summaryrefslogtreecommitdiffstats
path: root/include/asm-powerpc/mmu-hash64.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/asm-powerpc/mmu-hash64.h')
-rw-r--r--include/asm-powerpc/mmu-hash64.h478
1 files changed, 0 insertions, 478 deletions
diff --git a/include/asm-powerpc/mmu-hash64.h b/include/asm-powerpc/mmu-hash64.h
deleted file mode 100644
index 19c7a9403490..000000000000
--- a/include/asm-powerpc/mmu-hash64.h
+++ /dev/null
@@ -1,478 +0,0 @@
-#ifndef _ASM_POWERPC_MMU_HASH64_H_
-#define _ASM_POWERPC_MMU_HASH64_H_
-/*
- * PowerPC64 memory management structures
- *
- * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
- * PPC64 rework.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- */
-
-#include <asm/asm-compat.h>
-#include <asm/page.h>
-
-/*
- * Segment table
- */
-
-#define STE_ESID_V 0x80
-#define STE_ESID_KS 0x20
-#define STE_ESID_KP 0x10
-#define STE_ESID_N 0x08
-
-#define STE_VSID_SHIFT 12
-
-/* Location of cpu0's segment table */
-#define STAB0_PAGE 0x6
-#define STAB0_OFFSET (STAB0_PAGE << 12)
-#define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
-
-#ifndef __ASSEMBLY__
-extern char initial_stab[];
-#endif /* ! __ASSEMBLY */
-
-/*
- * SLB
- */
-
-#define SLB_NUM_BOLTED 3
-#define SLB_CACHE_ENTRIES 8
-
-/* Bits in the SLB ESID word */
-#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
-
-/* Bits in the SLB VSID word */
-#define SLB_VSID_SHIFT 12
-#define SLB_VSID_SHIFT_1T 24
-#define SLB_VSID_SSIZE_SHIFT 62
-#define SLB_VSID_B ASM_CONST(0xc000000000000000)
-#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
-#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
-#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
-#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
-#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
-#define SLB_VSID_L ASM_CONST(0x0000000000000100)
-#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
-#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
-#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
-#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
-#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
-#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
-#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
-
-#define SLB_VSID_KERNEL (SLB_VSID_KP)
-#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
-
-#define SLBIE_C (0x08000000)
-#define SLBIE_SSIZE_SHIFT 25
-
-/*
- * Hash table
- */
-
-#define HPTES_PER_GROUP 8
-
-#define HPTE_V_SSIZE_SHIFT 62
-#define HPTE_V_AVPN_SHIFT 7
-#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
-#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
-#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
-#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
-#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
-#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
-#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
-#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
-
-#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
-#define HPTE_R_TS ASM_CONST(0x4000000000000000)
-#define HPTE_R_RPN_SHIFT 12
-#define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
-#define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
-#define HPTE_R_PP ASM_CONST(0x0000000000000003)
-#define HPTE_R_N ASM_CONST(0x0000000000000004)
-#define HPTE_R_C ASM_CONST(0x0000000000000080)
-#define HPTE_R_R ASM_CONST(0x0000000000000100)
-
-#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
-#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
-
-/* Values for PP (assumes Ks=0, Kp=1) */
-/* pp0 will always be 0 for linux */
-#define PP_RWXX 0 /* Supervisor read/write, User none */
-#define PP_RWRX 1 /* Supervisor read/write, User read */
-#define PP_RWRW 2 /* Supervisor read/write, User read/write */
-#define PP_RXRX 3 /* Supervisor read, User read */
-
-#ifndef __ASSEMBLY__
-
-struct hash_pte {
- unsigned long v;
- unsigned long r;
-};
-
-extern struct hash_pte *htab_address;
-extern unsigned long htab_size_bytes;
-extern unsigned long htab_hash_mask;
-
-/*
- * Page size definition
- *
- * shift : is the "PAGE_SHIFT" value for that page size
- * sllp : is a bit mask with the value of SLB L || LP to be or'ed
- * directly to a slbmte "vsid" value
- * penc : is the HPTE encoding mask for the "LP" field:
- *
- */
-struct mmu_psize_def
-{
- unsigned int shift; /* number of bits */
- unsigned int penc; /* HPTE encoding */
- unsigned int tlbiel; /* tlbiel supported for that page size */
- unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
- unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
-};
-
-#endif /* __ASSEMBLY__ */
-
-/*
- * The kernel use the constants below to index in the page sizes array.
- * The use of fixed constants for this purpose is better for performances
- * of the low level hash refill handlers.
- *
- * A non supported page size has a "shift" field set to 0
- *
- * Any new page size being implemented can get a new entry in here. Whether
- * the kernel will use it or not is a different matter though. The actual page
- * size used by hugetlbfs is not defined here and may be made variable
- */
-
-#define MMU_PAGE_4K 0 /* 4K */
-#define MMU_PAGE_64K 1 /* 64K */
-#define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */
-#define MMU_PAGE_1M 3 /* 1M */
-#define MMU_PAGE_16M 4 /* 16M */
-#define MMU_PAGE_16G 5 /* 16G */
-#define MMU_PAGE_COUNT 6
-
-/*
- * Segment sizes.
- * These are the values used by hardware in the B field of
- * SLB entries and the first dword of MMU hashtable entries.
- * The B field is 2 bits; the values 2 and 3 are unused and reserved.
- */
-#define MMU_SEGSIZE_256M 0
-#define MMU_SEGSIZE_1T 1
-
-
-#ifndef __ASSEMBLY__
-
-/*
- * The current system page and segment sizes
- */
-extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
-extern int mmu_linear_psize;
-extern int mmu_virtual_psize;
-extern int mmu_vmalloc_psize;
-extern int mmu_vmemmap_psize;
-extern int mmu_io_psize;
-extern int mmu_kernel_ssize;
-extern int mmu_highuser_ssize;
-extern u16 mmu_slb_size;
-extern unsigned long tce_alloc_start, tce_alloc_end;
-
-/*
- * If the processor supports 64k normal pages but not 64k cache
- * inhibited pages, we have to be prepared to switch processes
- * to use 4k pages when they create cache-inhibited mappings.
- * If this is the case, mmu_ci_restrictions will be set to 1.
- */
-extern int mmu_ci_restrictions;
-
-#ifdef CONFIG_HUGETLB_PAGE
-/*
- * The page size indexes of the huge pages for use by hugetlbfs
- */
-extern unsigned int mmu_huge_psizes[MMU_PAGE_COUNT];
-
-#endif /* CONFIG_HUGETLB_PAGE */
-
-/*
- * This function sets the AVPN and L fields of the HPTE appropriately
- * for the page size
- */
-static inline unsigned long hpte_encode_v(unsigned long va, int psize,
- int ssize)
-{
- unsigned long v;
- v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
- v <<= HPTE_V_AVPN_SHIFT;
- if (psize != MMU_PAGE_4K)
- v |= HPTE_V_LARGE;
- v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
- return v;
-}
-
-/*
- * This function sets the ARPN, and LP fields of the HPTE appropriately
- * for the page size. We assume the pa is already "clean" that is properly
- * aligned for the requested page size
- */
-static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
-{
- unsigned long r;
-
- /* A 4K page needs no special encoding */
- if (psize == MMU_PAGE_4K)
- return pa & HPTE_R_RPN;
- else {
- unsigned int penc = mmu_psize_defs[psize].penc;
- unsigned int shift = mmu_psize_defs[psize].shift;
- return (pa & ~((1ul << shift) - 1)) | (penc << 12);
- }
- return r;
-}
-
-/*
- * Build a VA given VSID, EA and segment size
- */
-static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid,
- int ssize)
-{
- if (ssize == MMU_SEGSIZE_256M)
- return (vsid << 28) | (ea & 0xfffffffUL);
- return (vsid << 40) | (ea & 0xffffffffffUL);
-}
-
-/*
- * This hashes a virtual address
- */
-
-static inline unsigned long hpt_hash(unsigned long va, unsigned int shift,
- int ssize)
-{
- unsigned long hash, vsid;
-
- if (ssize == MMU_SEGSIZE_256M) {
- hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift);
- } else {
- vsid = va >> 40;
- hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift);
- }
- return hash & 0x7fffffffffUL;
-}
-
-extern int __hash_page_4K(unsigned long ea, unsigned long access,
- unsigned long vsid, pte_t *ptep, unsigned long trap,
- unsigned int local, int ssize, int subpage_prot);
-extern int __hash_page_64K(unsigned long ea, unsigned long access,
- unsigned long vsid, pte_t *ptep, unsigned long trap,
- unsigned int local, int ssize);
-struct mm_struct;
-extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
-extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
- unsigned long ea, unsigned long vsid, int local,
- unsigned long trap);
-
-extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
- unsigned long pstart, unsigned long mode,
- int psize, int ssize);
-extern void set_huge_psize(int psize);
-extern void add_gpage(unsigned long addr, unsigned long page_size,
- unsigned long number_of_pages);
-extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
-
-extern void htab_initialize(void);
-extern void htab_initialize_secondary(void);
-extern void hpte_init_native(void);
-extern void hpte_init_lpar(void);
-extern void hpte_init_iSeries(void);
-extern void hpte_init_beat(void);
-extern void hpte_init_beat_v3(void);
-
-extern void stabs_alloc(void);
-extern void slb_initialize(void);
-extern void slb_flush_and_rebolt(void);
-extern void stab_initialize(unsigned long stab);
-
-extern void slb_vmalloc_update(void);
-#endif /* __ASSEMBLY__ */
-
-/*
- * VSID allocation
- *
- * We first generate a 36-bit "proto-VSID". For kernel addresses this
- * is equal to the ESID, for user addresses it is:
- * (context << 15) | (esid & 0x7fff)
- *
- * The two forms are distinguishable because the top bit is 0 for user
- * addresses, whereas the top two bits are 1 for kernel addresses.
- * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
- * now.
- *
- * The proto-VSIDs are then scrambled into real VSIDs with the
- * multiplicative hash:
- *
- * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
- * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
- * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
- *
- * This scramble is only well defined for proto-VSIDs below
- * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
- * reserved. VSID_MULTIPLIER is prime, so in particular it is
- * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
- * Because the modulus is 2^n-1 we can compute it efficiently without
- * a divide or extra multiply (see below).
- *
- * This scheme has several advantages over older methods:
- *
- * - We have VSIDs allocated for every kernel address
- * (i.e. everything above 0xC000000000000000), except the very top
- * segment, which simplifies several things.
- *
- * - We allow for 15 significant bits of ESID and 20 bits of
- * context for user addresses. i.e. 8T (43 bits) of address space for
- * up to 1M contexts (although the page table structure and context
- * allocation will need changes to take advantage of this).
- *
- * - The scramble function gives robust scattering in the hash
- * table (at least based on some initial results). The previous
- * method was more susceptible to pathological cases giving excessive
- * hash collisions.
- */
-/*
- * WARNING - If you change these you must make sure the asm
- * implementations in slb_allocate (slb_low.S), do_stab_bolted
- * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
- *
- * You'll also need to change the precomputed VSID values in head.S
- * which are used by the iSeries firmware.
- */
-
-#define VSID_MULTIPLIER_256M ASM_CONST(200730139) /* 28-bit prime */
-#define VSID_BITS_256M 36
-#define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
-
-#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
-#define VSID_BITS_1T 24
-#define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
-
-#define CONTEXT_BITS 19
-#define USER_ESID_BITS 16
-#define USER_ESID_BITS_1T 4
-
-#define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
-
-/*
- * This macro generates asm code to compute the VSID scramble
- * function. Used in slb_allocate() and do_stab_bolted. The function
- * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
- *
- * rt = register continaing the proto-VSID and into which the
- * VSID will be stored
- * rx = scratch register (clobbered)
- *
- * - rt and rx must be different registers
- * - The answer will end up in the low VSID_BITS bits of rt. The higher
- * bits may contain other garbage, so you may need to mask the
- * result.
- */
-#define ASM_VSID_SCRAMBLE(rt, rx, size) \
- lis rx,VSID_MULTIPLIER_##size@h; \
- ori rx,rx,VSID_MULTIPLIER_##size@l; \
- mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
- \
- srdi rx,rt,VSID_BITS_##size; \
- clrldi rt,rt,(64-VSID_BITS_##size); \
- add rt,rt,rx; /* add high and low bits */ \
- /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
- * 2^36-1+2^28-1. That in particular means that if r3 >= \
- * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
- * the bit clear, r3 already has the answer we want, if it \
- * doesn't, the answer is the low 36 bits of r3+1. So in all \
- * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
- addi rx,rt,1; \
- srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
- add rt,rt,rx
-
-
-#ifndef __ASSEMBLY__
-
-typedef unsigned long mm_context_id_t;
-
-typedef struct {
- mm_context_id_t id;
- u16 user_psize; /* page size index */
-
-#ifdef CONFIG_PPC_MM_SLICES
- u64 low_slices_psize; /* SLB page size encodings */
- u64 high_slices_psize; /* 4 bits per slice for now */
-#else
- u16 sllp; /* SLB page size encoding */
-#endif
- unsigned long vdso_base;
-} mm_context_t;
-
-
-#if 0
-/*
- * The code below is equivalent to this function for arguments
- * < 2^VSID_BITS, which is all this should ever be called
- * with. However gcc is not clever enough to compute the
- * modulus (2^n-1) without a second multiply.
- */
-#define vsid_scrample(protovsid, size) \
- ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
-
-#else /* 1 */
-#define vsid_scramble(protovsid, size) \
- ({ \
- unsigned long x; \
- x = (protovsid) * VSID_MULTIPLIER_##size; \
- x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
- (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
- })
-#endif /* 1 */
-
-/* This is only valid for addresses >= KERNELBASE */
-static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
-{
- if (ssize == MMU_SEGSIZE_256M)
- return vsid_scramble(ea >> SID_SHIFT, 256M);
- return vsid_scramble(ea >> SID_SHIFT_1T, 1T);
-}
-
-/* Returns the segment size indicator for a user address */
-static inline int user_segment_size(unsigned long addr)
-{
- /* Use 1T segments if possible for addresses >= 1T */
- if (addr >= (1UL << SID_SHIFT_1T))
- return mmu_highuser_ssize;
- return MMU_SEGSIZE_256M;
-}
-
-/* This is only valid for user addresses (which are below 2^44) */
-static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
- int ssize)
-{
- if (ssize == MMU_SEGSIZE_256M)
- return vsid_scramble((context << USER_ESID_BITS)
- | (ea >> SID_SHIFT), 256M);
- return vsid_scramble((context << USER_ESID_BITS_1T)
- | (ea >> SID_SHIFT_1T), 1T);
-}
-
-/*
- * This is only used on legacy iSeries in lparmap.c,
- * hence the 256MB segment assumption.
- */
-#define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER_256M) % \
- VSID_MODULUS_256M)
-#define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
-
-#endif /* __ASSEMBLY__ */
-
-#endif /* _ASM_POWERPC_MMU_HASH64_H_ */
OpenPOWER on IntegriCloud