| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull ARM audit/signal updates from Russell King:
"ARM audit/signal handling updates from Al and Will. This improves on
the work Viro did last merge window, and sorts out some of the issues
found with that work."
* 'audit' of git://git.linaro.org/people/rmk/linux-arm:
ARM: 7475/1: sys_trace: allow all syscall arguments to be updated via ptrace
ARM: 7474/1: get rid of TIF_SYSCALL_RESTARTSYS
ARM: 7473/1: deal with handlerless restarts without leaving the kernel
ARM: 7472/1: pull all work_pending logics into C function
ARM: 7471/1: Revert "7442/1: Revert "remove unused restart trampoline""
ARM: 7470/1: Revert "7443/1: Revert "new way of handling ERESTART_RESTARTBLOCK""
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Prior to syscall invocation, __sys_trace only reloads r0-r3 from the
kernel stack, preventing the debugger from updating arguments 5-7 when
signalled via ptrace.
This patch updates the code to reload r0-r6, updating arguments 5 and 6
on the stack (argument 7 is only used by OABI indirect syscalls and
can remain in a register).
Reported-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
just let do_work_pending() return 1 on normal local restarts and
-1 on those that had been caused by ERESTART_RESTARTBLOCK (and 0
is still "all done, sod off to userland now"). And let the asm
glue flip scno to restart_syscall(2) one if it got negative from
us...
[will: resolved conflicts with audit fixes]
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| |
| |
| |
| |
| |
| | |
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| |
| |
| |
| |
| |
| | |
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This reverts commit 3b0c06226783ffc836217eb34f7eca311b1e63f7.
We no longer require the restart trampoline for syscall restarting.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This reverts commit 433e2f307beff8adba241646ce9108544e0c5a03.
Conflicts:
arch/arm/kernel/ptrace.c
Reintroduce the new syscall restart handling in preparation for further
patches from Al Viro.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Pull ARM fixes from Russell King:
"This fixes various issues found during July"
* 'fixes' of git://git.linaro.org/people/rmk/linux-arm:
ARM: 7479/1: mm: avoid NULL dereference when flushing gate_vma with VIVT caches
ARM: Fix undefined instruction exception handling
ARM: 7480/1: only call smp_send_stop() on SMP
ARM: 7478/1: errata: extend workaround for erratum #720789
ARM: 7477/1: vfp: Always save VFP state in vfp_pm_suspend on UP
ARM: 7476/1: vfp: only clear vfp state for current cpu in vfp_pm_suspend
ARM: 7468/1: ftrace: Trace function entry before updating index
ARM: 7467/1: mutex: use generic xchg-based implementation for ARMv6+
ARM: 7466/1: disable interrupt before spinning endlessly
ARM: 7465/1: Handle >4GB memory sizes in device tree and mem=size@start option
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The vivt_flush_cache_{range,page} functions check that the mm_struct
of the VMA being flushed has been active on the current CPU before
performing the cache maintenance.
The gate_vma has a NULL mm_struct pointer and, as such, will cause a
kernel fault if we try to flush it with the above operations. This
happens during ELF core dumps, which include the gate_vma as it may be
useful for debugging purposes.
This patch adds checks to the VIVT cache flushing functions so that VMAs
with a NULL mm_struct are flushed unconditionally (the vectors page may
be dirty if we use it to store the current TLS pointer).
Cc: <stable@vger.kernel.org> # 3.4+
Reported-by: Gilles Chanteperdrix <gilles.chanteperdrix@xenomai.org>
Tested-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
While trying to get a v3.5 kernel booted on the cubox, I noticed that
VFP does not work correctly with VFP bounce handling. This is because
of the confusion over 16-bit vs 32-bit instructions, and where PC is
supposed to point to.
The rule is that FP handlers are entered with regs->ARM_pc pointing at
the _next_ instruction to be executed. However, if the exception is
not handled, regs->ARM_pc points at the faulting instruction.
This is easy for ARM mode, because we know that the next instruction and
previous instructions are separated by four bytes. This is not true of
Thumb2 though.
Since all FP instructions are 32-bit in Thumb2, it makes things easy.
We just need to select the appropriate adjustment. Do this by moving
the adjustment out of do_undefinstr() into the assembly code, as only
the assembly code knows whether it's dealing with a 32-bit or 16-bit
instruction.
Cc: <stable@vger.kernel.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
On reboot or poweroff (machine_shutdown()) a call to smp_send_stop() is
made (to stop the others CPU's) when CONFIG_SMP=y.
arch/arm/kernel/process.c:
void machine_shutdown(void)
{
#ifdef CONFIG_SMP
smp_send_stop();
#endif
}
smp_send_stop() calls the function pointer smp_cross_call(), which is set
on the smp_init_cpus() function for OMAP processors.
arch/arm/mach-omap2/omap-smp.c:
void __init smp_init_cpus(void)
{
...
set_smp_cross_call(gic_raise_softirq);
...
}
But the ARM setup_arch() function only calls smp_init_cpus()
if CONFIG_SMP=y && is_smp().
arm/kernel/setup.c:
void __init setup_arch(char **cmdline_p)
{
...
#ifdef CONFIG_SMP
if (is_smp())
smp_init_cpus();
#endif
...
}
Newer OMAP CPU's are SMP machines so omap2plus_defconfig sets
CONFIG_SMP=y. Unfortunately on an OMAP UP machine is_smp()
returns false and smp_init_cpus() is never called and the
smp_cross_call() function remains NULL.
If the machine is rebooted or powered off, smp_send_stop() will
be called (since CONFIG_SMP=y) leading to the following error:
[ 42.815551] Restarting system.
[ 42.819030] Unable to handle kernel NULL pointer dereference at virtual address 00000000
[ 42.827667] pgd = d7a74000
[ 42.830566] [00000000] *pgd=96ce7831, *pte=00000000, *ppte=00000000
[ 42.837249] Internal error: Oops: 80000007 [#1] SMP ARM
[ 42.842773] Modules linked in:
[ 42.846008] CPU: 0 Not tainted (3.5.0-rc3-next-20120622-00002-g62e87ba-dirty #44)
[ 42.854278] PC is at 0x0
[ 42.856994] LR is at smp_send_stop+0x4c/0xe4
[ 42.861511] pc : [<00000000>] lr : [<c00183a4>] psr: 60000013
[ 42.861511] sp : d6c85e70 ip : 00000000 fp : 00000000
[ 42.873626] r10: 00000000 r9 : d6c84000 r8 : 00000002
[ 42.879150] r7 : c07235a0 r6 : c06dd2d0 r5 : 000f4241 r4 : d6c85e74
[ 42.886047] r3 : 00000000 r2 : 00000000 r1 : 00000006 r0 : d6c85e74
[ 42.892944] Flags: nZCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment user
[ 42.900482] Control: 10c5387d Table: 97a74019 DAC: 00000015
[ 42.906555] Process reboot (pid: 1166, stack limit = 0xd6c842f8)
[ 42.912902] Stack: (0xd6c85e70 to 0xd6c86000)
[ 42.917510] 5e60: c07235a0 00000000 00000000 d6c84000
[ 42.926177] 5e80: 01234567 c00143d0 4321fedc c00511bc d6c85ebc 00000168 00000460 00000000
[ 42.934814] 5ea0: c1017950 a0000013 c1017900 d8014390 d7ec3858 c0498e48 c1017950 00000000
[ 42.943481] 5ec0: d6ddde10 d6c85f78 00000003 00000000 d6ddde10 d6c84000 00000000 00000000
[ 42.952117] 5ee0: 00000002 00000000 00000000 c0088c88 00000002 00000000 00000000 c00f4b90
[ 42.960784] 5f00: 00000000 d6c85ebc d8014390 d7e311c8 60000013 00000103 00000002 d6c84000
[ 42.969421] 5f20: c00f3274 d6e00a00 00000001 60000013 d6c84000 00000000 00000000 c00895d4
[ 42.978057] 5f40: 00000002 d8007c80 d781f000 c00f6150 d8010cc0 c00f3274 d781f000 d6c84000
[ 42.986694] 5f60: c0013020 d6e00a00 00000001 20000010 0001257c ef000000 00000000 c00895d4
[ 42.995361] 5f80: 00000002 00000001 00000003 00000000 00000001 00000003 00000000 00000058
[ 43.003997] 5fa0: c00130c8 c0012f00 00000001 00000003 fee1dead 28121969 01234567 00000002
[ 43.012634] 5fc0: 00000001 00000003 00000000 00000058 00012584 0001257c 00000001 00000000
[ 43.021270] 5fe0: 000124bc bec5cc6c 00008f9c 4a2f7c40 20000010 fee1dead 00000000 00000000
[ 43.029968] [<c00183a4>] (smp_send_stop+0x4c/0xe4) from [<c00143d0>] (machine_restart+0xc/0x4c)
[ 43.039154] [<c00143d0>] (machine_restart+0xc/0x4c) from [<c00511bc>] (sys_reboot+0x144/0x1f0)
[ 43.048278] [<c00511bc>] (sys_reboot+0x144/0x1f0) from [<c0012f00>] (ret_fast_syscall+0x0/0x3c)
[ 43.057464] Code: bad PC value
[ 43.060760] ---[ end trace c3988d1dd0b8f0fb ]---
Add a check so smp_cross_call() is only called when there is more than one CPU on-line.
Cc: <stable@vger.kernel.org>
Signed-off-by: Javier Martinez Canillas <javier at dowhile0.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Commit cdf357f1 ("ARM: 6299/1: errata: TLBIASIDIS and TLBIMVAIS
operations can broadcast a faulty ASID") replaced by-ASID TLB flushing
operations with all-ASID variants to workaround A9 erratum #720789.
This patch extends the workaround to include the tlb_range operations,
which were overlooked by the original patch.
Cc: <stable@vger.kernel.org>
Tested-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
vfp_pm_suspend should save the VFP state in suspend after
any lazy context switch. If it only saves when the VFP is enabled,
the state can get lost when, on a UP system:
Thread 1 uses the VFP
Context switch occurs to thread 2, VFP is disabled but the
VFP context is not saved
Thread 2 initiates suspend
vfp_pm_suspend is called with the VFP disabled, and the unsaved
VFP context of Thread 1 in the registers
Modify vfp_pm_suspend to save the VFP context whenever
vfp_current_hw_state is not NULL.
Includes a fix from Ido Yariv <ido@wizery.com>, who pointed out that on
SMP systems, the state pointer can be pointing to a freed task struct if
a task exited on another cpu, fixed by using #ifndef CONFIG_SMP in the
new if clause.
Cc: Barry Song <bs14@csr.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ido Yariv <ido@wizery.com>
Cc: Daniel Drake <dsd@laptop.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: stable@vger.kernel.org
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
vfp_pm_suspend runs on each cpu, only clear the hardware state
pointer for the current cpu. Prevents a possible crash if one
cpu clears the hw state pointer when another cpu has already
checked if it is valid.
Cc: stable@vger.kernel.org
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Commit 722b3c74695377d11d18a52f3da08114d37f3f37 modified x86 ftrace to
avoid tracing all functions called from irqs when function graph was
used with a filter. Port the same fix to ARM.
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The open-coded mutex implementation for ARMv6+ cores suffers from a
severe lack of barriers, so in the uncontended case we don't actually
protect any accesses performed during the critical section.
Furthermore, the code is largely a duplication of the ARMv6+ atomic_dec
code but optimised to remove a branch instruction, as the mutex fastpath
was previously inlined. Now that this is executed out-of-line, we can
reuse the atomic access code for the locking (in fact, we use the xchg
code as this produces shorter critical sections).
This patch uses the generic xchg based implementation for mutexes on
ARMv6+, which introduces barriers to the lock/unlock operations and also
has the benefit of removing a fair amount of inline assembly code.
Cc: <stable@vger.kernel.org>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Nicolas Pitre <nico@linaro.org>
Reported-by: Shan Kang <kangshan0910@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The CPU will endlessly spin at the end of machine_halt and
machine_restart calls. However, this will lead to a soft lockup
warning after about 20 seconds, if CONFIG_LOCKUP_DETECTOR is enabled,
as system timer is still alive.
Disable interrupt before going to spin endlessly, so that the lockup
warning will never be seen.
Cc: <stable@vger.kernel.org>
Reported-by: Marek Vasut <marex@denx.de>
Signed-off-by: Shawn Guo <shawn.guo@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The memory regions which are passed to arm_add_memory() from
device tree blobs via early_init_dt_add_memory_arch() can
have sizes which are larger than will fit in a 32 bit integer,
so switch to using a phys_addr_t to hold them, to avoid
silently dropping the top 32 bits of the size. Similarly, use
phys_addr_t in early_mem() so that mem=size@start command line
options specifying more than 4GB behave sensibly.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Pull fbdev updates from Florian Tobias Schandinat:
- large updates for OMAP
- support for LCD3 overlay manager (omap5)
- omapdss output cleanup
- removal of passive matrix LCD support as there are no drivers for
such panels for DSS or DSS2 and nobody complained (cleanup)
- large updates for SH Mobile
- overlay support
- separating MERAM (cache) from framebuffer driver
- some updates for Exynos and da8xx-fb
- various other small patches
* tag 'fbdev-updates-for-3.6' of git://github.com/schandinat/linux-2.6: (78 commits)
da8xx-fb: fix compile issue due to missing include
fbdev: Make pixel_to_pat() failure mode more friendly
da8xx-fb: do not turn ON LCD backlight unless LCDC is enabled
fbdev: sh_mobile_lcdc: Fix vertical panning step
video: exynos mipi dsi: Fix mipi dsi regulators handling issue
video: da8xx-fb: do clock reset of revision 2 LCDC before enabling
arm: da850: configure LCDC fifo threshold
video: da8xx-fb: configure FIFO threshold to reduce underflow errors
video: da8xx-fb: fix flicker due to 1 frame delay in updated frame
video: da8xx-fb rev2: fix disabling of palette completion interrupt
da8xx-fb: add missing FB_BLANK operations
video: exynos_dp: use usleep_range instead of delay
video: exynos_dp: check the only INTERLANE_ALIGN_DONE bit during Link Training
fb: epson1355fb: Fix section mismatch
video: exynos_dp: fix wrong DPCD address during Link Training
video/smscufx: fix line counting in fb_write
aty128fb: Fix coding style issues
fbdev: sh_mobile_lcdc: Fix pan offset computation in YUV mode
fbdev: sh_mobile_lcdc: Fix overlay registers update during pan operation
fbdev: sh_mobile_lcdc: Support horizontal panning
...
|
| | | |
| | | |
| | | |
| | | | |
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
If we accidentally pass an incorrect bpp value to pixel_to_pat(),
it panics. This is pretty useless, as we generally have the various
console locks held at that point, so nothing will be displayed,
and there is no reason to make this a fatal event.
Let's WARN instead.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
LCD blink is observed during suspend/resume and blank/unblank
operations as backlight is ON during LCDC disable and enable.
So make sure to turn OFF backlight before disabling and turn
it ON after enabling.
Signed-off-by: Manjunathappa, Prakash <prakash.pm@ti.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Commit 15dede882e564601947f2ce4b647742c0351be6d added support for
horizontal panning but accidentally computes the Y pan step value
incorrectly for NV12/21 and NV16/61 formats. Fix this.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
When FB_BLANK_UNLANK event occured, exynos mipi dsi regulators have to turn on.
Signed-off-by: Donghwa Lee <dh09.lee@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
As in specification software reset should be applied for several
cycles before bringing it out of reset. Without this patch
particularly during suspend and resume clock reset is not guaranteed
to happen.
Signed-off-by: Manjunathappa, Prakash <prakash.pm@ti.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Configure fifo threshold in raster dma_control register to
512 bytes. This reduces LCDC underflow errors.
Signed-off-by: Manjunathappa, Prakash <prakash.pm@ti.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Patch works around the below silicon errata:
During LCDC initialization, there is the potential for a FIFO
underflow condition to occur. A FIFO underflow condition
occurs when the input FIFO is completely empty and the LCDC
raster controller logic that drives data to the output pins
attempts to fetch data from the FIFO. When a FIFO underflow
condition occurs, incorrect data will be driven out on the
LCDC data pins.
Software should poll the FUF bit field in the LCD_STAT register
to check if an error condition has occurred or service the
interrupt if FUF_EN is enabled when FUF occurs. If the FUF bit
field has been set to 1, this will indicate an underflow
condition has occurred and then the software should execute a
reset of the LCDC via the LPSC.
This problem may occur if the LCDC FIFO threshold size
(LCDDMA_CTRL[TH_FIFO_READY]) is left at its default value after
reset. Increasing the FIFO threshold size will reduce or
eliminate underflows. Setting the threshold size to 256 double
words or larger is recommended.
Above issue is described in section 2.1.3 of silicon errata
http://www.ti.com/lit/er/sprz313e/sprz313e.pdf
Signed-off-by: Rajashekhara, Sudhakar <sudhakar.raj@ti.com>
Signed-off-by: Manjunathappa, Prakash <prakash.pm@ti.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Flicker/tearing effect is observed with current FB driver.
Issue is because of 2 active DMA channels ping ponging among them
along with usage of 2 DDR ping pong buffers in driver. Application
unaware of active DMA channel keeps updating frame being displayed,
this leads to tearing effect.
Below steps describes the issue:
1)Initially assume both buffers FB0 and FB1 are programmed for buffer-0.
2)On EOF0: Program FB0 for buffer-1, indicate(wake up) application
to fill up buffer-0. As FB1 is active and continues to DMA buffer-0
(which is being filled), leading to tearing/flickering issue.
3)On EOF1: Program FB1 for buffer-0, indicate(wake up) application to
fill up buffer-1. As FB0 is active and continues to DMA buffer-1(which
is being filled), leading to tearing/flickering issue.
4)On EOF0: Program FB0 for buffer-1, indicate(wake up) application to
fill up buffer-0. As FB1 is active and continues to DMA buffer-0(which is
being filled), leading to tearing/flickering issue.
...
Above steps depict that issue is because of 1 frame delay in frame
panned by application.
Patch fixes the issue by keeping track free DMA channel and configures
it in drivers PAN callback so that panned frame from application gets
displayed in next frame period.
Wiki below describes the issue in detail and it also has link to
application with which issue can be reproduced.
http://processors.wiki.ti.com/index.php/DA8xx_LCDC_Linux_FB_FAQs
Signed-off-by: Nellutla, Aditya <aditya.n@ti.com>
Signed-off-by: Manjunathappa, Prakash <prakash.pm@ti.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Writing '1' to particular bit of IRQENABLE_CLEAR register disables the
corresponding interrupt on revision 2 LCDC. This register was wrongly
configured to disable all previous enabled interrupts instead of
disabling only palette completion interrupt. Patch fixes it by clearing
only palette completion interrupt bit.
Signed-off-by: Manjunathappa, Prakash <prakash.pm@ti.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
add FB_BLANK_NORMAL, FB_BLANK_VSYNC_SUSPEND and FB_BLANK_HSYNC_SUSPEND
modes (copy drivers/video/omap2/omapfb/omapfb-main.c implementation).
Otherwise X-server will complain about invalid parameter.
Signed-off-by: Yegor Yefremov <yegorslists@googlemail.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
|
| |\ \ \
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
fbdev-next
Conflicts:
drivers/video/omap2/dss/core.c
drivers/video/omap2/dss/dispc.c
|
| | |\ \ \
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The LCD interface drivers(DPI, DSI, RFBI, SDI) do some direct DISPC register
writes to configure LCD manager related fields. This series groups these fields
into a single struct, and let's the interface driver apply these parameters.
This allows us to:
- Check the LCD manager related parameters before applying them.
- Remove some omap_dss_device references as APPLY holds the applied parameters.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Replication logic for an overlay depends on the color mode in which it is
configured and the video port width of the manager it is connected to.
video port width now held in dss_lcd_mgr_config in the manager's private
data in APPLY. Use this instead of referring to the omap_dss_device connected to
the manager.
Replication is enabled in the case of TV manager, the video_port_width is set to
a default value of 24 for TV manager.
Make the replication checking an overlay function since it's more of an overlay
characteristic than a display characteristic.
Signed-off-by: Archit Taneja <archit@ti.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The RFBI driver uses a direct DISPC register write to enable the overlay
manager. Replace this with dss_mgr_enable() which checks if the connected
overlay and managers are correctly configured, and configure DSS for
fifomerge.
Signed-off-by: Archit Taneja <archit@ti.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
dss_mgr_is_lcd() available in dss.h does the same thing as dispc_mgr_is_lcd()
in dispc.c. Remove the function from dispc.c and replace it with the one in
dss.h.
Signed-off-by: Archit Taneja <archit@ti.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
APPLY needs to know at certain places whether an overlay manager is in manual
or auto update mode. The caps of the connected omap_dss_device were used to
check that.
A LCD manager is in manual update if stallmode is enabled for that manager. TV
managers for now always auto update.
Return the value of stallmode parameter in the private data 'lcd_confg' in
mgr_manual_update() and ovl_manual_update(), for TV managers stallmode field
will be false by default.
Signed-off-by: Archit Taneja <archit@ti.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The LCD related manager configurations are a part of the manager's private data
in APPLY. Pass this to dss_lcd_mgr_config to dss_mgr_check and create a function
to check the validity of some of the configurations.
To check some of the configurations, we require information of interface to
which the manager output is connected. These can be added once interfaces are
represented as an entity.
Signed-off-by: Archit Taneja <archit@ti.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
drivers
Replace the DISPC fuctions used to configure LCD channel related manager
parameters with dss_mgr_set_lcd_config() in APPLY. This function ensures that
the DISPC registers are written at the right time by using the shadow register
programming model.
The LCD manager configurations is stored as a private data of manager in APPLY.
It is treated as an extra info as it's the panel drivers which trigger this
apply via interface drivers, and not a DSS2 user like omapfb or omapdrm.
Storing LCD manager related properties in APPLY also prevents the need to refer
to the panel connected to the manager for information. This helps in making the
DSS driver less dependent on panel.
A helper function is added to check whether the manager is LCD or TV. The direct
DISPC register writes are removed from the interface drivers.
Signed-off-by: Archit Taneja <archit@ti.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Create a dss_lcd_mgr_config struct instance in SDI. Fill up all the parameters
of the struct with configurations held by the panel, and the configurations
required by SDI.
Use these to write to the DISPC registers. These direct register writes would be
later replaced by a function which applies the configuration using the shadow
register programming model.
Create function sdi_config_lcd_manager() which fills the mgr_config parameters
and writes to the DISPC registers.
Signed-off-by: Archit Taneja <archit@ti.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Create a dss_lcd_mgr_config struct instance in DSI. Fill up all the parameters
of the struct with configurations held by the panel, and the configurations
required by DSI.
Use these to write to the DISPC registers. These direct register writes would be
later replaced by a function which applies the configuration using the shadow
register programming model.
The function dsi_configure_dispc_clocks() is now called in
dsi_display_init_dispc(), this lets all the lcd manager related configurations
happen in the same place. The DISPC_DIVISORo register was written in
dsi_configure_dispc_clock(), now it just fills up the dispc_clock_info parameter
in mgr_config. The clock_info is written later in dsi_display_init_dispc().
Signed-off-by: Archit Taneja <archit@ti.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Create a dss_lcd_mgr_config struct instance in RFBI. Fill up all the parameters
of the struct with configurations held by the panel, and the configurations
required by RFBI.
Use these to write to the DISPC registers. These direct register writes would be
later replaced by a function which applies the configuration using the shadow
register programming model.
Create function rfbi_config_lcd_manager() which fills up the mgr_config
parameters and writes to the DISPC regs.
Signed-off-by: Archit Taneja <archit@ti.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Create a dss_lcd_mgr_config struct instance in DPI. Fill up all the parameters
of the struct with configurations held by the panel, and the configurations
required by DPI.
Use these to write to the DISPC registers. These direct register writes would be
later replaced by a function which applies the configuration using the shadow
register programming model.
The DISPC_DIVISORo registers were written in the functions dpi_set_dispc_clk()
and dpi_set_dsi_clk(), now they just fill up the dispc_clock_info parameter in
mgr_config. They are written later in dpi_config_lcd_manager.
Signed-off-by: Archit Taneja <archit@ti.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Create a struct dss_lcd_mgr_config which holds LCD overlay manager related
parameters. These are currently partially contained in the omap_dss_device
connected to the manager, and the rest are in the interface driver.
The parameters are directly written to the DISPC registers in the interface
drivers. These should eventually be applied at the correct time using the
shadow register programming model. This struct would help in grouping these
parameters so that they can be applied together.
Signed-off-by: Archit Taneja <archit@ti.com>
|
| | |/ / /
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
dipsc_mgr_set_clock div has an int return type to report errors or success.
The function doesn't really check for errors and always returns 0. Change
the return type to void.
Checking for the correct DISPC clock divider ranges will be done when a DSS2
user does a manager apply. This support will be added later.
Signed-off-by: Archit Taneja <archit@ti.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The dispc_disable_outputs() function currently disables all LCD managers except
LCD3. This patch adds disabling functionality for LCD3 manager thereby
maintaining consistency of Display Subsystem for in case Display Controller is
reset when LCD3 manager is in use.
Signed-off-by: Chandrabhanu Mahapatra <cmahapatra@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
| | |\ \ \
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
This series does the following things:
- Remove passive matrix LCD support: There are no panel drivers with
passive matrix LCD drivers in DSS2. There are no passive matrix panels
even available to test with DSS. Since no one is using passive matrix
panels, stop trying to support it. It cleans up the DSS driver.
- Add some new fields to omap_video_timings: There were some standard
panel timing fields missing from omap_video_timings. Namely
Hsync/Vsync/DE levels and interlace. Add these to omap_video_timings
to align it more with xorg modeline. Add some other OMAP DSS specific
fields to omap_video_timings.
- Remove some hacks done because omap_video_timings didn't have the
above fields.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
For DSI operation in videomode, DISPC logic levels for the signals HSYNC, VSYNC
and DE need to be specified to DSI via the fields VP_HSYNC_POL, VP_VSYNC_POL and
VP_DE_POL in DSI_CTRL registers.
This information is completely internal to DSS as logic levels for the above
signals hold no meaning on the DSI bus. Hence a DSI panel driver should be
totally oblivious of these fields.
Fix the logic levels/polarities in the DISPC and DSI registers to a default
value. This is done by overriding these fields in omap_video_timings struct
filled by the panel driver for DISPC, and use the equivalent default values
when programming DSI_CTRL registers. Also, remove the redundant polarity related
fields in omap_dss_dsi_videomode_data.
Signed-off-by: Archit Taneja <archit@ti.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The hdmi CEA and VESA timings were represented by the struct hdmi_video_timings,
omap_video_timings couldn't be used as it didn't contain the fields hsync/vsync
polarities and interlaced/progressive information.
Remove hdmi_video_timings, and use omap_video_timings instead.
Cc: Mythri P K <mythripk@ti.com>
Signed-off-by: Archit Taneja <archit@ti.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Use the interlace field in omap_video_timings to configure/retrieve
corresponding fb mode flags in fb_var_screeninfo and fb_videomode.
The interlace field maps with the fb mode flags FB_VMODE_INTERLACED and
FB_VMODE_NONINTERLACED.
Signed-off-by: Archit Taneja <archit@ti.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
dispc_ovl_setup()
Currently the interlace parameter passed to dispc_ovl_setup() is configured by
checking the display type, and set to true if the display type is VENC.
This isn't correct as other panels can take interlaced content too. The
omap_video_timings struct in manager's private data contains the info whether
the panel is in interlaced mode or not.
Signed-off-by: Archit Taneja <archit@ti.com>
|