diff options
Diffstat (limited to 'drivers/infiniband/hw/ipath/ipath_eeprom.c')
-rw-r--r-- | drivers/infiniband/hw/ipath/ipath_eeprom.c | 426 |
1 files changed, 361 insertions, 65 deletions
diff --git a/drivers/infiniband/hw/ipath/ipath_eeprom.c b/drivers/infiniband/hw/ipath/ipath_eeprom.c index e28a42f53769..72f90e8d5f76 100644 --- a/drivers/infiniband/hw/ipath/ipath_eeprom.c +++ b/drivers/infiniband/hw/ipath/ipath_eeprom.c @@ -62,6 +62,33 @@ * accessing eeprom contents from within the kernel, only via sysfs. */ +/* Added functionality for IBA7220-based cards */ +#define IPATH_EEPROM_DEV_V1 0xA0 +#define IPATH_EEPROM_DEV_V2 0xA2 +#define IPATH_TEMP_DEV 0x98 +#define IPATH_BAD_DEV (IPATH_EEPROM_DEV_V2+2) +#define IPATH_NO_DEV (0xFF) + +/* + * The number of I2C chains is proliferating. Table below brings + * some order to the madness. The basic principle is that the + * table is scanned from the top, and a "probe" is made to the + * device probe_dev. If that succeeds, the chain is considered + * to be of that type, and dd->i2c_chain_type is set to the index+1 + * of the entry. + * The +1 is so static initialization can mean "unknown, do probe." + */ +static struct i2c_chain_desc { + u8 probe_dev; /* If seen at probe, chain is this type */ + u8 eeprom_dev; /* Dev addr (if any) for EEPROM */ + u8 temp_dev; /* Dev Addr (if any) for Temp-sense */ +} i2c_chains[] = { + { IPATH_BAD_DEV, IPATH_NO_DEV, IPATH_NO_DEV }, /* pre-iba7220 bds */ + { IPATH_EEPROM_DEV_V1, IPATH_EEPROM_DEV_V1, IPATH_TEMP_DEV}, /* V1 */ + { IPATH_EEPROM_DEV_V2, IPATH_EEPROM_DEV_V2, IPATH_TEMP_DEV}, /* V2 */ + { IPATH_NO_DEV } +}; + enum i2c_type { i2c_line_scl = 0, i2c_line_sda @@ -75,13 +102,6 @@ enum i2c_state { #define READ_CMD 1 #define WRITE_CMD 0 -static int eeprom_init; - -/* - * The gpioval manipulation really should be protected by spinlocks - * or be converted to use atomic operations. - */ - /** * i2c_gpio_set - set a GPIO line * @dd: the infinipath device @@ -241,6 +261,27 @@ static int i2c_ackrcv(struct ipath_devdata *dd) } /** + * rd_byte - read a byte, leaving ACK, STOP, etc up to caller + * @dd: the infinipath device + * + * Returns byte shifted out of device + */ +static int rd_byte(struct ipath_devdata *dd) +{ + int bit_cntr, data; + + data = 0; + + for (bit_cntr = 7; bit_cntr >= 0; --bit_cntr) { + data <<= 1; + scl_out(dd, i2c_line_high); + data |= sda_in(dd, 0); + scl_out(dd, i2c_line_low); + } + return data; +} + +/** * wr_byte - write a byte, one bit at a time * @dd: the infinipath device * @data: the byte to write @@ -331,7 +372,6 @@ static int eeprom_reset(struct ipath_devdata *dd) ipath_cdbg(VERBOSE, "Resetting i2c eeprom; initial gpioout reg " "is %llx\n", (unsigned long long) *gpioval); - eeprom_init = 1; /* * This is to get the i2c into a known state, by first going low, * then tristate sda (and then tristate scl as first thing @@ -340,12 +380,17 @@ static int eeprom_reset(struct ipath_devdata *dd) scl_out(dd, i2c_line_low); sda_out(dd, i2c_line_high); + /* Clock up to 9 cycles looking for SDA hi, then issue START and STOP */ while (clock_cycles_left--) { scl_out(dd, i2c_line_high); + /* SDA seen high, issue START by dropping it while SCL high */ if (sda_in(dd, 0)) { sda_out(dd, i2c_line_low); scl_out(dd, i2c_line_low); + /* ATMEL spec says must be followed by STOP. */ + scl_out(dd, i2c_line_high); + sda_out(dd, i2c_line_high); ret = 0; goto bail; } @@ -359,29 +404,121 @@ bail: return ret; } -/** - * ipath_eeprom_read - receives bytes from the eeprom via I2C - * @dd: the infinipath device - * @eeprom_offset: address to read from - * @buffer: where to store result - * @len: number of bytes to receive +/* + * Probe for I2C device at specified address. Returns 0 for "success" + * to match rest of this file. + * Leave bus in "reasonable" state for further commands. */ +static int i2c_probe(struct ipath_devdata *dd, int devaddr) +{ + int ret = 0; + + ret = eeprom_reset(dd); + if (ret) { + ipath_dev_err(dd, "Failed reset probing device 0x%02X\n", + devaddr); + return ret; + } + /* + * Reset no longer leaves bus in start condition, so normal + * i2c_startcmd() will do. + */ + ret = i2c_startcmd(dd, devaddr | READ_CMD); + if (ret) + ipath_cdbg(VERBOSE, "Failed startcmd for device 0x%02X\n", + devaddr); + else { + /* + * Device did respond. Complete a single-byte read, because some + * devices apparently cannot handle STOP immediately after they + * ACK the start-cmd. + */ + int data; + data = rd_byte(dd); + stop_cmd(dd); + ipath_cdbg(VERBOSE, "Response from device 0x%02X\n", devaddr); + } + return ret; +} + +/* + * Returns the "i2c type". This is a pointer to a struct that describes + * the I2C chain on this board. To minimize impact on struct ipath_devdata, + * the (small integer) index into the table is actually memoized, rather + * then the pointer. + * Memoization is because the type is determined on the first call per chip. + * An alternative would be to move type determination to early + * init code. + */ +static struct i2c_chain_desc *ipath_i2c_type(struct ipath_devdata *dd) +{ + int idx; + + /* Get memoized index, from previous successful probes */ + idx = dd->ipath_i2c_chain_type - 1; + if (idx >= 0 && idx < (ARRAY_SIZE(i2c_chains) - 1)) + goto done; + + idx = 0; + while (i2c_chains[idx].probe_dev != IPATH_NO_DEV) { + /* if probe succeeds, this is type */ + if (!i2c_probe(dd, i2c_chains[idx].probe_dev)) + break; + ++idx; + } + + /* + * Old EEPROM (first entry) may require a reset after probe, + * rather than being able to "start" after "stop" + */ + if (idx == 0) + eeprom_reset(dd); + + if (i2c_chains[idx].probe_dev == IPATH_NO_DEV) + idx = -1; + else + dd->ipath_i2c_chain_type = idx + 1; +done: + return (idx >= 0) ? i2c_chains + idx : NULL; +} static int ipath_eeprom_internal_read(struct ipath_devdata *dd, u8 eeprom_offset, void *buffer, int len) { - /* compiler complains unless initialized */ - u8 single_byte = 0; - int bit_cntr; int ret; + struct i2c_chain_desc *icd; + u8 *bp = buffer; - if (!eeprom_init) - eeprom_reset(dd); - - eeprom_offset = (eeprom_offset << 1) | READ_CMD; + ret = 1; + icd = ipath_i2c_type(dd); + if (!icd) + goto bail; - if (i2c_startcmd(dd, eeprom_offset)) { - ipath_dbg("Failed startcmd\n"); + if (icd->eeprom_dev == IPATH_NO_DEV) { + /* legacy not-really-I2C */ + ipath_cdbg(VERBOSE, "Start command only address\n"); + eeprom_offset = (eeprom_offset << 1) | READ_CMD; + ret = i2c_startcmd(dd, eeprom_offset); + } else { + /* Actual I2C */ + ipath_cdbg(VERBOSE, "Start command uses devaddr\n"); + if (i2c_startcmd(dd, icd->eeprom_dev | WRITE_CMD)) { + ipath_dbg("Failed EEPROM startcmd\n"); + stop_cmd(dd); + ret = 1; + goto bail; + } + ret = wr_byte(dd, eeprom_offset); + stop_cmd(dd); + if (ret) { + ipath_dev_err(dd, "Failed to write EEPROM address\n"); + ret = 1; + goto bail; + } + ret = i2c_startcmd(dd, icd->eeprom_dev | READ_CMD); + } + if (ret) { + ipath_dbg("Failed startcmd for dev %02X\n", icd->eeprom_dev); stop_cmd(dd); ret = 1; goto bail; @@ -392,22 +529,11 @@ static int ipath_eeprom_internal_read(struct ipath_devdata *dd, * incrementing the address. */ while (len-- > 0) { - /* get data */ - single_byte = 0; - for (bit_cntr = 8; bit_cntr; bit_cntr--) { - u8 bit; - scl_out(dd, i2c_line_high); - bit = sda_in(dd, 0); - single_byte |= bit << (bit_cntr - 1); - scl_out(dd, i2c_line_low); - } - + /* get and store data */ + *bp++ = rd_byte(dd); /* send ack if not the last byte */ if (len) send_ack(dd); - - *((u8 *) buffer) = single_byte; - buffer++; } stop_cmd(dd); @@ -418,31 +544,40 @@ bail: return ret; } - -/** - * ipath_eeprom_write - writes data to the eeprom via I2C - * @dd: the infinipath device - * @eeprom_offset: where to place data - * @buffer: data to write - * @len: number of bytes to write - */ static int ipath_eeprom_internal_write(struct ipath_devdata *dd, u8 eeprom_offset, const void *buffer, int len) { - u8 single_byte; int sub_len; const u8 *bp = buffer; int max_wait_time, i; int ret; + struct i2c_chain_desc *icd; - if (!eeprom_init) - eeprom_reset(dd); + ret = 1; + icd = ipath_i2c_type(dd); + if (!icd) + goto bail; while (len > 0) { - if (i2c_startcmd(dd, (eeprom_offset << 1) | WRITE_CMD)) { - ipath_dbg("Failed to start cmd offset %u\n", - eeprom_offset); - goto failed_write; + if (icd->eeprom_dev == IPATH_NO_DEV) { + if (i2c_startcmd(dd, + (eeprom_offset << 1) | WRITE_CMD)) { + ipath_dbg("Failed to start cmd offset %u\n", + eeprom_offset); + goto failed_write; + } + } else { + /* Real I2C */ + if (i2c_startcmd(dd, icd->eeprom_dev | WRITE_CMD)) { + ipath_dbg("Failed EEPROM startcmd\n"); + goto failed_write; + } + ret = wr_byte(dd, eeprom_offset); + if (ret) { + ipath_dev_err(dd, "Failed to write EEPROM " + "address\n"); + goto failed_write; + } } sub_len = min(len, 4); @@ -468,9 +603,11 @@ static int ipath_eeprom_internal_write(struct ipath_devdata *dd, u8 eeprom_offse * the writes have completed. We do this inline to avoid * the debug prints that are in the real read routine * if the startcmd fails. + * We also use the proper device address, so it doesn't matter + * whether we have real eeprom_dev. legacy likes any address. */ max_wait_time = 100; - while (i2c_startcmd(dd, READ_CMD)) { + while (i2c_startcmd(dd, icd->eeprom_dev | READ_CMD)) { stop_cmd(dd); if (!--max_wait_time) { ipath_dbg("Did not get successful read to " @@ -478,15 +615,8 @@ static int ipath_eeprom_internal_write(struct ipath_devdata *dd, u8 eeprom_offse goto failed_write; } } - /* now read the zero byte */ - for (i = single_byte = 0; i < 8; i++) { - u8 bit; - scl_out(dd, i2c_line_high); - bit = sda_in(dd, 0); - scl_out(dd, i2c_line_low); - single_byte <<= 1; - single_byte |= bit; - } + /* now read (and ignore) the resulting byte */ + rd_byte(dd); stop_cmd(dd); } @@ -501,9 +631,12 @@ bail: return ret; } -/* - * The public entry-points ipath_eeprom_read() and ipath_eeprom_write() - * are now just wrappers around the internal functions. +/** + * ipath_eeprom_read - receives bytes from the eeprom via I2C + * @dd: the infinipath device + * @eeprom_offset: address to read from + * @buffer: where to store result + * @len: number of bytes to receive */ int ipath_eeprom_read(struct ipath_devdata *dd, u8 eeprom_offset, void *buff, int len) @@ -519,6 +652,13 @@ int ipath_eeprom_read(struct ipath_devdata *dd, u8 eeprom_offset, return ret; } +/** + * ipath_eeprom_write - writes data to the eeprom via I2C + * @dd: the infinipath device + * @eeprom_offset: where to place data + * @buffer: data to write + * @len: number of bytes to write + */ int ipath_eeprom_write(struct ipath_devdata *dd, u8 eeprom_offset, const void *buff, int len) { @@ -820,7 +960,7 @@ int ipath_update_eeprom_log(struct ipath_devdata *dd) * if we log an hour at 31 minutes, then we would need to set * active_time to -29 to accurately count the _next_ hour. */ - if (new_time > 3600) { + if (new_time >= 3600) { new_hrs = new_time / 3600; atomic_sub((new_hrs * 3600), &dd->ipath_active_time); new_hrs += dd->ipath_eep_hrs; @@ -885,3 +1025,159 @@ void ipath_inc_eeprom_err(struct ipath_devdata *dd, u32 eidx, u32 incr) spin_unlock_irqrestore(&dd->ipath_eep_st_lock, flags); return; } + +static int ipath_tempsense_internal_read(struct ipath_devdata *dd, u8 regnum) +{ + int ret; + struct i2c_chain_desc *icd; + + ret = -ENOENT; + + icd = ipath_i2c_type(dd); + if (!icd) + goto bail; + + if (icd->temp_dev == IPATH_NO_DEV) { + /* tempsense only exists on new, real-I2C boards */ + ret = -ENXIO; + goto bail; + } + + if (i2c_startcmd(dd, icd->temp_dev | WRITE_CMD)) { + ipath_dbg("Failed tempsense startcmd\n"); + stop_cmd(dd); + ret = -ENXIO; + goto bail; + } + ret = wr_byte(dd, regnum); + stop_cmd(dd); + if (ret) { + ipath_dev_err(dd, "Failed tempsense WR command %02X\n", + regnum); + ret = -ENXIO; + goto bail; + } + if (i2c_startcmd(dd, icd->temp_dev | READ_CMD)) { + ipath_dbg("Failed tempsense RD startcmd\n"); + stop_cmd(dd); + ret = -ENXIO; + goto bail; + } + /* + * We can only clock out one byte per command, sensibly + */ + ret = rd_byte(dd); + stop_cmd(dd); + +bail: + return ret; +} + +#define VALID_TS_RD_REG_MASK 0xBF + +/** + * ipath_tempsense_read - read register of temp sensor via I2C + * @dd: the infinipath device + * @regnum: register to read from + * + * returns reg contents (0..255) or < 0 for error + */ +int ipath_tempsense_read(struct ipath_devdata *dd, u8 regnum) +{ + int ret; + + if (regnum > 7) + return -EINVAL; + + /* return a bogus value for (the one) register we do not have */ + if (!((1 << regnum) & VALID_TS_RD_REG_MASK)) + return 0; + + ret = mutex_lock_interruptible(&dd->ipath_eep_lock); + if (!ret) { + ret = ipath_tempsense_internal_read(dd, regnum); + mutex_unlock(&dd->ipath_eep_lock); + } + + /* + * There are three possibilities here: + * ret is actual value (0..255) + * ret is -ENXIO or -EINVAL from code in this file + * ret is -EINTR from mutex_lock_interruptible. + */ + return ret; +} + +static int ipath_tempsense_internal_write(struct ipath_devdata *dd, + u8 regnum, u8 data) +{ + int ret = -ENOENT; + struct i2c_chain_desc *icd; + + icd = ipath_i2c_type(dd); + if (!icd) + goto bail; + + if (icd->temp_dev == IPATH_NO_DEV) { + /* tempsense only exists on new, real-I2C boards */ + ret = -ENXIO; + goto bail; + } + if (i2c_startcmd(dd, icd->temp_dev | WRITE_CMD)) { + ipath_dbg("Failed tempsense startcmd\n"); + stop_cmd(dd); + ret = -ENXIO; + goto bail; + } + ret = wr_byte(dd, regnum); + if (ret) { + stop_cmd(dd); + ipath_dev_err(dd, "Failed to write tempsense command %02X\n", + regnum); + ret = -ENXIO; + goto bail; + } + ret = wr_byte(dd, data); + stop_cmd(dd); + ret = i2c_startcmd(dd, icd->temp_dev | READ_CMD); + if (ret) { + ipath_dev_err(dd, "Failed tempsense data wrt to %02X\n", + regnum); + ret = -ENXIO; + } + +bail: + return ret; +} + +#define VALID_TS_WR_REG_MASK ((1 << 9) | (1 << 0xB) | (1 << 0xD)) + +/** + * ipath_tempsense_write - write register of temp sensor via I2C + * @dd: the infinipath device + * @regnum: register to write + * @data: data to write + * + * returns 0 for success or < 0 for error + */ +int ipath_tempsense_write(struct ipath_devdata *dd, u8 regnum, u8 data) +{ + int ret; + + if (regnum > 15 || !((1 << regnum) & VALID_TS_WR_REG_MASK)) + return -EINVAL; + + ret = mutex_lock_interruptible(&dd->ipath_eep_lock); + if (!ret) { + ret = ipath_tempsense_internal_write(dd, regnum, data); + mutex_unlock(&dd->ipath_eep_lock); + } + + /* + * There are three possibilities here: + * ret is 0 for success + * ret is -ENXIO or -EINVAL from code in this file + * ret is -EINTR from mutex_lock_interruptible. + */ + return ret; +} |