diff options
Diffstat (limited to 'drivers/gpu/drm/i915/i915_request.h')
| -rw-r--r-- | drivers/gpu/drm/i915/i915_request.h | 165 |
1 files changed, 114 insertions, 51 deletions
diff --git a/drivers/gpu/drm/i915/i915_request.h b/drivers/gpu/drm/i915/i915_request.h index 40f3e8dcbdd5..96991d64759c 100644 --- a/drivers/gpu/drm/i915/i915_request.h +++ b/drivers/gpu/drm/i915/i915_request.h @@ -26,9 +26,14 @@ #define I915_REQUEST_H #include <linux/dma-fence.h> +#include <linux/lockdep.h> + +#include "gt/intel_context_types.h" +#include "gt/intel_engine_types.h" #include "i915_gem.h" #include "i915_scheduler.h" +#include "i915_selftest.h" #include "i915_sw_fence.h" #include <uapi/drm/i915_drm.h> @@ -36,7 +41,8 @@ struct drm_file; struct drm_i915_gem_object; struct i915_request; -struct i915_timeline; +struct intel_timeline; +struct intel_timeline_cacheline; struct i915_capture_list { struct i915_capture_list *next; @@ -107,7 +113,7 @@ struct i915_request { struct intel_engine_cs *engine; struct intel_context *hw_context; struct intel_ring *ring; - struct i915_timeline *timeline; + struct intel_timeline __rcu *timeline; struct list_head signal_link; /* @@ -119,6 +125,15 @@ struct i915_request { unsigned long rcustate; /* + * We pin the timeline->mutex while constructing the request to + * ensure that no caller accidentally drops it during construction. + * The timeline->mutex must be held to ensure that only this caller + * can use the ring and manipulate the associated timeline during + * construction. + */ + struct pin_cookie cookie; + + /* * Fences for the various phases in the request's lifetime. * * The submit fence is used to await upon all of the request's @@ -126,7 +141,12 @@ struct i915_request { * It is used by the driver to then queue the request for execution. */ struct i915_sw_fence submit; - wait_queue_entry_t submitq; + union { + wait_queue_entry_t submitq; + struct i915_sw_dma_fence_cb dmaq; + }; + struct list_head execute_cb; + struct i915_sw_fence semaphore; /* * A list of everyone we wait upon, and everyone who waits upon us. @@ -139,6 +159,7 @@ struct i915_request { */ struct i915_sched_node sched; struct i915_dependency dep; + intel_engine_mask_t execution_mask; /* * A convenience pointer to the current breadcrumb value stored in @@ -147,13 +168,15 @@ struct i915_request { */ const u32 *hwsp_seqno; - /** - * GEM sequence number associated with this request on the - * global execution timeline. It is zero when the request is not - * on the HW queue (i.e. not on the engine timeline list). - * Its value is guarded by the timeline spinlock. + /* + * If we need to access the timeline's seqno for this request in + * another request, we need to keep a read reference to this associated + * cacheline, so that we do not free and recycle it before the foreign + * observers have completed. Hence, we keep a pointer to the cacheline + * inside the timeline's HWSP vma, but it is only valid while this + * request has not completed and guarded by the timeline mutex. */ - u32 global_seqno; + struct intel_timeline_cacheline *hwsp_cacheline; /** Position in the ring of the start of the request */ u32 head; @@ -188,22 +211,26 @@ struct i915_request { * on the active_list (of their final request). */ struct i915_capture_list *capture_list; - struct list_head active_list; /** Time at which this request was emitted, in jiffies. */ unsigned long emitted_jiffies; - bool waitboost; + unsigned long flags; +#define I915_REQUEST_WAITBOOST BIT(0) +#define I915_REQUEST_NOPREEMPT BIT(1) +#define I915_REQUEST_SENTINEL BIT(2) - /** engine->request_list entry for this request */ + /** timeline->request entry for this request */ struct list_head link; - /** ring->request_list entry for this request */ - struct list_head ring_link; - struct drm_i915_file_private *file_priv; /** file_priv list entry for this request */ struct list_head client_link; + + I915_SELFTEST_DECLARE(struct { + struct list_head link; + unsigned long delay; + } mock;) }; #define I915_FENCE_GFP (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN) @@ -216,8 +243,15 @@ static inline bool dma_fence_is_i915(const struct dma_fence *fence) } struct i915_request * __must_check -i915_request_alloc(struct intel_engine_cs *engine, - struct i915_gem_context *ctx); +__i915_request_create(struct intel_context *ce, gfp_t gfp); +struct i915_request * __must_check +i915_request_create(struct intel_context *ce); + +struct i915_request *__i915_request_commit(struct i915_request *request); +void __i915_request_queue(struct i915_request *rq, + const struct i915_sched_attr *attr); + +bool i915_request_retire(struct i915_request *rq); void i915_request_retire_upto(struct i915_request *rq); static inline struct i915_request * @@ -247,39 +281,19 @@ i915_request_put(struct i915_request *rq) dma_fence_put(&rq->fence); } -/** - * i915_request_global_seqno - report the current global seqno - * @request - the request - * - * A request is assigned a global seqno only when it is on the hardware - * execution queue. The global seqno can be used to maintain a list of - * requests on the same engine in retirement order, for example for - * constructing a priority queue for waiting. Prior to its execution, or - * if it is subsequently removed in the event of preemption, its global - * seqno is zero. As both insertion and removal from the execution queue - * may operate in IRQ context, it is not guarded by the usual struct_mutex - * BKL. Instead those relying on the global seqno must be prepared for its - * value to change between reads. Only when the request is complete can - * the global seqno be stable (due to the memory barriers on submitting - * the commands to the hardware to write the breadcrumb, if the HWS shows - * that it has passed the global seqno and the global seqno is unchanged - * after the read, it is indeed complete). - */ -static inline u32 -i915_request_global_seqno(const struct i915_request *request) -{ - return READ_ONCE(request->global_seqno); -} - int i915_request_await_object(struct i915_request *to, struct drm_i915_gem_object *obj, bool write); int i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence); +int i915_request_await_execution(struct i915_request *rq, + struct dma_fence *fence, + void (*hook)(struct i915_request *rq, + struct dma_fence *signal)); void i915_request_add(struct i915_request *rq); -void __i915_request_submit(struct i915_request *request); +bool __i915_request_submit(struct i915_request *request); void i915_request_submit(struct i915_request *request); void i915_request_skip(struct i915_request *request, int error); @@ -296,10 +310,8 @@ long i915_request_wait(struct i915_request *rq, long timeout) __attribute__((nonnull(1))); #define I915_WAIT_INTERRUPTIBLE BIT(0) -#define I915_WAIT_LOCKED BIT(1) /* struct_mutex held, handle GPU reset */ -#define I915_WAIT_PRIORITY BIT(2) /* small priority bump for the request */ -#define I915_WAIT_ALL BIT(3) /* used by i915_gem_object_wait() */ -#define I915_WAIT_FOR_IDLE_BOOST BIT(4) +#define I915_WAIT_PRIORITY BIT(1) /* small priority bump for the request */ +#define I915_WAIT_ALL BIT(2) /* used by i915_gem_object_wait() */ static inline bool i915_request_signaled(const struct i915_request *rq) { @@ -358,10 +370,27 @@ static inline bool __i915_request_has_started(const struct i915_request *rq) * i915_request_started - check if the request has begun being executed * @rq: the request * - * Returns true if the request has been submitted to hardware, and the hardware - * has advanced passed the end of the previous request and so should be either - * currently processing the request (though it may be preempted and so - * not necessarily the next request to complete) or have completed the request. + * If the timeline is not using initial breadcrumbs, a request is + * considered started if the previous request on its timeline (i.e. + * context) has been signaled. + * + * If the timeline is using semaphores, it will also be emitting an + * "initial breadcrumb" after the semaphores are complete and just before + * it began executing the user payload. A request can therefore be active + * on the HW and not yet started as it is still busywaiting on its + * dependencies (via HW semaphores). + * + * If the request has started, its dependencies will have been signaled + * (either by fences or by semaphores) and it will have begun processing + * the user payload. + * + * However, even if a request has started, it may have been preempted and + * so no longer active, or it may have already completed. + * + * See also i915_request_is_active(). + * + * Returns true if the request has begun executing the user payload, or + * has completed: */ static inline bool i915_request_started(const struct i915_request *rq) { @@ -401,6 +430,40 @@ static inline void i915_request_mark_complete(struct i915_request *rq) rq->hwsp_seqno = (u32 *)&rq->fence.seqno; /* decouple from HWSP */ } -void i915_retire_requests(struct drm_i915_private *i915); +static inline bool i915_request_has_waitboost(const struct i915_request *rq) +{ + return rq->flags & I915_REQUEST_WAITBOOST; +} + +static inline bool i915_request_has_nopreempt(const struct i915_request *rq) +{ + /* Preemption should only be disabled very rarely */ + return unlikely(rq->flags & I915_REQUEST_NOPREEMPT); +} + +static inline bool i915_request_has_sentinel(const struct i915_request *rq) +{ + return unlikely(rq->flags & I915_REQUEST_SENTINEL); +} + +static inline struct intel_timeline * +i915_request_timeline(struct i915_request *rq) +{ + /* Valid only while the request is being constructed (or retired). */ + return rcu_dereference_protected(rq->timeline, + lockdep_is_held(&rcu_access_pointer(rq->timeline)->mutex)); +} + +static inline struct intel_timeline * +i915_request_active_timeline(struct i915_request *rq) +{ + /* + * When in use during submission, we are protected by a guarantee that + * the context/timeline is pinned and must remain pinned until after + * this submission. + */ + return rcu_dereference_protected(rq->timeline, + lockdep_is_held(&rq->engine->active.lock)); +} #endif /* I915_REQUEST_H */ |

