summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/chips/cfi_cmdset_0020.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/chips/cfi_cmdset_0020.c')
-rw-r--r--drivers/mtd/chips/cfi_cmdset_0020.c1418
1 files changed, 1418 insertions, 0 deletions
diff --git a/drivers/mtd/chips/cfi_cmdset_0020.c b/drivers/mtd/chips/cfi_cmdset_0020.c
new file mode 100644
index 000000000000..8c24e18db3b4
--- /dev/null
+++ b/drivers/mtd/chips/cfi_cmdset_0020.c
@@ -0,0 +1,1418 @@
+/*
+ * Common Flash Interface support:
+ * ST Advanced Architecture Command Set (ID 0x0020)
+ *
+ * (C) 2000 Red Hat. GPL'd
+ *
+ * $Id: cfi_cmdset_0020.c,v 1.17 2004/11/20 12:49:04 dwmw2 Exp $
+ *
+ * 10/10/2000 Nicolas Pitre <nico@cam.org>
+ * - completely revamped method functions so they are aware and
+ * independent of the flash geometry (buswidth, interleave, etc.)
+ * - scalability vs code size is completely set at compile-time
+ * (see include/linux/mtd/cfi.h for selection)
+ * - optimized write buffer method
+ * 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others
+ * - modified Intel Command Set 0x0001 to support ST Advanced Architecture
+ * (command set 0x0020)
+ * - added a writev function
+ */
+
+#include <linux/version.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/init.h>
+#include <asm/io.h>
+#include <asm/byteorder.h>
+
+#include <linux/errno.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/mtd/map.h>
+#include <linux/mtd/cfi.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/compatmac.h>
+
+
+static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *);
+static int cfi_staa_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
+static int cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
+ unsigned long count, loff_t to, size_t *retlen);
+static int cfi_staa_erase_varsize(struct mtd_info *, struct erase_info *);
+static void cfi_staa_sync (struct mtd_info *);
+static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
+static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
+static int cfi_staa_suspend (struct mtd_info *);
+static void cfi_staa_resume (struct mtd_info *);
+
+static void cfi_staa_destroy(struct mtd_info *);
+
+struct mtd_info *cfi_cmdset_0020(struct map_info *, int);
+
+static struct mtd_info *cfi_staa_setup (struct map_info *);
+
+static struct mtd_chip_driver cfi_staa_chipdrv = {
+ .probe = NULL, /* Not usable directly */
+ .destroy = cfi_staa_destroy,
+ .name = "cfi_cmdset_0020",
+ .module = THIS_MODULE
+};
+
+/* #define DEBUG_LOCK_BITS */
+//#define DEBUG_CFI_FEATURES
+
+#ifdef DEBUG_CFI_FEATURES
+static void cfi_tell_features(struct cfi_pri_intelext *extp)
+{
+ int i;
+ printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
+ printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
+ printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
+ printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
+ printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
+ printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
+ printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
+ printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
+ printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
+ printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
+ for (i=9; i<32; i++) {
+ if (extp->FeatureSupport & (1<<i))
+ printk(" - Unknown Bit %X: supported\n", i);
+ }
+
+ printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
+ printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
+ for (i=1; i<8; i++) {
+ if (extp->SuspendCmdSupport & (1<<i))
+ printk(" - Unknown Bit %X: supported\n", i);
+ }
+
+ printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
+ printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
+ printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
+ for (i=2; i<16; i++) {
+ if (extp->BlkStatusRegMask & (1<<i))
+ printk(" - Unknown Bit %X Active: yes\n",i);
+ }
+
+ printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
+ extp->VccOptimal >> 8, extp->VccOptimal & 0xf);
+ if (extp->VppOptimal)
+ printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
+ extp->VppOptimal >> 8, extp->VppOptimal & 0xf);
+}
+#endif
+
+/* This routine is made available to other mtd code via
+ * inter_module_register. It must only be accessed through
+ * inter_module_get which will bump the use count of this module. The
+ * addresses passed back in cfi are valid as long as the use count of
+ * this module is non-zero, i.e. between inter_module_get and
+ * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
+ */
+struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary)
+{
+ struct cfi_private *cfi = map->fldrv_priv;
+ int i;
+
+ if (cfi->cfi_mode) {
+ /*
+ * It's a real CFI chip, not one for which the probe
+ * routine faked a CFI structure. So we read the feature
+ * table from it.
+ */
+ __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
+ struct cfi_pri_intelext *extp;
+
+ extp = (struct cfi_pri_intelext*)cfi_read_pri(map, adr, sizeof(*extp), "ST Microelectronics");
+ if (!extp)
+ return NULL;
+
+ /* Do some byteswapping if necessary */
+ extp->FeatureSupport = cfi32_to_cpu(extp->FeatureSupport);
+ extp->BlkStatusRegMask = cfi32_to_cpu(extp->BlkStatusRegMask);
+
+#ifdef DEBUG_CFI_FEATURES
+ /* Tell the user about it in lots of lovely detail */
+ cfi_tell_features(extp);
+#endif
+
+ /* Install our own private info structure */
+ cfi->cmdset_priv = extp;
+ }
+
+ for (i=0; i< cfi->numchips; i++) {
+ cfi->chips[i].word_write_time = 128;
+ cfi->chips[i].buffer_write_time = 128;
+ cfi->chips[i].erase_time = 1024;
+ }
+
+ return cfi_staa_setup(map);
+}
+
+static struct mtd_info *cfi_staa_setup(struct map_info *map)
+{
+ struct cfi_private *cfi = map->fldrv_priv;
+ struct mtd_info *mtd;
+ unsigned long offset = 0;
+ int i,j;
+ unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
+
+ mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
+ //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
+
+ if (!mtd) {
+ printk(KERN_ERR "Failed to allocate memory for MTD device\n");
+ kfree(cfi->cmdset_priv);
+ return NULL;
+ }
+
+ memset(mtd, 0, sizeof(*mtd));
+ mtd->priv = map;
+ mtd->type = MTD_NORFLASH;
+ mtd->size = devsize * cfi->numchips;
+
+ mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
+ mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
+ * mtd->numeraseregions, GFP_KERNEL);
+ if (!mtd->eraseregions) {
+ printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
+ kfree(cfi->cmdset_priv);
+ kfree(mtd);
+ return NULL;
+ }
+
+ for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
+ unsigned long ernum, ersize;
+ ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
+ ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
+
+ if (mtd->erasesize < ersize) {
+ mtd->erasesize = ersize;
+ }
+ for (j=0; j<cfi->numchips; j++) {
+ mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
+ mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
+ mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
+ }
+ offset += (ersize * ernum);
+ }
+
+ if (offset != devsize) {
+ /* Argh */
+ printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
+ kfree(mtd->eraseregions);
+ kfree(cfi->cmdset_priv);
+ kfree(mtd);
+ return NULL;
+ }
+
+ for (i=0; i<mtd->numeraseregions;i++){
+ printk(KERN_DEBUG "%d: offset=0x%x,size=0x%x,blocks=%d\n",
+ i,mtd->eraseregions[i].offset,
+ mtd->eraseregions[i].erasesize,
+ mtd->eraseregions[i].numblocks);
+ }
+
+ /* Also select the correct geometry setup too */
+ mtd->erase = cfi_staa_erase_varsize;
+ mtd->read = cfi_staa_read;
+ mtd->write = cfi_staa_write_buffers;
+ mtd->writev = cfi_staa_writev;
+ mtd->sync = cfi_staa_sync;
+ mtd->lock = cfi_staa_lock;
+ mtd->unlock = cfi_staa_unlock;
+ mtd->suspend = cfi_staa_suspend;
+ mtd->resume = cfi_staa_resume;
+ mtd->flags = MTD_CAP_NORFLASH;
+ mtd->flags |= MTD_ECC; /* FIXME: Not all STMicro flashes have this */
+ mtd->eccsize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */
+ map->fldrv = &cfi_staa_chipdrv;
+ __module_get(THIS_MODULE);
+ mtd->name = map->name;
+ return mtd;
+}
+
+
+static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
+{
+ map_word status, status_OK;
+ unsigned long timeo;
+ DECLARE_WAITQUEUE(wait, current);
+ int suspended = 0;
+ unsigned long cmd_addr;
+ struct cfi_private *cfi = map->fldrv_priv;
+
+ adr += chip->start;
+
+ /* Ensure cmd read/writes are aligned. */
+ cmd_addr = adr & ~(map_bankwidth(map)-1);
+
+ /* Let's determine this according to the interleave only once */
+ status_OK = CMD(0x80);
+
+ timeo = jiffies + HZ;
+ retry:
+ spin_lock_bh(chip->mutex);
+
+ /* Check that the chip's ready to talk to us.
+ * If it's in FL_ERASING state, suspend it and make it talk now.
+ */
+ switch (chip->state) {
+ case FL_ERASING:
+ if (!(((struct cfi_pri_intelext *)cfi->cmdset_priv)->FeatureSupport & 2))
+ goto sleep; /* We don't support erase suspend */
+
+ map_write (map, CMD(0xb0), cmd_addr);
+ /* If the flash has finished erasing, then 'erase suspend'
+ * appears to make some (28F320) flash devices switch to
+ * 'read' mode. Make sure that we switch to 'read status'
+ * mode so we get the right data. --rmk
+ */
+ map_write(map, CMD(0x70), cmd_addr);
+ chip->oldstate = FL_ERASING;
+ chip->state = FL_ERASE_SUSPENDING;
+ // printk("Erase suspending at 0x%lx\n", cmd_addr);
+ for (;;) {
+ status = map_read(map, cmd_addr);
+ if (map_word_andequal(map, status, status_OK, status_OK))
+ break;
+
+ if (time_after(jiffies, timeo)) {
+ /* Urgh */
+ map_write(map, CMD(0xd0), cmd_addr);
+ /* make sure we're in 'read status' mode */
+ map_write(map, CMD(0x70), cmd_addr);
+ chip->state = FL_ERASING;
+ spin_unlock_bh(chip->mutex);
+ printk(KERN_ERR "Chip not ready after erase "
+ "suspended: status = 0x%lx\n", status.x[0]);
+ return -EIO;
+ }
+
+ spin_unlock_bh(chip->mutex);
+ cfi_udelay(1);
+ spin_lock_bh(chip->mutex);
+ }
+
+ suspended = 1;
+ map_write(map, CMD(0xff), cmd_addr);
+ chip->state = FL_READY;
+ break;
+
+#if 0
+ case FL_WRITING:
+ /* Not quite yet */
+#endif
+
+ case FL_READY:
+ break;
+
+ case FL_CFI_QUERY:
+ case FL_JEDEC_QUERY:
+ map_write(map, CMD(0x70), cmd_addr);
+ chip->state = FL_STATUS;
+
+ case FL_STATUS:
+ status = map_read(map, cmd_addr);
+ if (map_word_andequal(map, status, status_OK, status_OK)) {
+ map_write(map, CMD(0xff), cmd_addr);
+ chip->state = FL_READY;
+ break;
+ }
+
+ /* Urgh. Chip not yet ready to talk to us. */
+ if (time_after(jiffies, timeo)) {
+ spin_unlock_bh(chip->mutex);
+ printk(KERN_ERR "waiting for chip to be ready timed out in read. WSM status = %lx\n", status.x[0]);
+ return -EIO;
+ }
+
+ /* Latency issues. Drop the lock, wait a while and retry */
+ spin_unlock_bh(chip->mutex);
+ cfi_udelay(1);
+ goto retry;
+
+ default:
+ sleep:
+ /* Stick ourselves on a wait queue to be woken when
+ someone changes the status */
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ add_wait_queue(&chip->wq, &wait);
+ spin_unlock_bh(chip->mutex);
+ schedule();
+ remove_wait_queue(&chip->wq, &wait);
+ timeo = jiffies + HZ;
+ goto retry;
+ }
+
+ map_copy_from(map, buf, adr, len);
+
+ if (suspended) {
+ chip->state = chip->oldstate;
+ /* What if one interleaved chip has finished and the
+ other hasn't? The old code would leave the finished
+ one in READY mode. That's bad, and caused -EROFS
+ errors to be returned from do_erase_oneblock because
+ that's the only bit it checked for at the time.
+ As the state machine appears to explicitly allow
+ sending the 0x70 (Read Status) command to an erasing
+ chip and expecting it to be ignored, that's what we
+ do. */
+ map_write(map, CMD(0xd0), cmd_addr);
+ map_write(map, CMD(0x70), cmd_addr);
+ }
+
+ wake_up(&chip->wq);
+ spin_unlock_bh(chip->mutex);
+ return 0;
+}
+
+static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
+{
+ struct map_info *map = mtd->priv;
+ struct cfi_private *cfi = map->fldrv_priv;
+ unsigned long ofs;
+ int chipnum;
+ int ret = 0;
+
+ /* ofs: offset within the first chip that the first read should start */
+ chipnum = (from >> cfi->chipshift);
+ ofs = from - (chipnum << cfi->chipshift);
+
+ *retlen = 0;
+
+ while (len) {
+ unsigned long thislen;
+
+ if (chipnum >= cfi->numchips)
+ break;
+
+ if ((len + ofs -1) >> cfi->chipshift)
+ thislen = (1<<cfi->chipshift) - ofs;
+ else
+ thislen = len;
+
+ ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
+ if (ret)
+ break;
+
+ *retlen += thislen;
+ len -= thislen;
+ buf += thislen;
+
+ ofs = 0;
+ chipnum++;
+ }
+ return ret;
+}
+
+static inline int do_write_buffer(struct map_info *map, struct flchip *chip,
+ unsigned long adr, const u_char *buf, int len)
+{
+ struct cfi_private *cfi = map->fldrv_priv;
+ map_word status, status_OK;
+ unsigned long cmd_adr, timeo;
+ DECLARE_WAITQUEUE(wait, current);
+ int wbufsize, z;
+
+ /* M58LW064A requires bus alignment for buffer wriets -- saw */
+ if (adr & (map_bankwidth(map)-1))
+ return -EINVAL;
+
+ wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
+ adr += chip->start;
+ cmd_adr = adr & ~(wbufsize-1);
+
+ /* Let's determine this according to the interleave only once */
+ status_OK = CMD(0x80);
+
+ timeo = jiffies + HZ;
+ retry:
+
+#ifdef DEBUG_CFI_FEATURES
+ printk("%s: chip->state[%d]\n", __FUNCTION__, chip->state);
+#endif
+ spin_lock_bh(chip->mutex);
+
+ /* Check that the chip's ready to talk to us.
+ * Later, we can actually think about interrupting it
+ * if it's in FL_ERASING state.
+ * Not just yet, though.
+ */
+ switch (chip->state) {
+ case FL_READY:
+ break;
+
+ case FL_CFI_QUERY:
+ case FL_JEDEC_QUERY:
+ map_write(map, CMD(0x70), cmd_adr);
+ chip->state = FL_STATUS;
+#ifdef DEBUG_CFI_FEATURES
+ printk("%s: 1 status[%x]\n", __FUNCTION__, map_read(map, cmd_adr));
+#endif
+
+ case FL_STATUS:
+ status = map_read(map, cmd_adr);
+ if (map_word_andequal(map, status, status_OK, status_OK))
+ break;
+ /* Urgh. Chip not yet ready to talk to us. */
+ if (time_after(jiffies, timeo)) {
+ spin_unlock_bh(chip->mutex);
+ printk(KERN_ERR "waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n",
+ status.x[0], map_read(map, cmd_adr).x[0]);
+ return -EIO;
+ }
+
+ /* Latency issues. Drop the lock, wait a while and retry */
+ spin_unlock_bh(chip->mutex);
+ cfi_udelay(1);
+ goto retry;
+
+ default:
+ /* Stick ourselves on a wait queue to be woken when
+ someone changes the status */
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ add_wait_queue(&chip->wq, &wait);
+ spin_unlock_bh(chip->mutex);
+ schedule();
+ remove_wait_queue(&chip->wq, &wait);
+ timeo = jiffies + HZ;
+ goto retry;
+ }
+
+ ENABLE_VPP(map);
+ map_write(map, CMD(0xe8), cmd_adr);
+ chip->state = FL_WRITING_TO_BUFFER;
+
+ z = 0;
+ for (;;) {
+ status = map_read(map, cmd_adr);
+ if (map_word_andequal(map, status, status_OK, status_OK))
+ break;
+
+ spin_unlock_bh(chip->mutex);
+ cfi_udelay(1);
+ spin_lock_bh(chip->mutex);
+
+ if (++z > 100) {
+ /* Argh. Not ready for write to buffer */
+ DISABLE_VPP(map);
+ map_write(map, CMD(0x70), cmd_adr);
+ chip->state = FL_STATUS;
+ spin_unlock_bh(chip->mutex);
+ printk(KERN_ERR "Chip not ready for buffer write. Xstatus = %lx\n", status.x[0]);
+ return -EIO;
+ }
+ }
+
+ /* Write length of data to come */
+ map_write(map, CMD(len/map_bankwidth(map)-1), cmd_adr );
+
+ /* Write data */
+ for (z = 0; z < len;
+ z += map_bankwidth(map), buf += map_bankwidth(map)) {
+ map_word d;
+ d = map_word_load(map, buf);
+ map_write(map, d, adr+z);
+ }
+ /* GO GO GO */
+ map_write(map, CMD(0xd0), cmd_adr);
+ chip->state = FL_WRITING;
+
+ spin_unlock_bh(chip->mutex);
+ cfi_udelay(chip->buffer_write_time);
+ spin_lock_bh(chip->mutex);
+
+ timeo = jiffies + (HZ/2);
+ z = 0;
+ for (;;) {
+ if (chip->state != FL_WRITING) {
+ /* Someone's suspended the write. Sleep */
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ add_wait_queue(&chip->wq, &wait);
+ spin_unlock_bh(chip->mutex);
+ schedule();
+ remove_wait_queue(&chip->wq, &wait);
+ timeo = jiffies + (HZ / 2); /* FIXME */
+ spin_lock_bh(chip->mutex);
+ continue;
+ }
+
+ status = map_read(map, cmd_adr);
+ if (map_word_andequal(map, status, status_OK, status_OK))
+ break;
+
+ /* OK Still waiting */
+ if (time_after(jiffies, timeo)) {
+ /* clear status */
+ map_write(map, CMD(0x50), cmd_adr);
+ /* put back into read status register mode */
+ map_write(map, CMD(0x70), adr);
+ chip->state = FL_STATUS;
+ DISABLE_VPP(map);
+ spin_unlock_bh(chip->mutex);
+ printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n");
+ return -EIO;
+ }
+
+ /* Latency issues. Drop the lock, wait a while and retry */
+ spin_unlock_bh(chip->mutex);
+ cfi_udelay(1);
+ z++;
+ spin_lock_bh(chip->mutex);
+ }
+ if (!z) {
+ chip->buffer_write_time--;
+ if (!chip->buffer_write_time)
+ chip->buffer_write_time++;
+ }
+ if (z > 1)
+ chip->buffer_write_time++;
+
+ /* Done and happy. */
+ DISABLE_VPP(map);
+ chip->state = FL_STATUS;
+
+ /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */
+ if (map_word_bitsset(map, status, CMD(0x3a))) {
+#ifdef DEBUG_CFI_FEATURES
+ printk("%s: 2 status[%lx]\n", __FUNCTION__, status.x[0]);
+#endif
+ /* clear status */
+ map_write(map, CMD(0x50), cmd_adr);
+ /* put back into read status register mode */
+ map_write(map, CMD(0x70), adr);
+ wake_up(&chip->wq);
+ spin_unlock_bh(chip->mutex);
+ return map_word_bitsset(map, status, CMD(0x02)) ? -EROFS : -EIO;
+ }
+ wake_up(&chip->wq);
+ spin_unlock_bh(chip->mutex);
+
+ return 0;
+}
+
+static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to,
+ size_t len, size_t *retlen, const u_char *buf)
+{
+ struct map_info *map = mtd->priv;
+ struct cfi_private *cfi = map->fldrv_priv;
+ int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
+ int ret = 0;
+ int chipnum;
+ unsigned long ofs;
+
+ *retlen = 0;
+ if (!len)
+ return 0;
+
+ chipnum = to >> cfi->chipshift;
+ ofs = to - (chipnum << cfi->chipshift);
+
+#ifdef DEBUG_CFI_FEATURES
+ printk("%s: map_bankwidth(map)[%x]\n", __FUNCTION__, map_bankwidth(map));
+ printk("%s: chipnum[%x] wbufsize[%x]\n", __FUNCTION__, chipnum, wbufsize);
+ printk("%s: ofs[%x] len[%x]\n", __FUNCTION__, ofs, len);
+#endif
+
+ /* Write buffer is worth it only if more than one word to write... */
+ while (len > 0) {
+ /* We must not cross write block boundaries */
+ int size = wbufsize - (ofs & (wbufsize-1));
+
+ if (size > len)
+ size = len;
+
+ ret = do_write_buffer(map, &cfi->chips[chipnum],
+ ofs, buf, size);
+ if (ret)
+ return ret;
+
+ ofs += size;
+ buf += size;
+ (*retlen) += size;
+ len -= size;
+
+ if (ofs >> cfi->chipshift) {
+ chipnum ++;
+ ofs = 0;
+ if (chipnum == cfi->numchips)
+ return 0;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Writev for ECC-Flashes is a little more complicated. We need to maintain
+ * a small buffer for this.
+ * XXX: If the buffer size is not a multiple of 2, this will break
+ */
+#define ECCBUF_SIZE (mtd->eccsize)
+#define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1))
+#define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1))
+static int
+cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
+ unsigned long count, loff_t to, size_t *retlen)
+{
+ unsigned long i;
+ size_t totlen = 0, thislen;
+ int ret = 0;
+ size_t buflen = 0;
+ static char *buffer;
+
+ if (!ECCBUF_SIZE) {
+ /* We should fall back to a general writev implementation.
+ * Until that is written, just break.
+ */
+ return -EIO;
+ }
+ buffer = kmalloc(ECCBUF_SIZE, GFP_KERNEL);
+ if (!buffer)
+ return -ENOMEM;
+
+ for (i=0; i<count; i++) {
+ size_t elem_len = vecs[i].iov_len;
+ void *elem_base = vecs[i].iov_base;
+ if (!elem_len) /* FIXME: Might be unnecessary. Check that */
+ continue;
+ if (buflen) { /* cut off head */
+ if (buflen + elem_len < ECCBUF_SIZE) { /* just accumulate */
+ memcpy(buffer+buflen, elem_base, elem_len);
+ buflen += elem_len;
+ continue;
+ }
+ memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen);
+ ret = mtd->write(mtd, to, ECCBUF_SIZE, &thislen, buffer);
+ totlen += thislen;
+ if (ret || thislen != ECCBUF_SIZE)
+ goto write_error;
+ elem_len -= thislen-buflen;
+ elem_base += thislen-buflen;
+ to += ECCBUF_SIZE;
+ }
+ if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */
+ ret = mtd->write(mtd, to, ECCBUF_DIV(elem_len), &thislen, elem_base);
+ totlen += thislen;
+ if (ret || thislen != ECCBUF_DIV(elem_len))
+ goto write_error;
+ to += thislen;
+ }
+ buflen = ECCBUF_MOD(elem_len); /* cut off tail */
+ if (buflen) {
+ memset(buffer, 0xff, ECCBUF_SIZE);
+ memcpy(buffer, elem_base + thislen, buflen);
+ }
+ }
+ if (buflen) { /* flush last page, even if not full */
+ /* This is sometimes intended behaviour, really */
+ ret = mtd->write(mtd, to, buflen, &thislen, buffer);
+ totlen += thislen;
+ if (ret || thislen != ECCBUF_SIZE)
+ goto write_error;
+ }
+write_error:
+ if (retlen)
+ *retlen = totlen;
+ return ret;
+}
+
+
+static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
+{
+ struct cfi_private *cfi = map->fldrv_priv;
+ map_word status, status_OK;
+ unsigned long timeo;
+ int retries = 3;
+ DECLARE_WAITQUEUE(wait, current);
+ int ret = 0;
+
+ adr += chip->start;
+
+ /* Let's determine this according to the interleave only once */
+ status_OK = CMD(0x80);
+
+ timeo = jiffies + HZ;
+retry:
+ spin_lock_bh(chip->mutex);
+
+ /* Check that the chip's ready to talk to us. */
+ switch (chip->state) {
+ case FL_CFI_QUERY:
+ case FL_JEDEC_QUERY:
+ case FL_READY:
+ map_write(map, CMD(0x70), adr);
+ chip->state = FL_STATUS;
+
+ case FL_STATUS:
+ status = map_read(map, adr);
+ if (map_word_andequal(map, status, status_OK, status_OK))
+ break;
+
+ /* Urgh. Chip not yet ready to talk to us. */
+ if (time_after(jiffies, timeo)) {
+ spin_unlock_bh(chip->mutex);
+ printk(KERN_ERR "waiting for chip to be ready timed out in erase\n");
+ return -EIO;
+ }
+
+ /* Latency issues. Drop the lock, wait a while and retry */
+ spin_unlock_bh(chip->mutex);
+ cfi_udelay(1);
+ goto retry;
+
+ default:
+ /* Stick ourselves on a wait queue to be woken when
+ someone changes the status */
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ add_wait_queue(&chip->wq, &wait);
+ spin_unlock_bh(chip->mutex);
+ schedule();
+ remove_wait_queue(&chip->wq, &wait);
+ timeo = jiffies + HZ;
+ goto retry;
+ }
+
+ ENABLE_VPP(map);
+ /* Clear the status register first */
+ map_write(map, CMD(0x50), adr);
+
+ /* Now erase */
+ map_write(map, CMD(0x20), adr);
+ map_write(map, CMD(0xD0), adr);
+ chip->state = FL_ERASING;
+
+ spin_unlock_bh(chip->mutex);
+ msleep(1000);
+ spin_lock_bh(chip->mutex);
+
+ /* FIXME. Use a timer to check this, and return immediately. */
+ /* Once the state machine's known to be working I'll do that */
+
+ timeo = jiffies + (HZ*20);
+ for (;;) {
+ if (chip->state != FL_ERASING) {
+ /* Someone's suspended the erase. Sleep */
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ add_wait_queue(&chip->wq, &wait);
+ spin_unlock_bh(chip->mutex);
+ schedule();
+ remove_wait_queue(&chip->wq, &wait);
+ timeo = jiffies + (HZ*20); /* FIXME */
+ spin_lock_bh(chip->mutex);
+ continue;
+ }
+
+ status = map_read(map, adr);
+ if (map_word_andequal(map, status, status_OK, status_OK))
+ break;
+
+ /* OK Still waiting */
+ if (time_after(jiffies, timeo)) {
+ map_write(map, CMD(0x70), adr);
+ chip->state = FL_STATUS;
+ printk(KERN_ERR "waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
+ DISABLE_VPP(map);
+ spin_unlock_bh(chip->mutex);
+ return -EIO;
+ }
+
+ /* Latency issues. Drop the lock, wait a while and retry */
+ spin_unlock_bh(chip->mutex);
+ cfi_udelay(1);
+ spin_lock_bh(chip->mutex);
+ }
+
+ DISABLE_VPP(map);
+ ret = 0;
+
+ /* We've broken this before. It doesn't hurt to be safe */
+ map_write(map, CMD(0x70), adr);
+ chip->state = FL_STATUS;
+ status = map_read(map, adr);
+
+ /* check for lock bit */
+ if (map_word_bitsset(map, status, CMD(0x3a))) {
+ unsigned char chipstatus = status.x[0];
+ if (!map_word_equal(map, status, CMD(chipstatus))) {
+ int i, w;
+ for (w=0; w<map_words(map); w++) {
+ for (i = 0; i<cfi_interleave(cfi); i++) {
+ chipstatus |= status.x[w] >> (cfi->device_type * 8);
+ }
+ }
+ printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
+ status.x[0], chipstatus);
+ }
+ /* Reset the error bits */
+ map_write(map, CMD(0x50), adr);
+ map_write(map, CMD(0x70), adr);
+
+ if ((chipstatus & 0x30) == 0x30) {
+ printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus);
+ ret = -EIO;
+ } else if (chipstatus & 0x02) {
+ /* Protection bit set */
+ ret = -EROFS;
+ } else if (chipstatus & 0x8) {
+ /* Voltage */
+ printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus);
+ ret = -EIO;
+ } else if (chipstatus & 0x20) {
+ if (retries--) {
+ printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus);
+ timeo = jiffies + HZ;
+ chip->state = FL_STATUS;
+ spin_unlock_bh(chip->mutex);
+ goto retry;
+ }
+ printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus);
+ ret = -EIO;
+ }
+ }
+
+ wake_up(&chip->wq);
+ spin_unlock_bh(chip->mutex);
+ return ret;
+}
+
+int cfi_staa_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
+{ struct map_info *map = mtd->priv;
+ struct cfi_private *cfi = map->fldrv_priv;
+ unsigned long adr, len;
+ int chipnum, ret = 0;
+ int i, first;
+ struct mtd_erase_region_info *regions = mtd->eraseregions;
+
+ if (instr->addr > mtd->size)
+ return -EINVAL;
+
+ if ((instr->len + instr->addr) > mtd->size)
+ return -EINVAL;
+
+ /* Check that both start and end of the requested erase are
+ * aligned with the erasesize at the appropriate addresses.
+ */
+
+ i = 0;
+
+ /* Skip all erase regions which are ended before the start of
+ the requested erase. Actually, to save on the calculations,
+ we skip to the first erase region which starts after the
+ start of the requested erase, and then go back one.
+ */
+
+ while (i < mtd->numeraseregions && instr->addr >= regions[i].offset)
+ i++;
+ i--;
+
+ /* OK, now i is pointing at the erase region in which this
+ erase request starts. Check the start of the requested
+ erase range is aligned with the erase size which is in
+ effect here.
+ */
+
+ if (instr->addr & (regions[i].erasesize-1))
+ return -EINVAL;
+
+ /* Remember the erase region we start on */
+ first = i;
+
+ /* Next, check that the end of the requested erase is aligned
+ * with the erase region at that address.
+ */
+
+ while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset)
+ i++;
+
+ /* As before, drop back one to point at the region in which
+ the address actually falls
+ */
+ i--;
+
+ if ((instr->addr + instr->len) & (regions[i].erasesize-1))
+ return -EINVAL;
+
+ chipnum = instr->addr >> cfi->chipshift;
+ adr = instr->addr - (chipnum << cfi->chipshift);
+ len = instr->len;
+
+ i=first;
+
+ while(len) {
+ ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr);
+
+ if (ret)
+ return ret;
+
+ adr += regions[i].erasesize;
+ len -= regions[i].erasesize;
+
+ if (adr % (1<< cfi->chipshift) == ((regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift)))
+ i++;
+
+ if (adr >> cfi->chipshift) {
+ adr = 0;
+ chipnum++;
+
+ if (chipnum >= cfi->numchips)
+ break;
+ }
+ }
+
+ instr->state = MTD_ERASE_DONE;
+ mtd_erase_callback(instr);
+
+ return 0;
+}
+
+static void cfi_staa_sync (struct mtd_info *mtd)
+{
+ struct map_info *map = mtd->priv;
+ struct cfi_private *cfi = map->fldrv_priv;
+ int i;
+ struct flchip *chip;
+ int ret = 0;
+ DECLARE_WAITQUEUE(wait, current);
+
+ for (i=0; !ret && i<cfi->numchips; i++) {
+ chip = &cfi->chips[i];
+
+ retry:
+ spin_lock_bh(chip->mutex);
+
+ switch(chip->state) {
+ case FL_READY:
+ case FL_STATUS:
+ case FL_CFI_QUERY:
+ case FL_JEDEC_QUERY:
+ chip->oldstate = chip->state;
+ chip->state = FL_SYNCING;
+ /* No need to wake_up() on this state change -
+ * as the whole point is that nobody can do anything
+ * with the chip now anyway.
+ */
+ case FL_SYNCING:
+ spin_unlock_bh(chip->mutex);
+ break;
+
+ default:
+ /* Not an idle state */
+ add_wait_queue(&chip->wq, &wait);
+
+ spin_unlock_bh(chip->mutex);
+ schedule();
+ remove_wait_queue(&chip->wq, &wait);
+
+ goto retry;
+ }
+ }
+
+ /* Unlock the chips again */
+
+ for (i--; i >=0; i--) {
+ chip = &cfi->chips[i];
+
+ spin_lock_bh(chip->mutex);
+
+ if (chip->state == FL_SYNCING) {
+ chip->state = chip->oldstate;
+ wake_up(&chip->wq);
+ }
+ spin_unlock_bh(chip->mutex);
+ }
+}
+
+static inline int do_lock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
+{
+ struct cfi_private *cfi = map->fldrv_priv;
+ map_word status, status_OK;
+ unsigned long timeo = jiffies + HZ;
+ DECLARE_WAITQUEUE(wait, current);
+
+ adr += chip->start;
+
+ /* Let's determine this according to the interleave only once */
+ status_OK = CMD(0x80);
+
+ timeo = jiffies + HZ;
+retry:
+ spin_lock_bh(chip->mutex);
+
+ /* Check that the chip's ready to talk to us. */
+ switch (chip->state) {
+ case FL_CFI_QUERY:
+ case FL_JEDEC_QUERY:
+ case FL_READY:
+ map_write(map, CMD(0x70), adr);
+ chip->state = FL_STATUS;
+
+ case FL_STATUS:
+ status = map_read(map, adr);
+ if (map_word_andequal(map, status, status_OK, status_OK))
+ break;
+
+ /* Urgh. Chip not yet ready to talk to us. */
+ if (time_after(jiffies, timeo)) {
+ spin_unlock_bh(chip->mutex);
+ printk(KERN_ERR "waiting for chip to be ready timed out in lock\n");
+ return -EIO;
+ }
+
+ /* Latency issues. Drop the lock, wait a while and retry */
+ spin_unlock_bh(chip->mutex);
+ cfi_udelay(1);
+ goto retry;
+
+ default:
+ /* Stick ourselves on a wait queue to be woken when
+ someone changes the status */
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ add_wait_queue(&chip->wq, &wait);
+ spin_unlock_bh(chip->mutex);
+ schedule();
+ remove_wait_queue(&chip->wq, &wait);
+ timeo = jiffies + HZ;
+ goto retry;
+ }
+
+ ENABLE_VPP(map);
+ map_write(map, CMD(0x60), adr);
+ map_write(map, CMD(0x01), adr);
+ chip->state = FL_LOCKING;
+
+ spin_unlock_bh(chip->mutex);
+ msleep(1000);
+ spin_lock_bh(chip->mutex);
+
+ /* FIXME. Use a timer to check this, and return immediately. */
+ /* Once the state machine's known to be working I'll do that */
+
+ timeo = jiffies + (HZ*2);
+ for (;;) {
+
+ status = map_read(map, adr);
+ if (map_word_andequal(map, status, status_OK, status_OK))
+ break;
+
+ /* OK Still waiting */
+ if (time_after(jiffies, timeo)) {
+ map_write(map, CMD(0x70), adr);
+ chip->state = FL_STATUS;
+ printk(KERN_ERR "waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
+ DISABLE_VPP(map);
+ spin_unlock_bh(chip->mutex);
+ return -EIO;
+ }
+
+ /* Latency issues. Drop the lock, wait a while and retry */
+ spin_unlock_bh(chip->mutex);
+ cfi_udelay(1);
+ spin_lock_bh(chip->mutex);
+ }
+
+ /* Done and happy. */
+ chip->state = FL_STATUS;
+ DISABLE_VPP(map);
+ wake_up(&chip->wq);
+ spin_unlock_bh(chip->mutex);
+ return 0;
+}
+static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
+{
+ struct map_info *map = mtd->priv;
+ struct cfi_private *cfi = map->fldrv_priv;
+ unsigned long adr;
+ int chipnum, ret = 0;
+#ifdef DEBUG_LOCK_BITS
+ int ofs_factor = cfi->interleave * cfi->device_type;
+#endif
+
+ if (ofs & (mtd->erasesize - 1))
+ return -EINVAL;
+
+ if (len & (mtd->erasesize -1))
+ return -EINVAL;
+
+ if ((len + ofs) > mtd->size)
+ return -EINVAL;
+
+ chipnum = ofs >> cfi->chipshift;
+ adr = ofs - (chipnum << cfi->chipshift);
+
+ while(len) {
+
+#ifdef DEBUG_LOCK_BITS
+ cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
+ printk("before lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
+ cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
+#endif
+
+ ret = do_lock_oneblock(map, &cfi->chips[chipnum], adr);
+
+#ifdef DEBUG_LOCK_BITS
+ cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
+ printk("after lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
+ cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
+#endif
+
+ if (ret)
+ return ret;
+
+ adr += mtd->erasesize;
+ len -= mtd->erasesize;
+
+ if (adr >> cfi->chipshift) {
+ adr = 0;
+ chipnum++;
+
+ if (chipnum >= cfi->numchips)
+ break;
+ }
+ }
+ return 0;
+}
+static inline int do_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
+{
+ struct cfi_private *cfi = map->fldrv_priv;
+ map_word status, status_OK;
+ unsigned long timeo = jiffies + HZ;
+ DECLARE_WAITQUEUE(wait, current);
+
+ adr += chip->start;
+
+ /* Let's determine this according to the interleave only once */
+ status_OK = CMD(0x80);
+
+ timeo = jiffies + HZ;
+retry:
+ spin_lock_bh(chip->mutex);
+
+ /* Check that the chip's ready to talk to us. */
+ switch (chip->state) {
+ case FL_CFI_QUERY:
+ case FL_JEDEC_QUERY:
+ case FL_READY:
+ map_write(map, CMD(0x70), adr);
+ chip->state = FL_STATUS;
+
+ case FL_STATUS:
+ status = map_read(map, adr);
+ if (map_word_andequal(map, status, status_OK, status_OK))
+ break;
+
+ /* Urgh. Chip not yet ready to talk to us. */
+ if (time_after(jiffies, timeo)) {
+ spin_unlock_bh(chip->mutex);
+ printk(KERN_ERR "waiting for chip to be ready timed out in unlock\n");
+ return -EIO;
+ }
+
+ /* Latency issues. Drop the lock, wait a while and retry */
+ spin_unlock_bh(chip->mutex);
+ cfi_udelay(1);
+ goto retry;
+
+ default:
+ /* Stick ourselves on a wait queue to be woken when
+ someone changes the status */
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ add_wait_queue(&chip->wq, &wait);
+ spin_unlock_bh(chip->mutex);
+ schedule();
+ remove_wait_queue(&chip->wq, &wait);
+ timeo = jiffies + HZ;
+ goto retry;
+ }
+
+ ENABLE_VPP(map);
+ map_write(map, CMD(0x60), adr);
+ map_write(map, CMD(0xD0), adr);
+ chip->state = FL_UNLOCKING;
+
+ spin_unlock_bh(chip->mutex);
+ msleep(1000);
+ spin_lock_bh(chip->mutex);
+
+ /* FIXME. Use a timer to check this, and return immediately. */
+ /* Once the state machine's known to be working I'll do that */
+
+ timeo = jiffies + (HZ*2);
+ for (;;) {
+
+ status = map_read(map, adr);
+ if (map_word_andequal(map, status, status_OK, status_OK))
+ break;
+
+ /* OK Still waiting */
+ if (time_after(jiffies, timeo)) {
+ map_write(map, CMD(0x70), adr);
+ chip->state = FL_STATUS;
+ printk(KERN_ERR "waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
+ DISABLE_VPP(map);
+ spin_unlock_bh(chip->mutex);
+ return -EIO;
+ }
+
+ /* Latency issues. Drop the unlock, wait a while and retry */
+ spin_unlock_bh(chip->mutex);
+ cfi_udelay(1);
+ spin_lock_bh(chip->mutex);
+ }
+
+ /* Done and happy. */
+ chip->state = FL_STATUS;
+ DISABLE_VPP(map);
+ wake_up(&chip->wq);
+ spin_unlock_bh(chip->mutex);
+ return 0;
+}
+static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
+{
+ struct map_info *map = mtd->priv;
+ struct cfi_private *cfi = map->fldrv_priv;
+ unsigned long adr;
+ int chipnum, ret = 0;
+#ifdef DEBUG_LOCK_BITS
+ int ofs_factor = cfi->interleave * cfi->device_type;
+#endif
+
+ chipnum = ofs >> cfi->chipshift;
+ adr = ofs - (chipnum << cfi->chipshift);
+
+#ifdef DEBUG_LOCK_BITS
+ {
+ unsigned long temp_adr = adr;
+ unsigned long temp_len = len;
+
+ cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
+ while (temp_len) {
+ printk("before unlock %x: block status register is %x\n",temp_adr,cfi_read_query(map, temp_adr+(2*ofs_factor)));
+ temp_adr += mtd->erasesize;
+ temp_len -= mtd->erasesize;
+ }
+ cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
+ }
+#endif
+
+ ret = do_unlock_oneblock(map, &cfi->chips[chipnum], adr);
+
+#ifdef DEBUG_LOCK_BITS
+ cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
+ printk("after unlock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
+ cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
+#endif
+
+ return ret;
+}
+
+static int cfi_staa_suspend(struct mtd_info *mtd)
+{
+ struct map_info *map = mtd->priv;
+ struct cfi_private *cfi = map->fldrv_priv;
+ int i;
+ struct flchip *chip;
+ int ret = 0;
+
+ for (i=0; !ret && i<cfi->numchips; i++) {
+ chip = &cfi->chips[i];
+
+ spin_lock_bh(chip->mutex);
+
+ switch(chip->state) {
+ case FL_READY:
+ case FL_STATUS:
+ case FL_CFI_QUERY:
+ case FL_JEDEC_QUERY:
+ chip->oldstate = chip->state;
+ chip->state = FL_PM_SUSPENDED;
+ /* No need to wake_up() on this state change -
+ * as the whole point is that nobody can do anything
+ * with the chip now anyway.
+ */
+ case FL_PM_SUSPENDED:
+ break;
+
+ default:
+ ret = -EAGAIN;
+ break;
+ }
+ spin_unlock_bh(chip->mutex);
+ }
+
+ /* Unlock the chips again */
+
+ if (ret) {
+ for (i--; i >=0; i--) {
+ chip = &cfi->chips[i];
+
+ spin_lock_bh(chip->mutex);
+
+ if (chip->state == FL_PM_SUSPENDED) {
+ /* No need to force it into a known state here,
+ because we're returning failure, and it didn't
+ get power cycled */
+ chip->state = chip->oldstate;
+ wake_up(&chip->wq);
+ }
+ spin_unlock_bh(chip->mutex);
+ }
+ }
+
+ return ret;
+}
+
+static void cfi_staa_resume(struct mtd_info *mtd)
+{
+ struct map_info *map = mtd->priv;
+ struct cfi_private *cfi = map->fldrv_priv;
+ int i;
+ struct flchip *chip;
+
+ for (i=0; i<cfi->numchips; i++) {
+
+ chip = &cfi->chips[i];
+
+ spin_lock_bh(chip->mutex);
+
+ /* Go to known state. Chip may have been power cycled */
+ if (chip->state == FL_PM_SUSPENDED) {
+ map_write(map, CMD(0xFF), 0);
+ chip->state = FL_READY;
+ wake_up(&chip->wq);
+ }
+
+ spin_unlock_bh(chip->mutex);
+ }
+}
+
+static void cfi_staa_destroy(struct mtd_info *mtd)
+{
+ struct map_info *map = mtd->priv;
+ struct cfi_private *cfi = map->fldrv_priv;
+ kfree(cfi->cmdset_priv);
+ kfree(cfi);
+}
+
+static char im_name[]="cfi_cmdset_0020";
+
+static int __init cfi_staa_init(void)
+{
+ inter_module_register(im_name, THIS_MODULE, &cfi_cmdset_0020);
+ return 0;
+}
+
+static void __exit cfi_staa_exit(void)
+{
+ inter_module_unregister(im_name);
+}
+
+module_init(cfi_staa_init);
+module_exit(cfi_staa_exit);
+
+MODULE_LICENSE("GPL");
OpenPOWER on IntegriCloud