACPI IO accessing need to be done in atomic context. For example, APEI ERST operations may be used for permanent storage in hardware error handler. That is, it may be called in atomic contexts such as IRQ or NMI, etc. And, ERST/EINJ implement their operations via IO memory/port accessing. But the IO memory accessing method provided by ACPI (acpi_read/acpi_write) maps the IO memory during it is accessed, so it can not be used in atomic context. To solve the issue, the IO memory should be pre-mapped during EINJ/ERST initializing. A linked list is used to record which memory area has been mapped, when memory is accessed in hardware error handler, search the linked list for the mapped virtual address from the given physical address. Signed-off-by: Huang Ying <ying.huang@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
* ACPI: processor: mv processor_pdc.c processor_core.cAlex Chiang2010-03-141-1/+1
| | | | | | | | | | | | | | | We've renamed the old processor_core.c to processor_driver.c, to convey the idea that it can be built modular and has driver-like bits. Now let's re-create a processor_core.c for the bits needed statically by the rest of the kernel. The contents of processor_pdc.c are a good starting spot, so let's just rename that file and complete our three card monte. Acked-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> Signed-off-by: Alex Chiang <achiang@hp.com> Signed-off-by: Len Brown <len.brown@intel.com>
* ACPI: processor: mv processor_core.c processor_driver.cAlex Chiang2010-03-141-1/+1
| | | | | | | | | | | | | | | | | | | The ACPI processor driver can be built as a module. But it has pieces of code that should always be built statically into the kernel. The plan is for processor_core.c to contain the static bits while processor_driver.c contains the module-like bits. Since the bulk of the code in the current processor_core.c is module-like, first step is to rename the file to processor_driver.c Next step will re-create processor_core.c and cherry-pick out the static bits. Acked-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> Signed-off-by: Alex Chiang <achiang@hp.com> Signed-off-by: Len Brown <len.brown@intel.com>
* ACPI: processor: call _PDC earlyAlex Chiang2009-12-221-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We discovered that at least one machine (HP Envy), methods in the DSDT attempt to call external methods defined in a dynamically loaded SSDT. Unfortunately, the DSDT methods we are trying to call are part of the EC initialization, which happens very early, and the the dynamic SSDT is only loaded when a processor _PDC method runs much later. This results in namespace lookup errors for the (as of yet) undefined methods. Since Windows doesn't have any issues with this machine, we take it as a hint that they must be evaluating _PDC much earlier than we are. Thus, the proper thing for Linux to do should be to match the Windows implementation more closely. Provide a mechanism to call _PDC before we enable the EC. Doing so loads the dynamic tables, and allows the EC to be enabled correctly. The ACPI processor driver will still evaluate _PDC in its .add() method to cover the hotplug case. Resolves: http://bugzilla.kernel.org/show_bug.cgi?id=14824 Cc: ming.m.lin@intel.com Signed-off-by: Alex Chiang <achiang@hp.com> Signed-off-by: Len Brown <len.brown@intel.com>
* PCI: PCIe AER: honor ACPI HEST FIRMWARE FIRST modeMatt Domsch2009-11-041-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Feedback from Hidetoshi Seto and Kenji Kaneshige incorporated. This correctly handles PCI-X bridges, PCIe root ports and endpoints, and prints debug messages when invalid/reserved types are found in the HEST. PCI devices not in domain/segment 0 are not represented in HEST, thus will be ignored. Today, the PCIe Advanced Error Reporting (AER) driver attaches itself to every PCIe root port for which BIOS reports it should, via ACPI _OSC. However, _OSC alone is insufficient for newer BIOSes. Part of ACPI 4.0 is the new APEI (ACPI Platform Error Interfaces) which is a way for OS and BIOS to handshake over which errors for which components each will handle. One table in ACPI 4.0 is the Hardware Error Source Table (HEST), where BIOS can define that errors for certain PCIe devices (or all devices), should be handled by BIOS ("Firmware First mode"), rather than be handled by the OS. Dell PowerEdge 11G server BIOS defines Firmware First mode in HEST, so that it may manage such errors, log them to the System Event Log, and possibly take other actions. The aer driver should honor this, and not attach itself to devices noted as such. Furthermore, Kenji Kaneshige reminded us to disallow changing the AER registers when respecting Firmware First mode. Platform firmware is expected to manage these, and if changes to them are allowed, it could break that firmware's behavior. The HEST parsing code may be replaced in the future by a more feature-rich implementation. This patch provides the minimum needed to prevent breakage until that implementation is available. Reviewed-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Signed-off-by: Matt Domsch <Matt_Domsch@dell.com> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
* Merge branch 'acpi-pad' of ↵Linus Torvalds2009-10-041-0/+2
|\ | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6 * 'acpi-pad' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6: acpi_pad: build only on X86 ACPI: create Processor Aggregator Device driver Fixup trivial conflicts in MAINTAINERS file.
| * ACPI: create Processor Aggregator Device driverShaohua Li2009-07-311-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ACPI 4.0 created the logical "processor aggregator device" as a mechinism for platforms to ask the OS to force otherwise busy processors to enter (power saving) idle. The intent is to lower power consumption to ride-out transient electrical and thermal emergencies, rather than powering off the server. On platforms that can save more power/performance via P-states, the platform will first exhaust P-states before forcing idle. However, the relative benefit of P-states vs. idle states is platform dependent, and thus this driver need not know or care about it. This driver does not use the kernel's CPU hot-plug mechanism because after the transient emergency is over, the system must be returned to its normal state, and hotplug would permanently break both cpusets and binding. So to force idle, the driver creates a power saving thread. The scheduler will migrate the thread to the preferred CPU. The thread has max priority and has SCHED_RR policy, so it can occupy one CPU. To save power, the thread will invoke the deep C-state entry instructions. To avoid starvation, the thread will sleep 5% of the time time for every second (current RT scheduler has threshold to avoid starvation, but if other CPUs are idle, the CPU can borrow CPU timer from other, which makes the mechanism not work here) Vaidyanathan Srinivasan has proposed scheduler enhancements to allow injecting idle time into the system. This driver doesn't depend on those enhancements, but could cut over to them when they are available. Peter Z. does not favor upstreaming this driver until the those scheduler enhancements are in place. However, we favor upstreaming this driver now because it is useful now, and can be enhanced over time. Signed-off-by: Shaohua Li <shaohua.li@intel.com> NACKed-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Len Brown <len.brown@intel.com>
OpenPOWER on IntegriCloud