diff options
Diffstat (limited to 'include/linux/sched/mm.h')
-rw-r--r-- | include/linux/sched/mm.h | 174 |
1 files changed, 174 insertions, 0 deletions
diff --git a/include/linux/sched/mm.h b/include/linux/sched/mm.h new file mode 100644 index 000000000000..830953ebb391 --- /dev/null +++ b/include/linux/sched/mm.h @@ -0,0 +1,174 @@ +#ifndef _LINUX_SCHED_MM_H +#define _LINUX_SCHED_MM_H + +#include <linux/kernel.h> +#include <linux/atomic.h> +#include <linux/sched.h> +#include <linux/mm_types.h> +#include <linux/gfp.h> + +/* + * Routines for handling mm_structs + */ +extern struct mm_struct * mm_alloc(void); + +/** + * mmgrab() - Pin a &struct mm_struct. + * @mm: The &struct mm_struct to pin. + * + * Make sure that @mm will not get freed even after the owning task + * exits. This doesn't guarantee that the associated address space + * will still exist later on and mmget_not_zero() has to be used before + * accessing it. + * + * This is a preferred way to to pin @mm for a longer/unbounded amount + * of time. + * + * Use mmdrop() to release the reference acquired by mmgrab(). + * + * See also <Documentation/vm/active_mm.txt> for an in-depth explanation + * of &mm_struct.mm_count vs &mm_struct.mm_users. + */ +static inline void mmgrab(struct mm_struct *mm) +{ + atomic_inc(&mm->mm_count); +} + +/* mmdrop drops the mm and the page tables */ +extern void __mmdrop(struct mm_struct *); +static inline void mmdrop(struct mm_struct *mm) +{ + if (unlikely(atomic_dec_and_test(&mm->mm_count))) + __mmdrop(mm); +} + +static inline void mmdrop_async_fn(struct work_struct *work) +{ + struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work); + __mmdrop(mm); +} + +static inline void mmdrop_async(struct mm_struct *mm) +{ + if (unlikely(atomic_dec_and_test(&mm->mm_count))) { + INIT_WORK(&mm->async_put_work, mmdrop_async_fn); + schedule_work(&mm->async_put_work); + } +} + +/** + * mmget() - Pin the address space associated with a &struct mm_struct. + * @mm: The address space to pin. + * + * Make sure that the address space of the given &struct mm_struct doesn't + * go away. This does not protect against parts of the address space being + * modified or freed, however. + * + * Never use this function to pin this address space for an + * unbounded/indefinite amount of time. + * + * Use mmput() to release the reference acquired by mmget(). + * + * See also <Documentation/vm/active_mm.txt> for an in-depth explanation + * of &mm_struct.mm_count vs &mm_struct.mm_users. + */ +static inline void mmget(struct mm_struct *mm) +{ + atomic_inc(&mm->mm_users); +} + +static inline bool mmget_not_zero(struct mm_struct *mm) +{ + return atomic_inc_not_zero(&mm->mm_users); +} + +/* mmput gets rid of the mappings and all user-space */ +extern void mmput(struct mm_struct *); +#ifdef CONFIG_MMU +/* same as above but performs the slow path from the async context. Can + * be called from the atomic context as well + */ +extern void mmput_async(struct mm_struct *); +#endif + +/* Grab a reference to a task's mm, if it is not already going away */ +extern struct mm_struct *get_task_mm(struct task_struct *task); +/* + * Grab a reference to a task's mm, if it is not already going away + * and ptrace_may_access with the mode parameter passed to it + * succeeds. + */ +extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); +/* Remove the current tasks stale references to the old mm_struct */ +extern void mm_release(struct task_struct *, struct mm_struct *); + +#ifdef CONFIG_MEMCG +extern void mm_update_next_owner(struct mm_struct *mm); +#else +static inline void mm_update_next_owner(struct mm_struct *mm) +{ +} +#endif /* CONFIG_MEMCG */ + +#ifdef CONFIG_MMU +extern void arch_pick_mmap_layout(struct mm_struct *mm); +extern unsigned long +arch_get_unmapped_area(struct file *, unsigned long, unsigned long, + unsigned long, unsigned long); +extern unsigned long +arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, + unsigned long len, unsigned long pgoff, + unsigned long flags); +#else +static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} +#endif + +static inline bool in_vfork(struct task_struct *tsk) +{ + bool ret; + + /* + * need RCU to access ->real_parent if CLONE_VM was used along with + * CLONE_PARENT. + * + * We check real_parent->mm == tsk->mm because CLONE_VFORK does not + * imply CLONE_VM + * + * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus + * ->real_parent is not necessarily the task doing vfork(), so in + * theory we can't rely on task_lock() if we want to dereference it. + * + * And in this case we can't trust the real_parent->mm == tsk->mm + * check, it can be false negative. But we do not care, if init or + * another oom-unkillable task does this it should blame itself. + */ + rcu_read_lock(); + ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm; + rcu_read_unlock(); + + return ret; +} + +/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags + * __GFP_FS is also cleared as it implies __GFP_IO. + */ +static inline gfp_t memalloc_noio_flags(gfp_t flags) +{ + if (unlikely(current->flags & PF_MEMALLOC_NOIO)) + flags &= ~(__GFP_IO | __GFP_FS); + return flags; +} + +static inline unsigned int memalloc_noio_save(void) +{ + unsigned int flags = current->flags & PF_MEMALLOC_NOIO; + current->flags |= PF_MEMALLOC_NOIO; + return flags; +} + +static inline void memalloc_noio_restore(unsigned int flags) +{ + current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; +} + +#endif /* _LINUX_SCHED_MM_H */ |