summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/include/asm/pgtable-ppc64.h
Commit message (Collapse)AuthorAgeFilesLines
* powerpc/mm: Allow more flexible layouts for hugepage pagetablesDavid Gibson2009-10-301-1/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/mm: Cleanup management of kmem_caches for pagetablesDavid Gibson2009-10-301-0/+1
| | | | | | | | | | | | | | | | | | Currently we have a fair bit of rather fiddly code to manage the various kmem_caches used to store page tables of various levels. We generally have two caches holding some combination of PGD, PUD and PMD tables, plus several more for the special hugepage pagetables. This patch cleans this all up by taking a different approach. Rather than the caches being designated as for PUDs or for hugeptes for 16M pages, the caches are simply allocated to be a specific size. Thus sharing of caches between different types/levels of pagetables happens naturally. The pagetable size, where needed, is passed around encoded in the same way as {PGD,PUD,PMD}_INDEX_SIZE; that is n where the pagetable contains 2^n pointers. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/mm: Cleanup handling of execute permissionBenjamin Herrenschmidt2009-08-271-2/+1
| | | | | | | | | | | | | | | | | | | | | | | | | This is an attempt at cleaning up a bit the way we handle execute permission on powerpc. _PAGE_HWEXEC is gone, _PAGE_EXEC is now only defined by CPUs that can do something with it, and the myriad of #ifdef's in the I$/D$ coherency code is reduced to 2 cases that hopefully should cover everything. The logic on BookE is a little bit different than what it was though not by much. Since now, _PAGE_EXEC will be set by the generic code for executable pages, we need to filter out if they are unclean and recover it. However, I don't expect the code to be more bloated than it already was in that area due to that change. I could boast that this brings proper enforcing of per-page execute permissions to all BookE and 40x but in fact, we've had that now for some time as a side effect of my previous rework in that area (and I didn't even know it :-) We would only enable execute permission if the page was cache clean and we would only cache clean it if we took and exec fault. Since we now enforce that the later only work if VM_EXEC is part of the VMA flags, we de-fact already enforce per-page execute permissions... Unless I missed something Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/mm: Add support for SPARSEMEM_VMEMMAP on 64-bit Book3EBenjamin Herrenschmidt2009-08-201-1/+2
| | | | | | | | | The base TLB support didn't include support for SPARSEMEM_VMEMMAP, though we did carve out some virtual space for it, the necessary support code wasn't there. This implements it by using 16M pages for now, though the page size could easily be changed at runtime if necessary. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc: Add memory management headers for new 64-bit BookEBenjamin Herrenschmidt2009-08-201-17/+44
| | | | | | | | | | | | | This adds the PTE and pgtable format definitions, along with changes to the kernel memory map and other definitions related to implementing support for 64-bit Book3E. This also shields some asm-offset bits that are currently only relevant on 32-bit We also move the definition of the "linux" page size constants to the common mmu.h file and add a few sizes that are relevant to embedded processors. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc: Shield code specific to 64-bit server processorsBenjamin Herrenschmidt2009-06-091-0/+5
| | | | | | | | | | | This is a random collection of added ifdef's around portions of code that only mak sense on server processors. Using either CONFIG_PPC_STD_MMU_64 or CONFIG_PPC_BOOK3S as seems appropriate. This is meant to make the future merging of Book3E 64-bit support easier. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/mm: Add option for non-atomic PTE updates to ppc64Benjamin Herrenschmidt2009-03-241-1/+11
| | | | | | | ppc32 has it already, add it to ppc64 as a preliminary for adding support for Book3E 64-bit support Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/mm: Merge various PTE bits and accessors definitionsBenjamin Herrenschmidt2009-03-241-131/+1
| | | | | | | | | | | | | | | | | Now that they are almost identical, we can merge some of the definitions related to the PTE format into common files. This creates a new pte-common.h which is included by both 32 and 64-bit right after the CPU specific pte-*.h file, and which defines some bits to "default" values if they haven't been defined already, and then provides a generic definition of most of the bit combinations based on these and exposed to the rest of the kernel. I also moved to the common pgtable.h most of the "small" accessors to the PTE bits and modification helpers (pte_mk*). The actual accessors remain in their separate files. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/mm: Tweak PTE bit combination definitionsBenjamin Herrenschmidt2009-03-241-17/+29
| | | | | | | | | | | | | | | | | This patch tweaks the way some PTE bit combinations are defined, in such a way that the 32 and 64-bit variant become almost identical and that will make it easier to bring in a new common pte-* file for the new variant of the Book3-E support. The combination of bits defining access to kernel pages are now clearly separated from the combination used by userspace and the core VM. The resulting generated code should remain identical unless I made a mistake. Note: While at it, I removed a non-sensical statement related to CONFIG_KGDB in ppc_mmu_32.c which could cause kernel mappings to be user accessible when that option is enabled. Probably something that bitrot. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/mm: Split the various pgtable-* headers based on MMU typeBenjamin Herrenschmidt2009-03-201-34/+57
| | | | | | | | | | | | | | | | | | This patch moves the definition of the PTE format for each MMU type to separate files instead of all in one file. This improves overall maintainability and will make it easier to add new types. On 64-bit, additionally, I've separated the headers relative to the format of the page table tree (3 vs. 4 levels for 64K vs 4K pages) from the headers specific to the PTE format for hash based processors, this will make it easier to add support for Book3 "E" 64-bit implementations. There are still some type-related ifdef's in the generic headers, we might remove them in the long run, but this patch shouldn't result in any code change, -hopefully- just definitions being moved around. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/mm: Rework I$/D$ coherency (v3)Benjamin Herrenschmidt2009-02-111-22/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch reworks the way we do I and D cache coherency on PowerPC. The "old" way was split in 3 different parts depending on the processor type: - Hash with per-page exec support (64-bit and >= POWER4 only) does it at hashing time, by preventing exec on unclean pages and cleaning pages on exec faults. - Everything without per-page exec support (32-bit hash, 8xx, and 64-bit < POWER4) does it for all page going to user space in update_mmu_cache(). - Embedded with per-page exec support does it from do_page_fault() on exec faults, in a way similar to what the hash code does. That leads to confusion, and bugs. For example, the method using update_mmu_cache() is racy on SMP where another processor can see the new PTE and hash it in before we have cleaned the cache, and then blow trying to execute. This is hard to hit but I think it has bitten us in the past. Also, it's inefficient for embedded where we always end up having to do at least one more page fault. This reworks the whole thing by moving the cache sync into two main call sites, though we keep different behaviours depending on the HW capability. The call sites are set_pte_at() which is now made out of line, and ptep_set_access_flags() which joins the former in pgtable.c The base idea for Embedded with per-page exec support, is that we now do the flush at set_pte_at() time when coming from an exec fault, which allows us to avoid the double fault problem completely (we can even improve the situation more by implementing TLB preload in update_mmu_cache() but that's for later). If for some reason we didn't do it there and we try to execute, we'll hit the page fault, which will do a minor fault, which will hit ptep_set_access_flags() to do things like update _PAGE_ACCESSED or _PAGE_DIRTY if needed, we just make this guys also perform the I/D cache sync for exec faults now. This second path is the catch all for things that weren't cleaned at set_pte_at() time. For cpus without per-pag exec support, we always do the sync at set_pte_at(), thus guaranteeing that when the PTE is visible to other processors, the cache is clean. For the 64-bit hash with per-page exec support case, we keep the old mechanism for now. I'll look into changing it later, once I've reworked a bit how we use _PAGE_EXEC. This is also a first step for adding _PAGE_EXEC support for embedded platforms Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/mm: Rework usage of _PAGE_COHERENT/NO_CACHE/GUARDEDBenjamin Herrenschmidt2008-12-211-13/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | Currently, we never set _PAGE_COHERENT in the PTEs, we just OR it in in the hash code based on some CPU feature bit. We also manipulate _PAGE_NO_CACHE and _PAGE_GUARDED by hand in all sorts of places. This changes the logic so that instead, the PTE now contains _PAGE_COHERENT for all normal RAM pages thay have I = 0 on platforms that need it. The hash code clears it if the feature bit is not set. It also adds some clean accessors to setup various valid combinations of access flags and change various bits of code to use them instead. This should help having the PTE actually containing the bit combinations that we really want. I also removed _PAGE_GUARDED from _PAGE_BASE on 44x and instead set it explicitely from the TLB miss. I will ultimately remove it completely as it appears that it might not be needed after all but in the meantime, having it in the TLB miss makes things a lot easier. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
* powerpc: Fix typo in pgtable-ppc64.hGeoff Levand2008-12-161-1/+1
| | | | | | | Fix a minor comment typo in pgtable-ppc64.h. Signed-off-by: Geoff Levand <geoffrey.levand@am.sony.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
* powerpc: Get USE_STRICT_MM_TYPECHECKS working againDavid Gibson2008-10-141-6/+6
| | | | | | | | | | | | The typesafe version of the powerpc pagetable handling (with USE_STRICT_MM_TYPECHECKS defined) has bitrotted again. This patch makes a bunch of small fixes to get it back to building status. It's still not enabled by default as gcc still generates worse code with it for some reason. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc: Fix build error with 64K pages and !hugetlbfsBenjamin Herrenschmidt2008-09-031-4/+2
| | | | | | | | | | | HAVE_ARCH_UNMAPPED_AREA and HAVE_ARCH_UNMAPPED_AREA_TOPDOWN must be defined whenever CONFIG_PPC_MM_SLICES is enabled, not just when CONFIG_HUGETLB_PAGE is. They used to be always defined together but this is no longer the case since 3a8247cc2c856930f34eafce33f6a039227ee175 ("powerpc: Only demote individual slices rather than whole process"). Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
* powerpc: Move include files to arch/powerpc/include/asmStephen Rothwell2008-08-041-0/+468
from include/asm-powerpc. This is the result of a mkdir arch/powerpc/include/asm git mv include/asm-powerpc/* arch/powerpc/include/asm Followed by a few documentation/comment fixups and a couple of places where <asm-powepc/...> was being used explicitly. Of the latter only one was outside the arch code and it is a driver only built for powerpc. Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Paul Mackerras <paulus@samba.org>
OpenPOWER on IntegriCloud