diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/mempolicy.c | 29 |
1 files changed, 1 insertions, 28 deletions
diff --git a/mm/mempolicy.c b/mm/mempolicy.c index 68d5c7f7164e..784c11ef7719 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c @@ -2377,37 +2377,10 @@ int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long /* Migrate the page towards the node whose CPU is referencing it */ if (pol->flags & MPOL_F_MORON) { - int last_cpupid; - int this_cpupid; - polnid = thisnid; - this_cpupid = cpu_pid_to_cpupid(thiscpu, current->pid); - /* - * Multi-stage node selection is used in conjunction - * with a periodic migration fault to build a temporal - * task<->page relation. By using a two-stage filter we - * remove short/unlikely relations. - * - * Using P(p) ~ n_p / n_t as per frequentist - * probability, we can equate a task's usage of a - * particular page (n_p) per total usage of this - * page (n_t) (in a given time-span) to a probability. - * - * Our periodic faults will sample this probability and - * getting the same result twice in a row, given these - * samples are fully independent, is then given by - * P(n)^2, provided our sample period is sufficiently - * short compared to the usage pattern. - * - * This quadric squishes small probabilities, making - * it less likely we act on an unlikely task<->page - * relation. - */ - last_cpupid = page_cpupid_xchg_last(page, this_cpupid); - if (!cpupid_pid_unset(last_cpupid) && cpupid_to_nid(last_cpupid) != thisnid) { + if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) goto out; - } } if (curnid != polnid) |