| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer and time updates from Thomas Gleixner:
"A rather large update of timers, timekeeping & co
- Core timekeeping code is year-2038 safe now for 32bit machines.
Now we just need to fix all in kernel users and the gazillion of
user space interfaces which rely on timespec/timeval :)
- Better cache layout for the timekeeping internal data structures.
- Proper nanosecond based interfaces for in kernel users.
- Tree wide cleanup of code which wants nanoseconds but does hoops
and loops to convert back and forth from timespecs. Some of it
definitely belongs into the ugly code museum.
- Consolidation of the timekeeping interface zoo.
- A fast NMI safe accessor to clock monotonic for tracing. This is a
long standing request to support correlated user/kernel space
traces. With proper NTP frequency correction it's also suitable
for correlation of traces accross separate machines.
- Checkpoint/restart support for timerfd.
- A few NOHZ[_FULL] improvements in the [hr]timer code.
- Code move from kernel to kernel/time of all time* related code.
- New clocksource/event drivers from the ARM universe. I'm really
impressed that despite an architected timer in the newer chips SoC
manufacturers insist on inventing new and differently broken SoC
specific timers.
[ Ed. "Impressed"? I don't think that word means what you think it means ]
- Another round of code move from arch to drivers. Looks like most
of the legacy mess in ARM regarding timers is sorted out except for
a few obnoxious strongholds.
- The usual updates and fixlets all over the place"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (114 commits)
timekeeping: Fixup typo in update_vsyscall_old definition
clocksource: document some basic timekeeping concepts
timekeeping: Use cached ntp_tick_length when accumulating error
timekeeping: Rework frequency adjustments to work better w/ nohz
timekeeping: Minor fixup for timespec64->timespec assignment
ftrace: Provide trace clocks monotonic
timekeeping: Provide fast and NMI safe access to CLOCK_MONOTONIC
seqcount: Add raw_write_seqcount_latch()
seqcount: Provide raw_read_seqcount()
timekeeping: Use tk_read_base as argument for timekeeping_get_ns()
timekeeping: Create struct tk_read_base and use it in struct timekeeper
timekeeping: Restructure the timekeeper some more
clocksource: Get rid of cycle_last
clocksource: Move cycle_last validation to core code
clocksource: Make delta calculation a function
wireless: ath9k: Get rid of timespec conversions
drm: vmwgfx: Use nsec based interfaces
drm: i915: Use nsec based interfaces
timekeeping: Provide ktime_get_raw()
hangcheck-timer: Use ktime_get_ns()
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
In commit 4a0e637738f0 ("clocksource: Get rid of cycle_last"),
currently in the -tip tree, there was a small typo where cycles_t
was used intstead of cycle_t. This broke ppc64 builds.
Fix this by using the proper cycle_t type for this usage, in
both the definition and the ia64 implementation.
Now, having both cycle_t and cycles_t types seems like a very
bad idea just asking for these sorts of issues. But that
will be a cleanup for another day.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1406349439-11785-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This adds some documentation about clock sources, clock events,
the weak sched_clock() function and delay timers that answers
questions that repeatedly arise on the mailing lists.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Nicolas Pitre <nico@fluxnic.net>
Cc: Colin Cross <ccross@google.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
By caching the ntp_tick_length() when we correct the frequency error,
and then using that cached value to accumulate error, we avoid large
initial errors when the tick length is changed.
This makes convergence happen much faster in the simulator, since the
initial error doesn't have to be slowly whittled away.
This initially seems like an accounting error, but Miroslav pointed out
that ntp_tick_length() can change mid-tick, so when we apply it in the
error accumulation, we are applying any recent change to the entire tick.
This approach chooses to apply changes in the ntp_tick_length() only to
the next tick, which allows us to calculate the freq correction before
using the new tick length, which avoids accummulating error.
Credit to Miroslav for pointing this out and providing the original patch
this functionality has been pulled out from, along with the rational.
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Reported-by: Miroslav Lichvar <mlichvar@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The existing timekeeping_adjust logic has always been complicated
to understand. Further, since it was developed prior to NOHZ becoming
common, its not surprising it performs poorly when NOHZ is enabled.
Since Miroslav pointed out the problematic nature of the existing code
in the NOHZ case, I've tried to refactor the code to perform better.
The problem with the previous approach was that it tried to adjust
for the total cumulative error using a scaled dampening factor. This
resulted in large errors to be corrected slowly, while small errors
were corrected quickly. With NOHZ the timekeeping code doesn't know
how far out the next tick will be, so this results in bad
over-correction to small errors, and insufficient correction to large
errors.
Inspired by Miroslav's patch, I've refactored the code to try to
address the correction in two steps.
1) Check the future freq error for the next tick, and if the frequency
error is large, try to make sure we correct it so it doesn't cause
much accumulated error.
2) Then make a small single unit adjustment to correct any cumulative
error that has collected over time.
This method performs fairly well in the simulator Miroslav created.
Major credit to Miroslav for pointing out the issue, providing the
original patch to resolve this, a simulator for testing, as well as
helping debug and resolve issues in my implementation so that it
performed closer to his original implementation.
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Reported-by: Miroslav Lichvar <mlichvar@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
In the GENERIC_TIME_VSYSCALL_OLD update_vsyscall implementation,
we take the tk_xtime() value, which returns a timespec64, and
store it in a timespec.
This luckily is ok, since the only architectures that use
GENERIC_TIME_VSYSCALL_OLD are ia64 and ppc64, which are both
64 bit systems where timespec64 is the same as a timespec.
Even so, for cleanliness reasons, use the conversion function
to assign the proper type.
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Expose the new NMI safe accessor to clock monotonic to the tracer.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Tracers want a correlated time between the kernel instrumentation and
user space. We really do not want to export sched_clock() to user
space, so we need to provide something sensible for this.
Using separate data structures with an non blocking sequence count
based update mechanism allows us to do that. The data structure
required for the readout has a sequence counter and two copies of the
timekeeping data.
On the update side:
smp_wmb();
tkf->seq++;
smp_wmb();
update(tkf->base[0], tk);
smp_wmb();
tkf->seq++;
smp_wmb();
update(tkf->base[1], tk);
On the reader side:
do {
seq = tkf->seq;
smp_rmb();
idx = seq & 0x01;
now = now(tkf->base[idx]);
smp_rmb();
} while (seq != tkf->seq)
So if a NMI hits the update of base[0] it will use base[1] which is
still consistent, but this timestamp is not guaranteed to be monotonic
across an update.
The timestamp is calculated by:
now = base_mono + clock_delta * slope
So if the update lowers the slope, readers who are forced to the
not yet updated second array are still using the old steeper slope.
tmono
^
| o n
| o n
| u
| o
|o
|12345678---> reader order
o = old slope
u = update
n = new slope
So reader 6 will observe time going backwards versus reader 5.
While other CPUs are likely to be able observe that, the only way
for a CPU local observation is when an NMI hits in the middle of
the update. Timestamps taken from that NMI context might be ahead
of the following timestamps. Callers need to be aware of that and
deal with it.
V2: Got rid of clock monotonic raw and reorganized the data
structures. Folded in the barrier fix from Mathieu.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
For NMI safe access to clock monotonic we use the seqcount LSB as
index of a timekeeper array. The update sequence looks like this:
smp_wmb(); <- prior stores to a[1]
seq++;
smp_wmb(); <- seq increment before update of a[0]
update(a[0]);
smp_wmb(); <- update of a[0]
seq++;
smp_wmb(); <- seq increment before update of a[1]
update(a[1]);
To avoid open coded barriers, provide a helper function.
[ tglx: Split out of a combo patch against the first implementation of
the NMI safe accessor ]
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
raw_read_seqcount opens a read critical section of the given seqcount
without any lockdep checking and without checking or masking the
LSB. Calling code is responsible for handling that.
Preparatory patch to provide a NMI safe clock monotonic accessor
function.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
All the function needs is in the tk_read_base struct. No functional
change for the current code, just a preparatory patch for the NMI safe
accessor to clock monotonic which will use struct tk_read_base as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The members of the new struct are the required ones for the new NMI
safe accessor to clcok monotonic. In order to reuse the existing
timekeeping code and to make the update of the fast NMI safe
timekeepers a simple memcpy use the struct for the timekeeper as well
and convert all users.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Access to time requires to touch two cachelines at minimum
1) The timekeeper data structure
2) The clocksource data structure
The access to the clocksource data structure can be avoided as almost
all clocksource implementations ignore the argument to the read
callback, which is a pointer to the clocksource.
But the core needs to touch it to access the members @read and @mask.
So we are better off by copying the @read function pointer and the
@mask from the clocksource to the core data structure itself.
For the most used ktime_get() access all required data including the
@read and @mask copies fits together with the sequence counter into a
single 64 byte cacheline.
For the other time access functions we touch in the current code three
cache lines in the worst case. But with the clocksource data copies we
can reduce that to two adjacent cachelines, which is more efficient
than disjunct cache lines.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
cycle_last was added to the clocksource to support the TSC
validation. We moved that to the core code, so we can get rid of the
extra copy.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The only user of the cycle_last validation is the x86 TSC. In order to
provide NMI safe accessor functions for clock monotonic and
monotonic_raw we need to do that in the core.
We can't do the TSC specific
if (now < cycle_last)
now = cycle_last;
for the other wrapping around clocksources, but TSC has
CLOCKSOURCE_MASK(64) which actually does not mask out anything so if
now is less than cycle_last the subtraction will give a negative
result. So we can check for that in clocksource_delta() and return 0
for that case.
Implement and enable it for x86
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We want to move the TSC sanity check into core code to make NMI safe
accessors to clock monotonic[_raw] possible. For this we need to
sanity check the delta calculation. Create a helper function and
convert all sites to use it.
[ Build fix from jstultz ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We have interfaces. Remove the open coded cruft. Reduces text size
along with the code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: QCA ath9k Development <ath9k-devel@qca.qualcomm.com>
Cc: John W. Linville <linville@tuxdriver.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| | |
No point in converting timespecs back and forth.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Use ktime_get_raw_ns() and get rid of the back and forth timespec
conversions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| | |
Provide a ktime_t based interface for raw monotonic time.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
There is no point in having a S390 private implementation and there is
no point in using the raw monotonic time. The NTP freqeuency
adjustment of CLOCK_MONOTONIC is really not doing any harm for the
hang check timer.
Use ktime_get_ns() for everything and get rid of the timespec
conversions.
V2: Drop the raw monotonic and the S390 special case
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| | |
timekeeping_clocktai() is not used in fast pathes, so the extra
timespec conversion is not problematic.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| | |
No more users. Remove it
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Subtracting plain nsec values and converting to timespec is simpler
than the whole timespec math. Not really fastpath code, so the
division is not an issue.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| | |
get_monotonic_boottime() is not used in fast pathes, so the extra
timespec conversion is not problematic.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| | |
No more users.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Convert the relevant base data right away to nanoseconds instead of
doing the conversion on every readout. Reduces text size by 160 bytes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: kvm@vger.kernel.org
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Use the new nanoseconds based interface and get rid of the timespec
conversion dance.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: kvm@vger.kernel.org
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Use the nanoseconds based interface instead of converting from a
timespec.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: linux-arm-kernel@lists.infradead.org
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
No idea why iio needs wall clock based time stamps, but we can avoid
the timespec conversion dance by using the new interfaces.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Jonathan Cameron <jic23@kernel.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Using the wall clock time for delta time calculations is wrong to
begin with because wall clock time can be set from userspace and NTP.
Such data wants to be based on clock monotonic.
The calculations also are done on a nanosecond basis. Use the
nanoseconds based interface right away.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jean Delvare <jdelvare@suse.de>
Acked-by: Jean Delvare <jdelvare@suse.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Replace the ever recurring:
ts = ktime_get_ts();
ns = timespec_to_ns(&ts);
with
ns = ktime_get_ns();
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Trond Myklebust <trond.myklebust@primarydata.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This code is beyond silly:
struct timespec ts = ktime_get_ts();
ktime_t ktime = timespec_to_ktime(ts);
Further down the code builds the delta of two ktime_t values and
converts the result to nanoseconds.
Use ktime_get_ns() and replace all the nonsense.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Eli Cohen <eli@mellanox.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Replace the ever recurring:
ts = ktime_get_ts();
ns = timespec_to_ns(&ts);
with
ns = ktime_get_ns();
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Replace the ever recurring:
ts = ktime_get_ts();
ns = timespec_to_ns(&ts);
with
ns = ktime_get_ns();
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Replace the ever recurring:
ts = ktime_get_ts();
ns = timespec_to_ns(&ts);
with
ns = ktime_get_ns();
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Evgeniy Polyakov <zbr@ioremap.net>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Replace the ever recurring:
ts = ktime_get_ts();
ns = timespec_to_ns(&ts);
with
ns = ktime_get_ns();
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Converting cputime to timespec and timespec to nanoseconds makes no
sense. Use cputime_to_ns() and be done with it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| | |
Kill the timespec juggling and calculate with plain nanoseconds.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| | |
Simplify the timespec to nsec/usec conversions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Simplify the only user of this data by removing the timespec
conversion.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| | |
Required for moving drivers to the nanosecond based interfaces.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| | |
A lot of code converts either timespecs or ktime_t to
nanoseconds. Provide helper functions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| | |
No more users.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Convert the monotonic timestamp with ktime_mono_to_real() in
drm_calc_vbltimestamp_from_scanoutpos().
In get_drm_timestamp we can call either ktime_get() or
ktime_get_real() depending on drm_timestamp_monotonic. No point in
having two calls into the core for CLOCK_REALTIME.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Convert the monotonic timestamp with ktime_mono_to_real() in
evdev_events().
In evdev_queue_syn_dropped() we can call either ktime_get() or
ktime_get_real() depending on the clkid. No point in having two calls
for CLOCK_REALTIME.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We have a few other use cases of ktime_get_monotonic_offset() which
can be optimized with ktime_mono_to_real(). The timerfd code uses the
offset only for comparison, so we can use ktime_mono_to_real(0) for
this as well.
Funny enough text size shrinks with that on ARM and x8664 !?
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| | |
ktime based conversion function to map a monotonic time stamp to a
different CLOCK.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| | |
No need to juggle with timespecs.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
| |
| |
| |
| |
| |
| |
| | |
No need to juggle with timespecs.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|