| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
cftype->write_string() just passes on the writeable buffer from kernfs
and there's no reason to add const restriction on the buffer. The
only thing const achieves is unnecessarily complicating parsing of the
buffer. Drop const from @buffer.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Cc: Daniel Borkmann <dborkman@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The dummy root will be repurposed to serve as the default unified
hierarchy. Let's rename things in preparation.
* s/cgroup_dummy_root/cgrp_dfl_root/
* s/cgroupfs_root/cgroup_root/ as we don't do fs part directly anymore
* s/cgroup_root->top_cgroup/cgroup_root->cgrp/ for brevity
This is pure rename.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
cgroupfs_root->subsys_mask represents the controllers attached to the
hierarchy. This patch moves the field to cgroup. Subsystem
initialization and rebinding updates the top cgroup's subsys_mask.
For !root cgroups, the subsys_mask bits are set from create_css() and
cleared from kill_css(), which effectively means that all cgroups will
have the same subsys_mask as the top cgroup.
While this doesn't make any difference now, this will help
implementation of the default unified hierarchy where !root cgroups
may have subsets of the top_cgroup's subsys_mask.
While at it, __kill_css() is split out of kill_css(). The former
doesn't care about the subsys_mask while the latter becomes noop if
the controller is already killed and clears the matching bit if not
before proceeding to killing the css. This will be used later by the
default unified hierarchy implementation.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, while rebinding, cgroup_dummy_root serves as the anchor
point. In addition to the target root, rebind_subsystems() takes
@added_mask and @removed_mask. The subsystems specified in the former
are expected to be on the dummy root and then moved to the target
root. The ones in the latter are moved from non-dummy root to dummy.
Now that the dummy root is a fully functional one and we're planning
to use it for the default unified hierarchy, this level of distinction
between dummy and non-dummy roots is quite awkward.
This patch updates rebind_subsystems() to take the target root and one
subsystem mask and move the specified subsystmes to the target root
which may or may not be the dummy root. IOW, unbinding now becomes
moving the subsystems to the dummy root and binding to non-dummy root.
This makes the dummy root mostly equivalent to other hierarchies in
terms of the mechanism of moving subsystems around; however, we still
retain all the semantical restrictions so that this patch doesn't
introduce any visible behavior differences. Another noteworthy detail
is that rebind_subsystems() guarantees that moving a subsystem to the
dummy root never fails so that valid unmounting attempts always
succeed.
This unifies binding and unbinding of subsystems. The invocation
points of ->bind() were inconsistent between the two and now moved
after whole rebinding is complete. This doesn't break the current
users and generally makes more sense.
All rebind_subsystems() users are converted accordingly. Note that
cgroup_remount() now makes two calls to rebind_subsystems() to bind
and then unbind the requested subsystems.
This will allow repurposing of the dummy hierarchy as the default
unified hierarchy and shouldn't make any userland visible behavior
difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
|
|
|
|
|
|
|
|
| |
The dummy hierarchy is now a fully functional one and dummy_top has a
kernfs_node associated with it. Drop the NULL checks in
[pr_cont_]cont_{name|path}() which are no longer necessary.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
cgroup_dummy_root is used to host controllers which aren't attached to
any other hierarchy. The root is minimally set up during kernfs
bootstrap and didn't go through full hierarchy initialization. We're
planning to use cgroup_dummy_root for the default unified hierarchy
and thus want it to be fully functional.
Replace the special initialization, which was collected into
cgroup_init() by the previous patch, with an invocation of
cgroup_setup_root(). This simplifies the init path and makes
cgroup_dummy_root a full hierarchy with its own kernfs_root and all.
As this puts the dummy hierarchy on the cgroup_roots list, rename
for_each_active_root() to for_each_root() and update its users to skip
the dummy root for now.
This patch doesn't cause any userland visible behavior changes at this
point.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Fields of init_css_set and css_set_count are now set using
initializer instead of programmatically from cgroup_init_early().
* init_cgroup_root() now also takes @opts and performs the optional
part of initialization too. The leftover part of
cgroup_root_from_opts() is collapsed into its only caller -
cgroup_mount().
* Initialization of cgroup_root_count and linking of init_css_set are
moved from cgroup_init_early() to to cgroup_init(). None of the
early_init users depends on init_css_set being linked.
* Subsystem initializations are moved after dummy hierarchy init and
init_css_set linking.
These changes reorganize the bootstrap logic so that the dummy
hierarchy can share the usual hierarchy init path and be made more
normal. These changes don't make noticeable behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
|
|
|
|
|
|
|
|
|
| |
In cgroup_destroy_locked(), move setting of CGRP_DEAD above
invocations of kill_css(). This doesn't make any visible behavior
difference now but will be used to inhibit manipulating controller
enable states of a dying cgroup on the unified hierarchy.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
|
|
|
|
|
|
|
| |
We no longer use task_lock() to protect tsk->cgroups.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
cgroup_subsys->fork() callback is special in that it's called outside
the usual cgroup locking and may race with on-going migration.
freezer_fork() currently doesn't consider such race condition;
however, it is still correct thanks to the fact that freeze_task() may
be called spuriously.
This is quite subtle. Let's explain what's going on and add test to
detect racing and losing to task migration and skip freeze_task() in
such cases for documentation.
This doesn't make any behavior difference meaningful to userland.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
cgroup_transfer_tasks() can currently fail in the middle due to memory
allocation failure. When that happens, the function just aborts and
returns error code and there's no way to tell how many actually got
migrated at the point of failure and or to revert the partial
migration.
Update it to use cgroup_migrate{_add_src|prepare_dst|migrate|finish}()
so that the function either succeeds or fails as a whole as long as
->can_attach() doesn't fail.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
|
|
|
|
|
|
|
|
|
|
| |
For optimization, task_lock() is additionally used to protect
task->cgroups. The optimization is pretty dubious as either
css_set_rwsem is grabbed anyway or PF_EXITING already protects
task->cgroups. It adds only overhead and confusion at this point.
Let's drop task_[un]lock() and update comments accordingly.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When a new process is forked, cgroup_fork() associates it with the
css_set of its parent but doesn't link it into it. After the new
process is linked to tasklist, cgroup_post_fork() does the linking.
This is problematic for cgroup_transfer_tasks() as there's no way to
tell whether there are tasks which are pointing to a css_set but not
linked yet. It is impossible to implement an operation which transfer
all tasks of a cgroup to another and the current
cgroup_transfer_tasks() can easily be tricked into leaving a newly
forked process behind if it gets called between cgroup_fork() and
cgroup_post_fork().
Let's make association with a css_set and linking atomic by moving it
to cgroup_post_fork(). cgroup_fork() sets child->cgroups to
init_css_set as a placeholder and cgroup_post_fork() is updated to
perform both the association with the parent's cgroup and linking
there. This means that a newly created task will point to
init_css_set without holding a ref to it much like what it does on the
exit path. Empty cg_list is used to indicate that the task isn't
holding a ref to the associated css_set.
This fixes an actual bug with cgroup_transfer_tasks(); however, I'm
not marking it for -stable. The whole thing is broken in multiple
other ways which require invasive updates to fix and I don't think
it's worthwhile to bother with backporting this particular one.
Fortunately, the only user is cpuset and these bugs don't crash the
machine.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, process / task migration is a single operation which may
fail depending on memory pressure or the involved controllers'
->can_attach() callbacks. One problem with this approach is migration
of multiple targets. It's impossible to tell whether a given target
will be successfully migrated beforehand and cgroup core can't keep
track of enough states to roll back after intermediate failure.
This is already an issue with cgroup_transfer_tasks(). Also, we're
gonna need multiple target migration for unified hierarchy.
This patch splits migration into four stages -
cgroup_migrate_add_src(), cgroup_migrate_prepare_dst(),
cgroup_migrate() and cgroup_migrate_finish(), where
cgroup_migrate_prepare_dst() performs all the operations which may
fail due to allocation failure without actually migrating the target.
The four separate stages mean that, disregarding ->can_attach()
failures, the success or failure of multi target migration can be
determined before performing any actual migration. If preparations of
all targets succeed, the whole thing will succeed. If not, the whole
operation can fail without any side-effect.
Since the previous patch to use css_set->mg_tasks to keep track of
migration targets, the only thing which may need memory allocation
during migration is the target css_sets. cgroup_migrate_prepare()
pins all source and target css_sets and link them up. Note that this
can be performed without holding threadgroup_lock even if the target
is a process. As long as cgroup_mutex is held, no new css_set can be
put into play.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
|
|
|
|
|
|
| |
This will be used by the planned migration path update.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, while migrating tasks from one cgroup to another,
cgroup_attach_task() builds a flex array of all target tasks;
unfortunately, this has a couple issues.
* Flex array has size limit. On 64bit, struct task_and_cgroup is
24bytes making the flex element limit around 87k. It is a high
number but not impossible to hit. This means that the current
cgroup implementation can't migrate a process with more than 87k
threads.
* Process migration involves memory allocation whose size is dependent
on the number of threads the process has. This means that cgroup
core can't guarantee success or failure of multi-process migrations
as memory allocation failure can happen in the middle. This is in
part because cgroup can't grab threadgroup locks of multiple
processes at the same time, so when there are multiple processes to
migrate, it is imposible to tell how many tasks are to be migrated
beforehand.
Note that this already affects cgroup_transfer_tasks(). cgroup
currently cannot guarantee atomic success or failure of the
operation. It may fail in the middle and after such failure cgroup
doesn't have enough information to roll back properly. It just
aborts with some tasks migrated and others not.
To resolve the situation, this patch updates the migration path to use
task->cg_list to track target tasks. The previous patch already added
css_set->mg_tasks and updated iterations in non-migration paths to
include them during task migration. This patch updates migration path
to actually make use of it.
Instead of putting onto a flex_array, each target task is moved from
its css_set->tasks list to css_set->mg_tasks and the migration path
keeps trace of all the source css_sets and the associated cgroups.
Once all source css_sets are determined, the destination css_set for
each is determined, linked to the matching source css_set and put on a
separate list.
To iterate the target tasks, migration path just needs to iterat
through either the source or target css_sets, depending on whether
migration has been committed or not, and the tasks on their ->mg_tasks
lists. cgroup_taskset is updated to contain the list_heads for source
and target css_sets and the iteration cursor. cgroup_taskset_*() are
accordingly updated to walk through css_sets and their ->mg_tasks.
This resolves the above listed issues with moderate additional
complexity.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, while migrating tasks from one cgroup to another,
cgroup_attach_task() builds a flex array of all target tasks;
unfortunately, this has a couple issues.
* Flex array has size limit. On 64bit, struct task_and_cgroup is
24bytes making the flex element limit around 87k. It is a high
number but not impossible to hit. This means that the current
cgroup implementation can't migrate a process with more than 87k
threads.
* Process migration involves memory allocation whose size is dependent
on the number of threads the process has. This means that cgroup
core can't guarantee success or failure of multi-process migrations
as memory allocation failure can happen in the middle. This is in
part because cgroup can't grab threadgroup locks of multiple
processes at the same time, so when there are multiple processes to
migrate, it is imposible to tell how many tasks are to be migrated
beforehand.
Note that this already affects cgroup_transfer_tasks(). cgroup
currently cannot guarantee atomic success or failure of the
operation. It may fail in the middle and after such failure cgroup
doesn't have enough information to roll back properly. It just
aborts with some tasks migrated and others not.
To resolve the situation, we're going to use task->cg_list during
migration too. Instead of building a separate array, target tasks
will be linked into a dedicated migration list_head on the owning
css_set. Tasks on the migration list are treated the same as tasks on
the usual tasks list; however, being on a separate list allows cgroup
migration code path to keep track of the target tasks by simply
keeping the list of css_sets with tasks being migrated, making
unpredictable dynamic allocation unnecessary.
In prepartion of such migration path update, this patch introduces
css_set->mg_tasks list and updates css_set task iterations so that
they walk both css_set->tasks and ->mg_tasks. Note that ->mg_tasks
isn't used yet.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull in for-3.14-fixes to receive 532de3fc72ad ("cgroup: update
cgroup_enable_task_cg_lists() to grab siglock") which conflicts with
afeb0f9fd425 ("cgroup: relocate cgroup_enable_task_cg_lists()") and
the following cg_lists updates. This is likely to cause further
conflicts down the line too, so let's merge it early.
As cgroup_enable_task_cg_lists() is relocated in for-3.15, this merge
causes conflict in the original position. It's resolved by applying
siglock changes to the updated version in the new location.
Conflicts:
kernel/cgroup.c
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Currently, there's nothing preventing cgroup_enable_task_cg_lists()
from missing set PF_EXITING and race against cgroup_exit(). Depending
on the timing, cgroup_exit() may finish with the task still linked on
css_set leading to list corruption. Fix it by grabbing siglock in
cgroup_enable_task_cg_lists() so that PF_EXITING is guaranteed to be
visible.
This whole on-demand cg_list optimization is extremely fragile and has
ample possibility to lead to bugs which can cause things like
once-a-year oops during boot. I'm wondering whether the better
approach would be just adding "cgroup_disable=all" handling which
disables the whole cgroup rather than tempting fate with this
on-demand craziness.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: stable@vger.kernel.org
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This reverts commit ab3f5faa6255a0eb4f832675507d9e295ca7e9ba.
Explanation from Hugh:
It's because more thorough testing, by others here, found that it
wasn't always solving the problem: so I asked Tejun privately to
hold off from sending it in, until we'd worked out why not.
Most of our testing being on a v3,11-based kernel, it was perfectly
possible that the problem was merely our own e.g. missing Tejun's
8a2b75384444 ("workqueue: fix ordered workqueues in NUMA setups").
But that turned out not to be enough to fix it either. Then Filipe
pointed out how percpu_ref_kill_and_confirm() uses call_rcu_sched()
before we ever get to put the offline on to the workqueue: by the
time we get to the workqueue, the ordering has already been lost.
So, thanks for the Acks, but I'm afraid that this ordered workqueue
solution is just not good enough: we should simply forget that patch
and provide a different answer."
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Fengguang reported this bug:
BUG: unable to handle kernel NULL pointer dereference at 0000003c
IP: [<cc90b4ad>] cgroup_cfts_commit+0x27/0x1c1
...
Call Trace:
[<cc9d1129>] ? kmem_cache_alloc_trace+0x33f/0x3b7
[<cc90c6fc>] cgroup_add_cftypes+0x8f/0xca
[<cd78b646>] cgroup_init+0x6a/0x26a
[<cd764d7d>] start_kernel+0x4d7/0x57a
[<cd7642ef>] i386_start_kernel+0x92/0x96
This happens in a corner case. If CGROUP_SCHED=y but CFS_BANDWIDTH=n &&
FAIR_GROUP_SCHED=n && RT_GROUP_SCHED=n, we have:
cpu_files[] = {
{ } /* terminate */
}
When we pass cpu_files to cgroup_apply_cftypes(), as cpu_files[0].ss
is NULL, we'll access NULL pointer.
The bug was introduced by commit de00ffa56ea3132c6013fc8f07133b8a1014cf53
("cgroup: make cgroup_subsys->base_cftypes use cgroup_add_cftypes()").
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
My kernel fails to boot, because blkcg calls cgroup_path() while
cgroupfs is not mounted.
Fix both cgroup_name() and cgroup_path().
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| | |
We should free the memory allocated in parse_cgroupfs_options() before
calling this function again.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| | |
css_set_lock has been converted to css_set_rwsem, and rwsem can't nest
inside rcu_read_lock.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
kernel/cgroup.c:2256:1-3: WARNING: PTR_RET can be used
Use PTR_ERR_OR_ZERO rather than if(IS_ERR(...)) + PTR_ERR
Generated by: coccinelle/api/ptr_ret.cocci
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
To fix:
arch/sparc/kernel/leon_pci_grpci2.c: In function 'grpci2_of_probe':
arch/sparc/kernel/leon_pci_grpci2.c:720:2: error: implicit declaration of function 'kzalloc' [-Werror=implicit-function-declaration]
arch/sparc/kernel/leon_pci_grpci2.c:720:20: error: assignment makes pointer from integer without a cast [-Werror]
arch/sparc/kernel/leon_pci_grpci2.c:882:2: error: implicit declaration of function 'kfree' [-Werror=implicit-function-declaration]
cc1: all warnings being treated as errors
make[2]: *** [arch/sparc/kernel/leon_pci_grpci2.o] Error 1
According to Stephen, these types of failures are caused by commit
2bd59d48ebfb ("cgroup: convert to kernfs") which was being included
implicitly via cgroup.h's inclusion of xattr.h (which has now been
removed).
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David S. Miller <davem@davemloft.net>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
|
| |
| |
| |
| |
| |
| |
| |
| | |
With module support gone, a lot of functions no longer need to be
exported. Unexport them.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
cgroup_attach_task() is planned to go through restructuring. Let's
tidy it up a bit in preparation.
* Update cgroup_attach_task() to receive the target task argument in
@leader instead of @tsk.
* Rename @tsk to @task.
* Rename @retval to @ret.
This is purely cosmetic.
v2: get_nr_threads() was using uninitialized @task instead of @leader.
Fixed. Reported by Dan Carpenter.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
The two functions don't have any users left. Remove them along with
cgroup_taskset->cur_cgrp.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
cgroup_taskset_cur_css() will be removed during the planned
resturcturing of migration path. The only use of
cgroup_taskset_cur_css() is finding out the old cgroup_subsys_state of
the leader in cpuset_attach(). This usage can easily be removed by
remembering the old value from cpuset_can_attach().
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
If !NULL, @skip_css makes cgroup_taskset_for_each() skip the matching
css. The intention of the interface is to make it easy to skip css's
(cgroup_subsys_states) which already match the migration target;
however, this is entirely unnecessary as migration taskset doesn't
include tasks which are already in the target cgroup. Drop @skip_css
from cgroup_taskset_for_each().
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Cc: Daniel Borkmann <dborkman@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Instead of repeatedly locking and unlocking css_set_rwsem inside
cgroup_task_migrate(), update cgroup_attach_task() to grab it outside
of the loop and update cgroup_task_migrate() to use
put_css_set_locked().
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
put_css_set() is performed in two steps - it first tries to put
without grabbing css_set_rwsem if such put wouldn't make the count
zero. If that fails, it puts after write-locking css_set_rwsem. This
patch separates out the second phase into put_css_set_locked() which
should be called with css_set_rwsem locked.
Also, put_css_set_taskexit() is droped and put_css_set() is made to
take @taskexit. There are only a handful users of these functions.
No point in providing different variants.
put_css_locked() will be used by later changes. This patch doesn't
introduce any functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
| |
| |
| |
| |
| |
| |
| | |
css_scan_tasks() doesn't have any user left. Remove it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Now that css_task_iter_start/next_end() supports blocking while
iterating, there's no reason to use css_scan_tasks() which is more
cumbersome to use and scheduled to be removed.
Convert all css_scan_tasks() usages in cpuset to
css_task_iter_start/next/end(). This simplifies the code by removing
heap allocation and callbacks.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Currently there are two ways to walk tasks of a cgroup -
css_task_iter_start/next/end() and css_scan_tasks(). The latter
builds on the former but allows blocking while iterating.
Unfortunately, the way css_scan_tasks() is implemented is rather
nasty, it uses a priority heap of pointers to extract some number of
tasks in task creation order and loops over them invoking the callback
and repeats that until it reaches the end. It requires either
preallocated heap or may fail under memory pressure, while unlikely to
be problematic, the complexity is O(N^2), and in general just nasty.
We're gonna convert all css_scan_users() to
css_task_iter_start/next/end() and remove css_scan_users(). As
css_scan_tasks() users may block, let's convert css_set_lock to a
rwsem so that tasks can block during css_task_iter_*() is in progress.
While this does increase the chance of possible deadlock scenarios,
given the current usage, the probability is relatively low, and even
if that happens, the right thing to do is updating the iteration in
the similar way to css iterators so that it can handle blocking.
Most conversions are trivial; however, task_cgroup_path() now expects
to be called with css_set_rwsem locked instead of locking itself.
This is because the function is called with RCU read lock held and
rwsem locking should nest outside RCU read lock.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Reimplement cgroup_transfer_tasks() so that it repeatedly fetches the
first task in the cgroup and then tranfers it. This achieves the same
result without using css_scan_tasks() which is scheduled to be
removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
cgroup_task_count() read-locks css_set_lock and walks all tasks to
count them and then returns the result. The only thing all the users
want is determining whether the cgroup is empty or not. This patch
implements cgroup_has_tasks() which tests whether cgroup->cset_links
is empty, replaces all cgroup_task_count() usages and unexports it.
Note that the test isn't synchronized. This is the same as before.
The test has always been racy.
This will help planned css_set locking update.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Move it above so that prototype isn't necessary. Let's also move the
definition of use_task_css_set_links next to it.
This is purely cosmetic.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Tasks are not linked on their css_sets until cgroup task iteration is
actually used. This is to avoid incurring overhead on the fork and
exit paths for systems which have cgroup compiled in but don't use it.
This lazy binding also affects the task migration path. It has to be
careful so that it doesn't link tasks to css_sets when task_cg_lists
linking is not enabled yet. Unfortunately, this conditional linking
in the migration path interferes with planned migration updates.
This patch moves the lazy binding a bit earlier, to the first cgroup
mount. It's a clear indication that cgroup is being used on the
system and task_cg_lists linking is highly likely to be enabled soon
anyway through "tasks" and "cgroup.procs" files.
This allows cgroup_task_migrate() to always link @tsk->cg_list. Note
that it may still race with cgroup_post_fork() but who wins that race
is inconsequential.
While at it, make use_task_css_set_links a bool, add sanity checks in
cgroup_enable_task_cg_lists() and css_task_iter_start(), and update
the former so that it's guaranteed and assumes to run only once.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Before kernfs conversion, due to the way super_block lookup works,
cgroup roots were created and made visible before being fully
initialized. This in turn required a special flag to mark that the
root hasn't been fully initialized so that the destruction path can
tell fully bound ones from half initialized.
That flag is CGRP_ROOT_SUBSYS_BOUND and no longer necessary after the
kernfs conversion as the lookup and creation of new root are atomic
w.r.t. cgroup_mutex. This patch removes the flag and passes the
requests subsystem mask to cgroup_setup_root() so that it can set the
respective mask bits as subsystems are bound.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Disallow more mount options if sane_behavior. Note that xattr used to
generate warning.
While at it, simplify option check in cgroup_mount() and update
sane_behavior comment in cgroup.h.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This was being included implicitly via cgroup.h's inclusion of xattr.h
(which has now been removed).
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Currently, cgroupfs_root and its ->top_cgroup are separated reference
counted and the latter's is ignored. There's no reason to do this
separately. This patch removes cgroupfs_root->refcnt and destroys
cgroupfs_root when the top_cgroup is released.
* cgroup_put() updated to ignore cgroup_is_dead() test for top
cgroups. cgroup_free_fn() updated to handle root destruction when
releasing a top cgroup.
* As root destruction is now bounced through cgroup destruction, it is
asynchronous. Update cgroup_mount() so that it waits for pending
release which is currently implemented using msleep(). Converting
this to proper wait_queue isn't hard but likely unnecessary.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
atomic_t
root->number_of_cgroups is currently an integer protected with
cgroup_mutex. Except for sanity checks and proc reporting, the only
place it's used is to check whether the root has any child during
remount; however, this is a bit flawed as the counter is not
decremented when the cgroup is unlinked but when it's released,
meaning that there could be an extended period where all cgroups are
removed but remount is still not allowed because some internal objects
are lingering. While not perfect either, it'd be better to use
emptiness test on root->top_cgroup.children.
This patch updates cgroup_remount() to test top_cgroup's children
instead, which makes number_of_cgroups only actual usage statistics
printing in proc implemented in proc_cgroupstats_show(). Let's
shorten its name and make it an atomic_t so that we don't have to
worry about its synchronization. It's purely auxiliary at this point.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
cgroup->name handling became quite complicated over time involving
dedicated struct cgroup_name for RCU protection. Now that cgroup is
on kernfs, we can drop all of it and simply use kernfs_name/path() and
friends. Replace cgroup->name and all related code with kernfs
name/path constructs.
* Reimplement cgroup_name() and cgroup_path() as thin wrappers on top
of kernfs counterparts, which involves semantic changes.
pr_cont_cgroup_name() and pr_cont_cgroup_path() added.
* cgroup->name handling dropped from cgroup_rename().
* All users of cgroup_name/path() updated to the new semantics. Users
which were formatting the string just to printk them are converted
to use pr_cont_cgroup_name/path() instead, which simplifies things
quite a bit. As cgroup_name() no longer requires RCU read lock
around it, RCU lockings which were protecting only cgroup_name() are
removed.
v2: Comment above oom_info_lock updated as suggested by Michal.
v3: dummy_top doesn't have a kn associated and
pr_cont_cgroup_name/path() ended up calling the matching kernfs
functions with NULL kn leading to oops. Test for NULL kn and
print "/" if so. This issue was reported by Fengguang Wu.
v4: Rebased on top of 0ab02ca8f887 ("cgroup: protect modifications to
cgroup_idr with cgroup_mutex").
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
cgroup currently releases its kernfs_node when it gets removed. While
not buggy, this makes cgroup->kn access rules complicated than
necessary and leads to things like get/put protection around
kernfs_remove() in cgroup_destroy_locked(). In addition, we want to
use kernfs_name/path() and friends but also want to be able to
determine a cgroup's name between removal and release.
This patch makes cgroup hold onto its kernfs_node until freed so that
cgroup->kn is always accessible.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Dynamic cftype addition and removal using cgroup_add/rm_cftypes()
respectively has been quite hairy due to vfs i_mutex. As i_mutex
nests outside cgroup_mutex, cgroup_mutex has to be released and
regrabbed on each iteration through the hierarchy complicating the
process. Now that i_mutex is no longer in play, it can be simplified.
* Just holding cgroup_tree_mutex is enough. No need to meddle with
cgroup_mutex.
* No reason to play the unlock - relock - check serial_nr dancing.
Everything can be atomically while holding cgroup_tree_mutex.
* cgroup_cfts_prepare() is replaced with direct locking of
cgroup_tree_mutex.
* cgroup_cfts_commit() no longer fiddles with locking. It just
applies the cftypes change to the existing cgroups in the hierarchy.
Renamed to cgroup_cfts_apply().
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
cftype_set was added primarily to allow registering the same cftype
array more than once for different subsystems. Nobody uses or needs
such thing and it's already broken because each cftype has ->ss
pointer which is initialized during registration.
Let's add list_head ->node to cftype and use the first cftype entry in
the array to link them instead of allocating separate cftype_set.
While at it, trigger WARN if cft seems previously initialized during
registration.
This simplifies cftype handling a bit.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
cftype handling is about to be revamped. Relocate cgroup_rm_cftypes()
above cgroup_add_cftypes() in preparation. This is pure relocation.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|