summaryrefslogtreecommitdiffstats
path: root/tools/testing/selftests/arm64/signal/README
diff options
context:
space:
mode:
Diffstat (limited to 'tools/testing/selftests/arm64/signal/README')
-rw-r--r--tools/testing/selftests/arm64/signal/README59
1 files changed, 59 insertions, 0 deletions
diff --git a/tools/testing/selftests/arm64/signal/README b/tools/testing/selftests/arm64/signal/README
new file mode 100644
index 000000000000..967a531b245c
--- /dev/null
+++ b/tools/testing/selftests/arm64/signal/README
@@ -0,0 +1,59 @@
+KSelfTest arm64/signal/
+=======================
+
+Signals Tests
++++++++++++++
+
+- Tests are built around a common main compilation unit: such shared main
+ enforces a standard sequence of operations needed to perform a single
+ signal-test (setup/trigger/run/result/cleanup)
+
+- The above mentioned ops are configurable on a test-by-test basis: each test
+ is described (and configured) using the descriptor signals.h::struct tdescr
+
+- Each signal testcase is compiled into its own executable: a separate
+ executable is used for each test since many tests complete successfully
+ by receiving some kind of fatal signal from the Kernel, so it's safer
+ to run each test unit in its own standalone process, so as to start each
+ test from a clean slate.
+
+- New tests can be simply defined in testcases/ dir providing a proper struct
+ tdescr overriding all the defaults we wish to change (as of now providing a
+ custom run method is mandatory though)
+
+- Signals' test-cases hereafter defined belong currently to two
+ principal families:
+
+ - 'mangle_' tests: a real signal (SIGUSR1) is raised and used as a trigger
+ and then the test case code modifies the signal frame from inside the
+ signal handler itself.
+
+ - 'fake_sigreturn_' tests: a brand new custom artificial sigframe structure
+ is placed on the stack and a sigreturn syscall is called to simulate a
+ real signal return. This kind of tests does not use a trigger usually and
+ they are just fired using some simple included assembly trampoline code.
+
+ - Most of these tests are successfully passing if the process gets killed by
+ some fatal signal: usually SIGSEGV or SIGBUS. Since while writing this
+ kind of tests it is extremely easy in fact to end-up injecting other
+ unrelated SEGV bugs in the testcases, it becomes extremely tricky to
+ be really sure that the tests are really addressing what they are meant
+ to address and they are not instead falling apart due to unplanned bugs
+ in the test code.
+ In order to alleviate the misery of the life of such test-developer, a few
+ helpers are provided:
+
+ - a couple of ASSERT_BAD/GOOD_CONTEXT() macros to easily parse a ucontext_t
+ and verify if it is indeed GOOD or BAD (depending on what we were
+ expecting), using the same logic/perspective as in the arm64 Kernel signals
+ routines.
+
+ - a sanity mechanism to be used in 'fake_sigreturn_'-alike tests: enabled by
+ default it takes care to verify that the test-execution had at least
+ successfully progressed up to the stage of triggering the fake sigreturn
+ call.
+
+ In both cases test results are expected in terms of:
+ - some fatal signal sent by the Kernel to the test process
+ or
+ - analyzing some final regs state
OpenPOWER on IntegriCloud