| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull GPIO driver changes from Grant Likely:
"Lots of gpio changes, both to core code and drivers.
Changes do touch architecture code to remove the need for separate
arm/gpio.h includes in most architectures.
Some new drivers are added, and a number of gpio drivers are converted
to use irq_domains for gpio inputs used as interrupts. Device tree
support has been amended to allow multiple gpio_chips to use the same
device tree node.
Remaining changes are primarily bug fixes."
* tag 'gpio-for-linus' of git://git.secretlab.ca/git/linux-2.6: (33 commits)
gpio/generic: initialize basic_mmio_gpio shadow variables properly
gpiolib: Remove 'const' from data argument of gpiochip_find()
gpio/rc5t583: add gpio driver for RICOH PMIC RC5T583
gpiolib: quiet gpiochip_add boot message noise
gpio: mpc8xxx: Prevent NULL pointer deref in demux handler
gpio/lpc32xx: Add device tree support
gpio: Adjust of_xlate API to support multiple GPIO chips
gpiolib: Implement devm_gpio_request_one()
gpio-mcp23s08: dbg_show: fix pullup configuration display
Add support for TCA6424A
gpio/omap: (re)fix wakeups on level-triggered GPIOs
gpio/omap: fix broken context restore for non-OFF mode transitions
gpio/omap: fix missing check in *_runtime_suspend()
gpio/omap: remove cpu_is_omapxxxx() checks from *_runtime_resume()
gpio/omap: remove suspend/resume callbacks
gpio/omap: remove retrigger variable in gpio_irq_handler
gpio/omap: remove saved_wakeup field from struct gpio_bank
gpio/omap: remove suspend_wakeup field from struct gpio_bank
gpio/omap: remove saved_fallingdetect, saved_risingdetect
gpio/omap: remove virtual_irq_start variable
...
Conflicts:
drivers/gpio/gpio-samsung.c
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Rather than requiring architectures that use gpiolib but don't have any
need to define anything custom to copy an asm/gpio.h provide a Kconfig
symbol which architectures must select in order to include gpio.h and
for other architectures just provide the trivial implementation directly.
This makes it much easier to do gpiolib updates and is also a step towards
making gpiolib APIs available on every architecture.
For architectures with existing boilerplate code leave a stub header in
place which warns on direct inclusion of asm/gpio.h and includes
linux/gpio.h to catch code that's doing this. Direct inclusion of
asm/gpio.h has long been deprecated.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Jonas Bonn <jonas@southpole.se>
Acked-by: Tony Luck <tony.luck@intel.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
|
|/
|
|
|
|
|
| |
Correct spelling typo in various Kconfig file.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
|
|
|
|
|
|
|
|
| |
The ColdFire 547x and 548x CPUs have internal MMU hardware. All code
to support this is now in, so we can build kernels with it enabled.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
While you can build multiplatform kernels for machines with classic
m68k processors, you cannot mix support for classic m68k and coldfire
processors. To avoid such hybrid kernels, introduce CONFIG_M68KCLASSIC
as an antipole for CONFIG_COLDFIRE, and make all specific processor
support depend on one of them.
All classic m68k machine support also needs to depend on this.
The defaults (CONFIG_M68KCLASSIC if MMU, CONFIG_COLDFIRE if !MMU) are
chosen such to make most of the existing configs build and work.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Modify the user space access functions to support the ColdFire V4e cores
running with MMU enabled.
The ColdFire processors do not support the "moves" instruction used by
the traditional 680x0 processors for moving data into and out of another
address space. They only support the notion of a single address space,
and you use the usual "move" instruction to access that.
Create a new config symbol (CONFIG_CPU_HAS_ADDRESS_SPACES) to mark the
CPU types that support separate address spaces, and thus also support
the sfc/dfc registers and the "moves" instruction that go along with that.
The code is almost identical for user space access, so lets just use a
define to choose either the "move" or "moves" in the assembler code.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The traditional 68000 processors and the newer reduced instruction set
ColdFire processors do not support the 32*32->64 multiply or the 64/32->32
divide instructions. This is not a difference based on the presence of
a hardware MMU or not.
Create a new config symbol to mark that a CPU type doesn't support the
longer multiply/divide instructions. Use this then as a basis for using
the fast 64bit based divide (in div64.h) and for linking in the extra
libgcc functions that may be required (mulsi3, divsi3, etc).
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We have two implementations of the IP checksuming code for the m68k arch.
One uses the more advanced instructions available in 68020 and above
processors, the other uses the simpler instructions available on the
original 68000 processors and the modern ColdFire processors.
This simpler code is pretty much the same as the generic lib implementation
of the IP csum functions. So lets just switch over to using that. That
means we can completely remove the checksum_no.c file, and only have the
local fast code used for the more complex 68k CPU family members.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
|
|
|
|
|
|
| |
The selection of the CONFIG_GENERIC_ATOMIC64 option is not specific to the
MMU being present and enabled. It is a property of certain CPU families.
So select it based on those CPU types being selected.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
The current mmu and non-mmu Kconfig files can be merged to form
a more general selection of options. The current break up of options
is due to the simple brute force merge from the m68k and m68knommu
arch directories.
Many of the options are not at all specific to having the MMU enabled
or not. They are actually associated with a particular CPU type or
platform type.
Ultimately as we support all processors with the MMU disabled we need
many of these options to be selectable without the MMU option enabled.
And likewise some of the ColdFire processors, which currently are only
supported with the MMU disabled, do have MMU hardware, and will need
to have options selected on CPU type, not MMU disabled.
This patch removes the old mmu and non-mmu Kconfigs and instead breaks
up the configuration into four areas: cpu, machine, bus, devices.
The Kconfig.cpu lists all the options associated with selecting a CPU,
and includes options specific to each CPU type as well.
Kconfig.machine lists all options associated with selecting a machine
type. Almost always the machines selectable is restricted by the chosen
CPU.
Kconfig.bus contains options associated with selecting bus types on the
various machine types. That includes PCI bus, PCMCIA bus, etc.
Kconfig.devices contains options for drivers and driver associated
options.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|