summaryrefslogtreecommitdiffstats
path: root/arch/x86_64/mm
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86_64/mm')
-rw-r--r--arch/x86_64/mm/Makefile11
-rw-r--r--arch/x86_64/mm/extable.c35
-rw-r--r--arch/x86_64/mm/fault.c579
-rw-r--r--arch/x86_64/mm/init.c630
-rw-r--r--arch/x86_64/mm/ioremap.c283
-rw-r--r--arch/x86_64/mm/k8topology.c168
-rw-r--r--arch/x86_64/mm/numa.c294
-rw-r--r--arch/x86_64/mm/pageattr.c235
-rw-r--r--arch/x86_64/mm/srat.c217
9 files changed, 2452 insertions, 0 deletions
diff --git a/arch/x86_64/mm/Makefile b/arch/x86_64/mm/Makefile
new file mode 100644
index 000000000000..66c354ad80ca
--- /dev/null
+++ b/arch/x86_64/mm/Makefile
@@ -0,0 +1,11 @@
+#
+# Makefile for the linux x86_64-specific parts of the memory manager.
+#
+
+obj-y := init.o fault.o ioremap.o extable.o pageattr.o
+obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o
+obj-$(CONFIG_DISCONTIGMEM) += numa.o
+obj-$(CONFIG_K8_NUMA) += k8topology.o
+obj-$(CONFIG_ACPI_NUMA) += srat.o
+
+hugetlbpage-y = ../../i386/mm/hugetlbpage.o
diff --git a/arch/x86_64/mm/extable.c b/arch/x86_64/mm/extable.c
new file mode 100644
index 000000000000..2d78f9fb4035
--- /dev/null
+++ b/arch/x86_64/mm/extable.c
@@ -0,0 +1,35 @@
+/*
+ * linux/arch/x86_64/mm/extable.c
+ */
+
+#include <linux/config.h>
+#include <linux/module.h>
+#include <linux/spinlock.h>
+#include <linux/init.h>
+#include <asm/uaccess.h>
+
+/* Simple binary search */
+const struct exception_table_entry *
+search_extable(const struct exception_table_entry *first,
+ const struct exception_table_entry *last,
+ unsigned long value)
+{
+ /* Work around a B stepping K8 bug */
+ if ((value >> 32) == 0)
+ value |= 0xffffffffUL << 32;
+
+ while (first <= last) {
+ const struct exception_table_entry *mid;
+ long diff;
+
+ mid = (last - first) / 2 + first;
+ diff = mid->insn - value;
+ if (diff == 0)
+ return mid;
+ else if (diff < 0)
+ first = mid+1;
+ else
+ last = mid-1;
+ }
+ return NULL;
+}
diff --git a/arch/x86_64/mm/fault.c b/arch/x86_64/mm/fault.c
new file mode 100644
index 000000000000..5724370475cc
--- /dev/null
+++ b/arch/x86_64/mm/fault.c
@@ -0,0 +1,579 @@
+/*
+ * linux/arch/x86-64/mm/fault.c
+ *
+ * Copyright (C) 1995 Linus Torvalds
+ * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
+ */
+
+#include <linux/config.h>
+#include <linux/signal.h>
+#include <linux/sched.h>
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/string.h>
+#include <linux/types.h>
+#include <linux/ptrace.h>
+#include <linux/mman.h>
+#include <linux/mm.h>
+#include <linux/smp.h>
+#include <linux/smp_lock.h>
+#include <linux/interrupt.h>
+#include <linux/init.h>
+#include <linux/tty.h>
+#include <linux/vt_kern.h> /* For unblank_screen() */
+#include <linux/compiler.h>
+#include <linux/module.h>
+#include <linux/kprobes.h>
+
+#include <asm/system.h>
+#include <asm/uaccess.h>
+#include <asm/pgalloc.h>
+#include <asm/smp.h>
+#include <asm/tlbflush.h>
+#include <asm/proto.h>
+#include <asm/kdebug.h>
+#include <asm-generic/sections.h>
+#include <asm/kdebug.h>
+
+void bust_spinlocks(int yes)
+{
+ int loglevel_save = console_loglevel;
+ if (yes) {
+ oops_in_progress = 1;
+ } else {
+#ifdef CONFIG_VT
+ unblank_screen();
+#endif
+ oops_in_progress = 0;
+ /*
+ * OK, the message is on the console. Now we call printk()
+ * without oops_in_progress set so that printk will give klogd
+ * a poke. Hold onto your hats...
+ */
+ console_loglevel = 15; /* NMI oopser may have shut the console up */
+ printk(" ");
+ console_loglevel = loglevel_save;
+ }
+}
+
+/* Sometimes the CPU reports invalid exceptions on prefetch.
+ Check that here and ignore.
+ Opcode checker based on code by Richard Brunner */
+static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr,
+ unsigned long error_code)
+{
+ unsigned char *instr = (unsigned char *)(regs->rip);
+ int scan_more = 1;
+ int prefetch = 0;
+ unsigned char *max_instr = instr + 15;
+
+ /* If it was a exec fault ignore */
+ if (error_code & (1<<4))
+ return 0;
+
+ /* Code segments in LDT could have a non zero base. Don't check
+ when that's possible */
+ if (regs->cs & (1<<2))
+ return 0;
+
+ if ((regs->cs & 3) != 0 && regs->rip >= TASK_SIZE)
+ return 0;
+
+ while (scan_more && instr < max_instr) {
+ unsigned char opcode;
+ unsigned char instr_hi;
+ unsigned char instr_lo;
+
+ if (__get_user(opcode, instr))
+ break;
+
+ instr_hi = opcode & 0xf0;
+ instr_lo = opcode & 0x0f;
+ instr++;
+
+ switch (instr_hi) {
+ case 0x20:
+ case 0x30:
+ /* Values 0x26,0x2E,0x36,0x3E are valid x86
+ prefixes. In long mode, the CPU will signal
+ invalid opcode if some of these prefixes are
+ present so we will never get here anyway */
+ scan_more = ((instr_lo & 7) == 0x6);
+ break;
+
+ case 0x40:
+ /* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes
+ Need to figure out under what instruction mode the
+ instruction was issued ... */
+ /* Could check the LDT for lm, but for now it's good
+ enough to assume that long mode only uses well known
+ segments or kernel. */
+ scan_more = ((regs->cs & 3) == 0) || (regs->cs == __USER_CS);
+ break;
+
+ case 0x60:
+ /* 0x64 thru 0x67 are valid prefixes in all modes. */
+ scan_more = (instr_lo & 0xC) == 0x4;
+ break;
+ case 0xF0:
+ /* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */
+ scan_more = !instr_lo || (instr_lo>>1) == 1;
+ break;
+ case 0x00:
+ /* Prefetch instruction is 0x0F0D or 0x0F18 */
+ scan_more = 0;
+ if (__get_user(opcode, instr))
+ break;
+ prefetch = (instr_lo == 0xF) &&
+ (opcode == 0x0D || opcode == 0x18);
+ break;
+ default:
+ scan_more = 0;
+ break;
+ }
+ }
+ return prefetch;
+}
+
+static int bad_address(void *p)
+{
+ unsigned long dummy;
+ return __get_user(dummy, (unsigned long *)p);
+}
+
+void dump_pagetable(unsigned long address)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ asm("movq %%cr3,%0" : "=r" (pgd));
+
+ pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
+ pgd += pgd_index(address);
+ printk("PGD %lx ", pgd_val(*pgd));
+ if (bad_address(pgd)) goto bad;
+ if (!pgd_present(*pgd)) goto ret;
+
+ pud = __pud_offset_k((pud_t *)pgd_page(*pgd), address);
+ if (bad_address(pud)) goto bad;
+ printk("PUD %lx ", pud_val(*pud));
+ if (!pud_present(*pud)) goto ret;
+
+ pmd = pmd_offset(pud, address);
+ if (bad_address(pmd)) goto bad;
+ printk("PMD %lx ", pmd_val(*pmd));
+ if (!pmd_present(*pmd)) goto ret;
+
+ pte = pte_offset_kernel(pmd, address);
+ if (bad_address(pte)) goto bad;
+ printk("PTE %lx", pte_val(*pte));
+ret:
+ printk("\n");
+ return;
+bad:
+ printk("BAD\n");
+}
+
+static const char errata93_warning[] =
+KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
+KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
+KERN_ERR "******* Please consider a BIOS update.\n"
+KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
+
+/* Workaround for K8 erratum #93 & buggy BIOS.
+ BIOS SMM functions are required to use a specific workaround
+ to avoid corruption of the 64bit RIP register on C stepping K8.
+ A lot of BIOS that didn't get tested properly miss this.
+ The OS sees this as a page fault with the upper 32bits of RIP cleared.
+ Try to work around it here.
+ Note we only handle faults in kernel here. */
+
+static int is_errata93(struct pt_regs *regs, unsigned long address)
+{
+ static int warned;
+ if (address != regs->rip)
+ return 0;
+ if ((address >> 32) != 0)
+ return 0;
+ address |= 0xffffffffUL << 32;
+ if ((address >= (u64)_stext && address <= (u64)_etext) ||
+ (address >= MODULES_VADDR && address <= MODULES_END)) {
+ if (!warned) {
+ printk(errata93_warning);
+ warned = 1;
+ }
+ regs->rip = address;
+ return 1;
+ }
+ return 0;
+}
+
+int unhandled_signal(struct task_struct *tsk, int sig)
+{
+ if (tsk->pid == 1)
+ return 1;
+ /* Warn for strace, but not for gdb */
+ if (!test_ti_thread_flag(tsk->thread_info, TIF_SYSCALL_TRACE) &&
+ (tsk->ptrace & PT_PTRACED))
+ return 0;
+ return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
+ (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
+}
+
+static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
+ unsigned long error_code)
+{
+ oops_begin();
+ printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
+ current->comm, address);
+ dump_pagetable(address);
+ __die("Bad pagetable", regs, error_code);
+ oops_end();
+ do_exit(SIGKILL);
+}
+
+/*
+ * Handle a fault on the vmalloc or module mapping area
+ */
+static int vmalloc_fault(unsigned long address)
+{
+ pgd_t *pgd, *pgd_ref;
+ pud_t *pud, *pud_ref;
+ pmd_t *pmd, *pmd_ref;
+ pte_t *pte, *pte_ref;
+
+ /* Copy kernel mappings over when needed. This can also
+ happen within a race in page table update. In the later
+ case just flush. */
+
+ pgd = pgd_offset(current->mm ?: &init_mm, address);
+ pgd_ref = pgd_offset_k(address);
+ if (pgd_none(*pgd_ref))
+ return -1;
+ if (pgd_none(*pgd))
+ set_pgd(pgd, *pgd_ref);
+
+ /* Below here mismatches are bugs because these lower tables
+ are shared */
+
+ pud = pud_offset(pgd, address);
+ pud_ref = pud_offset(pgd_ref, address);
+ if (pud_none(*pud_ref))
+ return -1;
+ if (pud_none(*pud) || pud_page(*pud) != pud_page(*pud_ref))
+ BUG();
+ pmd = pmd_offset(pud, address);
+ pmd_ref = pmd_offset(pud_ref, address);
+ if (pmd_none(*pmd_ref))
+ return -1;
+ if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
+ BUG();
+ pte_ref = pte_offset_kernel(pmd_ref, address);
+ if (!pte_present(*pte_ref))
+ return -1;
+ pte = pte_offset_kernel(pmd, address);
+ if (!pte_present(*pte) || pte_page(*pte) != pte_page(*pte_ref))
+ BUG();
+ __flush_tlb_all();
+ return 0;
+}
+
+int page_fault_trace = 0;
+int exception_trace = 1;
+
+/*
+ * This routine handles page faults. It determines the address,
+ * and the problem, and then passes it off to one of the appropriate
+ * routines.
+ *
+ * error_code:
+ * bit 0 == 0 means no page found, 1 means protection fault
+ * bit 1 == 0 means read, 1 means write
+ * bit 2 == 0 means kernel, 1 means user-mode
+ * bit 3 == 1 means fault was an instruction fetch
+ */
+asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code)
+{
+ struct task_struct *tsk;
+ struct mm_struct *mm;
+ struct vm_area_struct * vma;
+ unsigned long address;
+ const struct exception_table_entry *fixup;
+ int write;
+ siginfo_t info;
+
+#ifdef CONFIG_CHECKING
+ {
+ unsigned long gs;
+ struct x8664_pda *pda = cpu_pda + stack_smp_processor_id();
+ rdmsrl(MSR_GS_BASE, gs);
+ if (gs != (unsigned long)pda) {
+ wrmsrl(MSR_GS_BASE, pda);
+ printk("page_fault: wrong gs %lx expected %p\n", gs, pda);
+ }
+ }
+#endif
+
+ /* get the address */
+ __asm__("movq %%cr2,%0":"=r" (address));
+ if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
+ SIGSEGV) == NOTIFY_STOP)
+ return;
+
+ if (likely(regs->eflags & X86_EFLAGS_IF))
+ local_irq_enable();
+
+ if (unlikely(page_fault_trace))
+ printk("pagefault rip:%lx rsp:%lx cs:%lu ss:%lu address %lx error %lx\n",
+ regs->rip,regs->rsp,regs->cs,regs->ss,address,error_code);
+
+ tsk = current;
+ mm = tsk->mm;
+ info.si_code = SEGV_MAPERR;
+
+
+ /*
+ * We fault-in kernel-space virtual memory on-demand. The
+ * 'reference' page table is init_mm.pgd.
+ *
+ * NOTE! We MUST NOT take any locks for this case. We may
+ * be in an interrupt or a critical region, and should
+ * only copy the information from the master page table,
+ * nothing more.
+ *
+ * This verifies that the fault happens in kernel space
+ * (error_code & 4) == 0, and that the fault was not a
+ * protection error (error_code & 1) == 0.
+ */
+ if (unlikely(address >= TASK_SIZE)) {
+ if (!(error_code & 5)) {
+ if (vmalloc_fault(address) < 0)
+ goto bad_area_nosemaphore;
+ return;
+ }
+ /*
+ * Don't take the mm semaphore here. If we fixup a prefetch
+ * fault we could otherwise deadlock.
+ */
+ goto bad_area_nosemaphore;
+ }
+
+ if (unlikely(error_code & (1 << 3)))
+ pgtable_bad(address, regs, error_code);
+
+ /*
+ * If we're in an interrupt or have no user
+ * context, we must not take the fault..
+ */
+ if (unlikely(in_atomic() || !mm))
+ goto bad_area_nosemaphore;
+
+ again:
+ /* When running in the kernel we expect faults to occur only to
+ * addresses in user space. All other faults represent errors in the
+ * kernel and should generate an OOPS. Unfortunatly, in the case of an
+ * erroneous fault occuring in a code path which already holds mmap_sem
+ * we will deadlock attempting to validate the fault against the
+ * address space. Luckily the kernel only validly references user
+ * space from well defined areas of code, which are listed in the
+ * exceptions table.
+ *
+ * As the vast majority of faults will be valid we will only perform
+ * the source reference check when there is a possibilty of a deadlock.
+ * Attempt to lock the address space, if we cannot we then validate the
+ * source. If this is invalid we can skip the address space check,
+ * thus avoiding the deadlock.
+ */
+ if (!down_read_trylock(&mm->mmap_sem)) {
+ if ((error_code & 4) == 0 &&
+ !search_exception_tables(regs->rip))
+ goto bad_area_nosemaphore;
+ down_read(&mm->mmap_sem);
+ }
+
+ vma = find_vma(mm, address);
+ if (!vma)
+ goto bad_area;
+ if (likely(vma->vm_start <= address))
+ goto good_area;
+ if (!(vma->vm_flags & VM_GROWSDOWN))
+ goto bad_area;
+ if (error_code & 4) {
+ // XXX: align red zone size with ABI
+ if (address + 128 < regs->rsp)
+ goto bad_area;
+ }
+ if (expand_stack(vma, address))
+ goto bad_area;
+/*
+ * Ok, we have a good vm_area for this memory access, so
+ * we can handle it..
+ */
+good_area:
+ info.si_code = SEGV_ACCERR;
+ write = 0;
+ switch (error_code & 3) {
+ default: /* 3: write, present */
+ /* fall through */
+ case 2: /* write, not present */
+ if (!(vma->vm_flags & VM_WRITE))
+ goto bad_area;
+ write++;
+ break;
+ case 1: /* read, present */
+ goto bad_area;
+ case 0: /* read, not present */
+ if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
+ goto bad_area;
+ }
+
+ /*
+ * If for any reason at all we couldn't handle the fault,
+ * make sure we exit gracefully rather than endlessly redo
+ * the fault.
+ */
+ switch (handle_mm_fault(mm, vma, address, write)) {
+ case 1:
+ tsk->min_flt++;
+ break;
+ case 2:
+ tsk->maj_flt++;
+ break;
+ case 0:
+ goto do_sigbus;
+ default:
+ goto out_of_memory;
+ }
+
+ up_read(&mm->mmap_sem);
+ return;
+
+/*
+ * Something tried to access memory that isn't in our memory map..
+ * Fix it, but check if it's kernel or user first..
+ */
+bad_area:
+ up_read(&mm->mmap_sem);
+
+bad_area_nosemaphore:
+
+#ifdef CONFIG_IA32_EMULATION
+ /* 32bit vsyscall. map on demand. */
+ if (test_thread_flag(TIF_IA32) &&
+ address >= VSYSCALL32_BASE && address < VSYSCALL32_END) {
+ if (map_syscall32(mm, address) < 0)
+ goto out_of_memory2;
+ return;
+ }
+#endif
+
+ /* User mode accesses just cause a SIGSEGV */
+ if (error_code & 4) {
+ if (is_prefetch(regs, address, error_code))
+ return;
+
+ /* Work around K8 erratum #100 K8 in compat mode
+ occasionally jumps to illegal addresses >4GB. We
+ catch this here in the page fault handler because
+ these addresses are not reachable. Just detect this
+ case and return. Any code segment in LDT is
+ compatibility mode. */
+ if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
+ (address >> 32))
+ return;
+
+ if (exception_trace && unhandled_signal(tsk, SIGSEGV)) {
+ printk(
+ "%s%s[%d]: segfault at %016lx rip %016lx rsp %016lx error %lx\n",
+ tsk->pid > 1 ? KERN_INFO : KERN_EMERG,
+ tsk->comm, tsk->pid, address, regs->rip,
+ regs->rsp, error_code);
+ }
+
+ tsk->thread.cr2 = address;
+ /* Kernel addresses are always protection faults */
+ tsk->thread.error_code = error_code | (address >= TASK_SIZE);
+ tsk->thread.trap_no = 14;
+ info.si_signo = SIGSEGV;
+ info.si_errno = 0;
+ /* info.si_code has been set above */
+ info.si_addr = (void __user *)address;
+ force_sig_info(SIGSEGV, &info, tsk);
+ return;
+ }
+
+no_context:
+
+ /* Are we prepared to handle this kernel fault? */
+ fixup = search_exception_tables(regs->rip);
+ if (fixup) {
+ regs->rip = fixup->fixup;
+ return;
+ }
+
+ /*
+ * Hall of shame of CPU/BIOS bugs.
+ */
+
+ if (is_prefetch(regs, address, error_code))
+ return;
+
+ if (is_errata93(regs, address))
+ return;
+
+/*
+ * Oops. The kernel tried to access some bad page. We'll have to
+ * terminate things with extreme prejudice.
+ */
+
+ oops_begin();
+
+ if (address < PAGE_SIZE)
+ printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
+ else
+ printk(KERN_ALERT "Unable to handle kernel paging request");
+ printk(" at %016lx RIP: \n" KERN_ALERT,address);
+ printk_address(regs->rip);
+ printk("\n");
+ dump_pagetable(address);
+ __die("Oops", regs, error_code);
+ /* Executive summary in case the body of the oops scrolled away */
+ printk(KERN_EMERG "CR2: %016lx\n", address);
+ oops_end();
+ do_exit(SIGKILL);
+
+/*
+ * We ran out of memory, or some other thing happened to us that made
+ * us unable to handle the page fault gracefully.
+ */
+out_of_memory:
+ up_read(&mm->mmap_sem);
+out_of_memory2:
+ if (current->pid == 1) {
+ yield();
+ goto again;
+ }
+ printk("VM: killing process %s\n", tsk->comm);
+ if (error_code & 4)
+ do_exit(SIGKILL);
+ goto no_context;
+
+do_sigbus:
+ up_read(&mm->mmap_sem);
+
+ /* Kernel mode? Handle exceptions or die */
+ if (!(error_code & 4))
+ goto no_context;
+
+ tsk->thread.cr2 = address;
+ tsk->thread.error_code = error_code;
+ tsk->thread.trap_no = 14;
+ info.si_signo = SIGBUS;
+ info.si_errno = 0;
+ info.si_code = BUS_ADRERR;
+ info.si_addr = (void __user *)address;
+ force_sig_info(SIGBUS, &info, tsk);
+ return;
+}
diff --git a/arch/x86_64/mm/init.c b/arch/x86_64/mm/init.c
new file mode 100644
index 000000000000..b0d604551d86
--- /dev/null
+++ b/arch/x86_64/mm/init.c
@@ -0,0 +1,630 @@
+/*
+ * linux/arch/x86_64/mm/init.c
+ *
+ * Copyright (C) 1995 Linus Torvalds
+ * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
+ * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
+ */
+
+#include <linux/config.h>
+#include <linux/signal.h>
+#include <linux/sched.h>
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/string.h>
+#include <linux/types.h>
+#include <linux/ptrace.h>
+#include <linux/mman.h>
+#include <linux/mm.h>
+#include <linux/swap.h>
+#include <linux/smp.h>
+#include <linux/init.h>
+#include <linux/pagemap.h>
+#include <linux/bootmem.h>
+#include <linux/proc_fs.h>
+
+#include <asm/processor.h>
+#include <asm/system.h>
+#include <asm/uaccess.h>
+#include <asm/pgtable.h>
+#include <asm/pgalloc.h>
+#include <asm/dma.h>
+#include <asm/fixmap.h>
+#include <asm/e820.h>
+#include <asm/apic.h>
+#include <asm/tlb.h>
+#include <asm/mmu_context.h>
+#include <asm/proto.h>
+#include <asm/smp.h>
+
+#ifndef Dprintk
+#define Dprintk(x...)
+#endif
+
+#ifdef CONFIG_GART_IOMMU
+extern int swiotlb;
+#endif
+
+extern char _stext[];
+
+DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
+
+/*
+ * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
+ * physical space so we can cache the place of the first one and move
+ * around without checking the pgd every time.
+ */
+
+void show_mem(void)
+{
+ int i, total = 0, reserved = 0;
+ int shared = 0, cached = 0;
+ pg_data_t *pgdat;
+ struct page *page;
+
+ printk("Mem-info:\n");
+ show_free_areas();
+ printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
+
+ for_each_pgdat(pgdat) {
+ for (i = 0; i < pgdat->node_spanned_pages; ++i) {
+ page = pfn_to_page(pgdat->node_start_pfn + i);
+ total++;
+ if (PageReserved(page))
+ reserved++;
+ else if (PageSwapCache(page))
+ cached++;
+ else if (page_count(page))
+ shared += page_count(page) - 1;
+ }
+ }
+ printk("%d pages of RAM\n", total);
+ printk("%d reserved pages\n",reserved);
+ printk("%d pages shared\n",shared);
+ printk("%d pages swap cached\n",cached);
+}
+
+/* References to section boundaries */
+
+extern char _text, _etext, _edata, __bss_start, _end[];
+extern char __init_begin, __init_end;
+
+int after_bootmem;
+
+static void *spp_getpage(void)
+{
+ void *ptr;
+ if (after_bootmem)
+ ptr = (void *) get_zeroed_page(GFP_ATOMIC);
+ else
+ ptr = alloc_bootmem_pages(PAGE_SIZE);
+ if (!ptr || ((unsigned long)ptr & ~PAGE_MASK))
+ panic("set_pte_phys: cannot allocate page data %s\n", after_bootmem?"after bootmem":"");
+
+ Dprintk("spp_getpage %p\n", ptr);
+ return ptr;
+}
+
+static void set_pte_phys(unsigned long vaddr,
+ unsigned long phys, pgprot_t prot)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte, new_pte;
+
+ Dprintk("set_pte_phys %lx to %lx\n", vaddr, phys);
+
+ pgd = pgd_offset_k(vaddr);
+ if (pgd_none(*pgd)) {
+ printk("PGD FIXMAP MISSING, it should be setup in head.S!\n");
+ return;
+ }
+ pud = pud_offset(pgd, vaddr);
+ if (pud_none(*pud)) {
+ pmd = (pmd_t *) spp_getpage();
+ set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
+ if (pmd != pmd_offset(pud, 0)) {
+ printk("PAGETABLE BUG #01! %p <-> %p\n", pmd, pmd_offset(pud,0));
+ return;
+ }
+ }
+ pmd = pmd_offset(pud, vaddr);
+ if (pmd_none(*pmd)) {
+ pte = (pte_t *) spp_getpage();
+ set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
+ if (pte != pte_offset_kernel(pmd, 0)) {
+ printk("PAGETABLE BUG #02!\n");
+ return;
+ }
+ }
+ new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
+
+ pte = pte_offset_kernel(pmd, vaddr);
+ if (!pte_none(*pte) &&
+ pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
+ pte_ERROR(*pte);
+ set_pte(pte, new_pte);
+
+ /*
+ * It's enough to flush this one mapping.
+ * (PGE mappings get flushed as well)
+ */
+ __flush_tlb_one(vaddr);
+}
+
+/* NOTE: this is meant to be run only at boot */
+void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
+{
+ unsigned long address = __fix_to_virt(idx);
+
+ if (idx >= __end_of_fixed_addresses) {
+ printk("Invalid __set_fixmap\n");
+ return;
+ }
+ set_pte_phys(address, phys, prot);
+}
+
+unsigned long __initdata table_start, table_end;
+
+extern pmd_t temp_boot_pmds[];
+
+static struct temp_map {
+ pmd_t *pmd;
+ void *address;
+ int allocated;
+} temp_mappings[] __initdata = {
+ { &temp_boot_pmds[0], (void *)(40UL * 1024 * 1024) },
+ { &temp_boot_pmds[1], (void *)(42UL * 1024 * 1024) },
+ {}
+};
+
+static __init void *alloc_low_page(int *index, unsigned long *phys)
+{
+ struct temp_map *ti;
+ int i;
+ unsigned long pfn = table_end++, paddr;
+ void *adr;
+
+ if (pfn >= end_pfn)
+ panic("alloc_low_page: ran out of memory");
+ for (i = 0; temp_mappings[i].allocated; i++) {
+ if (!temp_mappings[i].pmd)
+ panic("alloc_low_page: ran out of temp mappings");
+ }
+ ti = &temp_mappings[i];
+ paddr = (pfn << PAGE_SHIFT) & PMD_MASK;
+ set_pmd(ti->pmd, __pmd(paddr | _KERNPG_TABLE | _PAGE_PSE));
+ ti->allocated = 1;
+ __flush_tlb();
+ adr = ti->address + ((pfn << PAGE_SHIFT) & ~PMD_MASK);
+ *index = i;
+ *phys = pfn * PAGE_SIZE;
+ return adr;
+}
+
+static __init void unmap_low_page(int i)
+{
+ struct temp_map *ti = &temp_mappings[i];
+ set_pmd(ti->pmd, __pmd(0));
+ ti->allocated = 0;
+}
+
+static void __init phys_pud_init(pud_t *pud, unsigned long address, unsigned long end)
+{
+ long i, j;
+
+ i = pud_index(address);
+ pud = pud + i;
+ for (; i < PTRS_PER_PUD; pud++, i++) {
+ int map;
+ unsigned long paddr, pmd_phys;
+ pmd_t *pmd;
+
+ paddr = address + i*PUD_SIZE;
+ if (paddr >= end) {
+ for (; i < PTRS_PER_PUD; i++, pud++)
+ set_pud(pud, __pud(0));
+ break;
+ }
+
+ if (!e820_mapped(paddr, paddr+PUD_SIZE, 0)) {
+ set_pud(pud, __pud(0));
+ continue;
+ }
+
+ pmd = alloc_low_page(&map, &pmd_phys);
+ set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
+ for (j = 0; j < PTRS_PER_PMD; pmd++, j++, paddr += PMD_SIZE) {
+ unsigned long pe;
+
+ if (paddr >= end) {
+ for (; j < PTRS_PER_PMD; j++, pmd++)
+ set_pmd(pmd, __pmd(0));
+ break;
+ }
+ pe = _PAGE_NX|_PAGE_PSE | _KERNPG_TABLE | _PAGE_GLOBAL | paddr;
+ pe &= __supported_pte_mask;
+ set_pmd(pmd, __pmd(pe));
+ }
+ unmap_low_page(map);
+ }
+ __flush_tlb();
+}
+
+static void __init find_early_table_space(unsigned long end)
+{
+ unsigned long puds, pmds, tables;
+
+ puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
+ pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
+ tables = round_up(puds * sizeof(pud_t), PAGE_SIZE) +
+ round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
+
+ table_start = find_e820_area(0x8000, __pa_symbol(&_text), tables);
+ if (table_start == -1UL)
+ panic("Cannot find space for the kernel page tables");
+
+ table_start >>= PAGE_SHIFT;
+ table_end = table_start;
+}
+
+/* Setup the direct mapping of the physical memory at PAGE_OFFSET.
+ This runs before bootmem is initialized and gets pages directly from the
+ physical memory. To access them they are temporarily mapped. */
+void __init init_memory_mapping(unsigned long start, unsigned long end)
+{
+ unsigned long next;
+
+ Dprintk("init_memory_mapping\n");
+
+ /*
+ * Find space for the kernel direct mapping tables.
+ * Later we should allocate these tables in the local node of the memory
+ * mapped. Unfortunately this is done currently before the nodes are
+ * discovered.
+ */
+ find_early_table_space(end);
+
+ start = (unsigned long)__va(start);
+ end = (unsigned long)__va(end);
+
+ for (; start < end; start = next) {
+ int map;
+ unsigned long pud_phys;
+ pud_t *pud = alloc_low_page(&map, &pud_phys);
+ next = start + PGDIR_SIZE;
+ if (next > end)
+ next = end;
+ phys_pud_init(pud, __pa(start), __pa(next));
+ set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
+ unmap_low_page(map);
+ }
+
+ asm volatile("movq %%cr4,%0" : "=r" (mmu_cr4_features));
+ __flush_tlb_all();
+ early_printk("kernel direct mapping tables upto %lx @ %lx-%lx\n", end,
+ table_start<<PAGE_SHIFT,
+ table_end<<PAGE_SHIFT);
+}
+
+extern struct x8664_pda cpu_pda[NR_CPUS];
+
+/* Assumes all CPUs still execute in init_mm */
+void zap_low_mappings(void)
+{
+ pgd_t *pgd = pgd_offset_k(0UL);
+ pgd_clear(pgd);
+ flush_tlb_all();
+}
+
+#ifndef CONFIG_DISCONTIGMEM
+void __init paging_init(void)
+{
+ {
+ unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0};
+ unsigned int max_dma;
+
+ max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
+
+ if (end_pfn < max_dma)
+ zones_size[ZONE_DMA] = end_pfn;
+ else {
+ zones_size[ZONE_DMA] = max_dma;
+ zones_size[ZONE_NORMAL] = end_pfn - max_dma;
+ }
+ free_area_init(zones_size);
+ }
+ return;
+}
+#endif
+
+/* Unmap a kernel mapping if it exists. This is useful to avoid prefetches
+ from the CPU leading to inconsistent cache lines. address and size
+ must be aligned to 2MB boundaries.
+ Does nothing when the mapping doesn't exist. */
+void __init clear_kernel_mapping(unsigned long address, unsigned long size)
+{
+ unsigned long end = address + size;
+
+ BUG_ON(address & ~LARGE_PAGE_MASK);
+ BUG_ON(size & ~LARGE_PAGE_MASK);
+
+ for (; address < end; address += LARGE_PAGE_SIZE) {
+ pgd_t *pgd = pgd_offset_k(address);
+ pud_t *pud;
+ pmd_t *pmd;
+ if (pgd_none(*pgd))
+ continue;
+ pud = pud_offset(pgd, address);
+ if (pud_none(*pud))
+ continue;
+ pmd = pmd_offset(pud, address);
+ if (!pmd || pmd_none(*pmd))
+ continue;
+ if (0 == (pmd_val(*pmd) & _PAGE_PSE)) {
+ /* Could handle this, but it should not happen currently. */
+ printk(KERN_ERR
+ "clear_kernel_mapping: mapping has been split. will leak memory\n");
+ pmd_ERROR(*pmd);
+ }
+ set_pmd(pmd, __pmd(0));
+ }
+ __flush_tlb_all();
+}
+
+static inline int page_is_ram (unsigned long pagenr)
+{
+ int i;
+
+ for (i = 0; i < e820.nr_map; i++) {
+ unsigned long addr, end;
+
+ if (e820.map[i].type != E820_RAM) /* not usable memory */
+ continue;
+ /*
+ * !!!FIXME!!! Some BIOSen report areas as RAM that
+ * are not. Notably the 640->1Mb area. We need a sanity
+ * check here.
+ */
+ addr = (e820.map[i].addr+PAGE_SIZE-1) >> PAGE_SHIFT;
+ end = (e820.map[i].addr+e820.map[i].size) >> PAGE_SHIFT;
+ if ((pagenr >= addr) && (pagenr < end))
+ return 1;
+ }
+ return 0;
+}
+
+extern int swiotlb_force;
+
+static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel, kcore_modules,
+ kcore_vsyscall;
+
+void __init mem_init(void)
+{
+ int codesize, reservedpages, datasize, initsize;
+ int tmp;
+
+#ifdef CONFIG_SWIOTLB
+ if (swiotlb_force)
+ swiotlb = 1;
+ if (!iommu_aperture &&
+ (end_pfn >= 0xffffffff>>PAGE_SHIFT || force_iommu))
+ swiotlb = 1;
+ if (swiotlb)
+ swiotlb_init();
+#endif
+
+ /* How many end-of-memory variables you have, grandma! */
+ max_low_pfn = end_pfn;
+ max_pfn = end_pfn;
+ num_physpages = end_pfn;
+ high_memory = (void *) __va(end_pfn * PAGE_SIZE);
+
+ /* clear the zero-page */
+ memset(empty_zero_page, 0, PAGE_SIZE);
+
+ reservedpages = 0;
+
+ /* this will put all low memory onto the freelists */
+#ifdef CONFIG_DISCONTIGMEM
+ totalram_pages += numa_free_all_bootmem();
+ tmp = 0;
+ /* should count reserved pages here for all nodes */
+#else
+ max_mapnr = end_pfn;
+ if (!mem_map) BUG();
+
+ totalram_pages += free_all_bootmem();
+
+ for (tmp = 0; tmp < end_pfn; tmp++)
+ /*
+ * Only count reserved RAM pages
+ */
+ if (page_is_ram(tmp) && PageReserved(pfn_to_page(tmp)))
+ reservedpages++;
+#endif
+
+ after_bootmem = 1;
+
+ codesize = (unsigned long) &_etext - (unsigned long) &_text;
+ datasize = (unsigned long) &_edata - (unsigned long) &_etext;
+ initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
+
+ /* Register memory areas for /proc/kcore */
+ kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
+ kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
+ VMALLOC_END-VMALLOC_START);
+ kclist_add(&kcore_kernel, &_stext, _end - _stext);
+ kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
+ kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
+ VSYSCALL_END - VSYSCALL_START);
+
+ printk("Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
+ (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
+ end_pfn << (PAGE_SHIFT-10),
+ codesize >> 10,
+ reservedpages << (PAGE_SHIFT-10),
+ datasize >> 10,
+ initsize >> 10);
+
+ /*
+ * Subtle. SMP is doing its boot stuff late (because it has to
+ * fork idle threads) - but it also needs low mappings for the
+ * protected-mode entry to work. We zap these entries only after
+ * the WP-bit has been tested.
+ */
+#ifndef CONFIG_SMP
+ zap_low_mappings();
+#endif
+}
+
+extern char __initdata_begin[], __initdata_end[];
+
+void free_initmem(void)
+{
+ unsigned long addr;
+
+ addr = (unsigned long)(&__init_begin);
+ for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
+ ClearPageReserved(virt_to_page(addr));
+ set_page_count(virt_to_page(addr), 1);
+ memset((void *)(addr & ~(PAGE_SIZE-1)), 0xcc, PAGE_SIZE);
+ free_page(addr);
+ totalram_pages++;
+ }
+ memset(__initdata_begin, 0xba, __initdata_end - __initdata_begin);
+ printk ("Freeing unused kernel memory: %luk freed\n", (&__init_end - &__init_begin) >> 10);
+}
+
+#ifdef CONFIG_BLK_DEV_INITRD
+void free_initrd_mem(unsigned long start, unsigned long end)
+{
+ if (start < (unsigned long)&_end)
+ return;
+ printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
+ for (; start < end; start += PAGE_SIZE) {
+ ClearPageReserved(virt_to_page(start));
+ set_page_count(virt_to_page(start), 1);
+ free_page(start);
+ totalram_pages++;
+ }
+}
+#endif
+
+void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
+{
+ /* Should check here against the e820 map to avoid double free */
+#ifdef CONFIG_DISCONTIGMEM
+ int nid = phys_to_nid(phys);
+ reserve_bootmem_node(NODE_DATA(nid), phys, len);
+#else
+ reserve_bootmem(phys, len);
+#endif
+}
+
+int kern_addr_valid(unsigned long addr)
+{
+ unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ if (above != 0 && above != -1UL)
+ return 0;
+
+ pgd = pgd_offset_k(addr);
+ if (pgd_none(*pgd))
+ return 0;
+
+ pud = pud_offset(pgd, addr);
+ if (pud_none(*pud))
+ return 0;
+
+ pmd = pmd_offset(pud, addr);
+ if (pmd_none(*pmd))
+ return 0;
+ if (pmd_large(*pmd))
+ return pfn_valid(pmd_pfn(*pmd));
+
+ pte = pte_offset_kernel(pmd, addr);
+ if (pte_none(*pte))
+ return 0;
+ return pfn_valid(pte_pfn(*pte));
+}
+
+#ifdef CONFIG_SYSCTL
+#include <linux/sysctl.h>
+
+extern int exception_trace, page_fault_trace;
+
+static ctl_table debug_table2[] = {
+ { 99, "exception-trace", &exception_trace, sizeof(int), 0644, NULL,
+ proc_dointvec },
+#ifdef CONFIG_CHECKING
+ { 100, "page-fault-trace", &page_fault_trace, sizeof(int), 0644, NULL,
+ proc_dointvec },
+#endif
+ { 0, }
+};
+
+static ctl_table debug_root_table2[] = {
+ { .ctl_name = CTL_DEBUG, .procname = "debug", .mode = 0555,
+ .child = debug_table2 },
+ { 0 },
+};
+
+static __init int x8664_sysctl_init(void)
+{
+ register_sysctl_table(debug_root_table2, 1);
+ return 0;
+}
+__initcall(x8664_sysctl_init);
+#endif
+
+/* Pseudo VMAs to allow ptrace access for the vsyscall pages. x86-64 has two
+ different ones: one for 32bit and one for 64bit. Use the appropiate
+ for the target task. */
+
+static struct vm_area_struct gate_vma = {
+ .vm_start = VSYSCALL_START,
+ .vm_end = VSYSCALL_END,
+ .vm_page_prot = PAGE_READONLY
+};
+
+static struct vm_area_struct gate32_vma = {
+ .vm_start = VSYSCALL32_BASE,
+ .vm_end = VSYSCALL32_END,
+ .vm_page_prot = PAGE_READONLY
+};
+
+struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
+{
+#ifdef CONFIG_IA32_EMULATION
+ if (test_tsk_thread_flag(tsk, TIF_IA32)) {
+ /* lookup code assumes the pages are present. set them up
+ now */
+ if (__map_syscall32(tsk->mm, VSYSCALL32_BASE) < 0)
+ return NULL;
+ return &gate32_vma;
+ }
+#endif
+ return &gate_vma;
+}
+
+int in_gate_area(struct task_struct *task, unsigned long addr)
+{
+ struct vm_area_struct *vma = get_gate_vma(task);
+ return (addr >= vma->vm_start) && (addr < vma->vm_end);
+}
+
+/* Use this when you have no reliable task/vma, typically from interrupt
+ * context. It is less reliable than using the task's vma and may give
+ * false positives.
+ */
+int in_gate_area_no_task(unsigned long addr)
+{
+ return (((addr >= VSYSCALL_START) && (addr < VSYSCALL_END)) ||
+ ((addr >= VSYSCALL32_BASE) && (addr < VSYSCALL32_END)));
+}
diff --git a/arch/x86_64/mm/ioremap.c b/arch/x86_64/mm/ioremap.c
new file mode 100644
index 000000000000..74ec8554b195
--- /dev/null
+++ b/arch/x86_64/mm/ioremap.c
@@ -0,0 +1,283 @@
+/*
+ * arch/x86_64/mm/ioremap.c
+ *
+ * Re-map IO memory to kernel address space so that we can access it.
+ * This is needed for high PCI addresses that aren't mapped in the
+ * 640k-1MB IO memory area on PC's
+ *
+ * (C) Copyright 1995 1996 Linus Torvalds
+ */
+
+#include <linux/vmalloc.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <asm/io.h>
+#include <asm/pgalloc.h>
+#include <asm/fixmap.h>
+#include <asm/cacheflush.h>
+#include <asm/tlbflush.h>
+#include <asm/proto.h>
+
+#define ISA_START_ADDRESS 0xa0000
+#define ISA_END_ADDRESS 0x100000
+
+static inline void remap_area_pte(pte_t * pte, unsigned long address, unsigned long size,
+ unsigned long phys_addr, unsigned long flags)
+{
+ unsigned long end;
+ unsigned long pfn;
+
+ address &= ~PMD_MASK;
+ end = address + size;
+ if (end > PMD_SIZE)
+ end = PMD_SIZE;
+ if (address >= end)
+ BUG();
+ pfn = phys_addr >> PAGE_SHIFT;
+ do {
+ if (!pte_none(*pte)) {
+ printk("remap_area_pte: page already exists\n");
+ BUG();
+ }
+ set_pte(pte, pfn_pte(pfn, __pgprot(_PAGE_PRESENT | _PAGE_RW |
+ _PAGE_GLOBAL | _PAGE_DIRTY | _PAGE_ACCESSED | flags)));
+ address += PAGE_SIZE;
+ pfn++;
+ pte++;
+ } while (address && (address < end));
+}
+
+static inline int remap_area_pmd(pmd_t * pmd, unsigned long address, unsigned long size,
+ unsigned long phys_addr, unsigned long flags)
+{
+ unsigned long end;
+
+ address &= ~PUD_MASK;
+ end = address + size;
+ if (end > PUD_SIZE)
+ end = PUD_SIZE;
+ phys_addr -= address;
+ if (address >= end)
+ BUG();
+ do {
+ pte_t * pte = pte_alloc_kernel(&init_mm, pmd, address);
+ if (!pte)
+ return -ENOMEM;
+ remap_area_pte(pte, address, end - address, address + phys_addr, flags);
+ address = (address + PMD_SIZE) & PMD_MASK;
+ pmd++;
+ } while (address && (address < end));
+ return 0;
+}
+
+static inline int remap_area_pud(pud_t * pud, unsigned long address, unsigned long size,
+ unsigned long phys_addr, unsigned long flags)
+{
+ unsigned long end;
+
+ address &= ~PGDIR_MASK;
+ end = address + size;
+ if (end > PGDIR_SIZE)
+ end = PGDIR_SIZE;
+ phys_addr -= address;
+ if (address >= end)
+ BUG();
+ do {
+ pmd_t * pmd = pmd_alloc(&init_mm, pud, address);
+ if (!pmd)
+ return -ENOMEM;
+ remap_area_pmd(pmd, address, end - address, address + phys_addr, flags);
+ address = (address + PUD_SIZE) & PUD_MASK;
+ pud++;
+ } while (address && (address < end));
+ return 0;
+}
+
+static int remap_area_pages(unsigned long address, unsigned long phys_addr,
+ unsigned long size, unsigned long flags)
+{
+ int error;
+ pgd_t *pgd;
+ unsigned long end = address + size;
+
+ phys_addr -= address;
+ pgd = pgd_offset_k(address);
+ flush_cache_all();
+ if (address >= end)
+ BUG();
+ spin_lock(&init_mm.page_table_lock);
+ do {
+ pud_t *pud;
+ pud = pud_alloc(&init_mm, pgd, address);
+ error = -ENOMEM;
+ if (!pud)
+ break;
+ if (remap_area_pud(pud, address, end - address,
+ phys_addr + address, flags))
+ break;
+ error = 0;
+ address = (address + PGDIR_SIZE) & PGDIR_MASK;
+ pgd++;
+ } while (address && (address < end));
+ spin_unlock(&init_mm.page_table_lock);
+ flush_tlb_all();
+ return error;
+}
+
+/*
+ * Fix up the linear direct mapping of the kernel to avoid cache attribute
+ * conflicts.
+ */
+static int
+ioremap_change_attr(unsigned long phys_addr, unsigned long size,
+ unsigned long flags)
+{
+ int err = 0;
+ if (flags && phys_addr + size - 1 < (end_pfn_map << PAGE_SHIFT)) {
+ unsigned long npages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
+ unsigned long vaddr = (unsigned long) __va(phys_addr);
+
+ /*
+ * Must use a address here and not struct page because the phys addr
+ * can be a in hole between nodes and not have an memmap entry.
+ */
+ err = change_page_attr_addr(vaddr,npages,__pgprot(__PAGE_KERNEL|flags));
+ if (!err)
+ global_flush_tlb();
+ }
+ return err;
+}
+
+/*
+ * Generic mapping function
+ */
+
+/*
+ * Remap an arbitrary physical address space into the kernel virtual
+ * address space. Needed when the kernel wants to access high addresses
+ * directly.
+ *
+ * NOTE! We need to allow non-page-aligned mappings too: we will obviously
+ * have to convert them into an offset in a page-aligned mapping, but the
+ * caller shouldn't need to know that small detail.
+ */
+void __iomem * __ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags)
+{
+ void * addr;
+ struct vm_struct * area;
+ unsigned long offset, last_addr;
+
+ /* Don't allow wraparound or zero size */
+ last_addr = phys_addr + size - 1;
+ if (!size || last_addr < phys_addr)
+ return NULL;
+
+ /*
+ * Don't remap the low PCI/ISA area, it's always mapped..
+ */
+ if (phys_addr >= ISA_START_ADDRESS && last_addr < ISA_END_ADDRESS)
+ return (__force void __iomem *)phys_to_virt(phys_addr);
+
+#ifndef CONFIG_DISCONTIGMEM
+ /*
+ * Don't allow anybody to remap normal RAM that we're using..
+ */
+ if (last_addr < virt_to_phys(high_memory)) {
+ char *t_addr, *t_end;
+ struct page *page;
+
+ t_addr = __va(phys_addr);
+ t_end = t_addr + (size - 1);
+
+ for(page = virt_to_page(t_addr); page <= virt_to_page(t_end); page++)
+ if(!PageReserved(page))
+ return NULL;
+ }
+#endif
+
+ /*
+ * Mappings have to be page-aligned
+ */
+ offset = phys_addr & ~PAGE_MASK;
+ phys_addr &= PAGE_MASK;
+ size = PAGE_ALIGN(last_addr+1) - phys_addr;
+
+ /*
+ * Ok, go for it..
+ */
+ area = get_vm_area(size, VM_IOREMAP | (flags << 20));
+ if (!area)
+ return NULL;
+ area->phys_addr = phys_addr;
+ addr = area->addr;
+ if (remap_area_pages((unsigned long) addr, phys_addr, size, flags)) {
+ remove_vm_area((void *)(PAGE_MASK & (unsigned long) addr));
+ return NULL;
+ }
+ if (ioremap_change_attr(phys_addr, size, flags) < 0) {
+ area->flags &= 0xffffff;
+ vunmap(addr);
+ return NULL;
+ }
+ return (__force void __iomem *) (offset + (char *)addr);
+}
+
+/**
+ * ioremap_nocache - map bus memory into CPU space
+ * @offset: bus address of the memory
+ * @size: size of the resource to map
+ *
+ * ioremap_nocache performs a platform specific sequence of operations to
+ * make bus memory CPU accessible via the readb/readw/readl/writeb/
+ * writew/writel functions and the other mmio helpers. The returned
+ * address is not guaranteed to be usable directly as a virtual
+ * address.
+ *
+ * This version of ioremap ensures that the memory is marked uncachable
+ * on the CPU as well as honouring existing caching rules from things like
+ * the PCI bus. Note that there are other caches and buffers on many
+ * busses. In particular driver authors should read up on PCI writes
+ *
+ * It's useful if some control registers are in such an area and
+ * write combining or read caching is not desirable:
+ *
+ * Must be freed with iounmap.
+ */
+
+void __iomem *ioremap_nocache (unsigned long phys_addr, unsigned long size)
+{
+ return __ioremap(phys_addr, size, _PAGE_PCD);
+}
+
+void iounmap(volatile void __iomem *addr)
+{
+ struct vm_struct *p, **pprev;
+
+ if (addr <= high_memory)
+ return;
+ if (addr >= phys_to_virt(ISA_START_ADDRESS) &&
+ addr < phys_to_virt(ISA_END_ADDRESS))
+ return;
+
+ write_lock(&vmlist_lock);
+ for (p = vmlist, pprev = &vmlist; p != NULL; pprev = &p->next, p = *pprev)
+ if (p->addr == (void *)(PAGE_MASK & (unsigned long)addr))
+ break;
+ if (!p) {
+ printk("__iounmap: bad address %p\n", addr);
+ goto out_unlock;
+ }
+ *pprev = p->next;
+ unmap_vm_area(p);
+ if ((p->flags >> 20) &&
+ p->phys_addr + p->size - 1 < virt_to_phys(high_memory)) {
+ /* p->size includes the guard page, but cpa doesn't like that */
+ change_page_attr(virt_to_page(__va(p->phys_addr)),
+ p->size >> PAGE_SHIFT,
+ PAGE_KERNEL);
+ global_flush_tlb();
+ }
+out_unlock:
+ write_unlock(&vmlist_lock);
+ kfree(p);
+}
diff --git a/arch/x86_64/mm/k8topology.c b/arch/x86_64/mm/k8topology.c
new file mode 100644
index 000000000000..ec35747aacd7
--- /dev/null
+++ b/arch/x86_64/mm/k8topology.c
@@ -0,0 +1,168 @@
+/*
+ * AMD K8 NUMA support.
+ * Discover the memory map and associated nodes.
+ *
+ * This version reads it directly from the K8 northbridge.
+ *
+ * Copyright 2002,2003 Andi Kleen, SuSE Labs.
+ */
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/string.h>
+#include <linux/module.h>
+#include <linux/nodemask.h>
+#include <asm/io.h>
+#include <linux/pci_ids.h>
+#include <asm/types.h>
+#include <asm/mmzone.h>
+#include <asm/proto.h>
+#include <asm/e820.h>
+#include <asm/pci-direct.h>
+#include <asm/numa.h>
+
+static __init int find_northbridge(void)
+{
+ int num;
+
+ for (num = 0; num < 32; num++) {
+ u32 header;
+
+ header = read_pci_config(0, num, 0, 0x00);
+ if (header != (PCI_VENDOR_ID_AMD | (0x1100<<16)))
+ continue;
+
+ header = read_pci_config(0, num, 1, 0x00);
+ if (header != (PCI_VENDOR_ID_AMD | (0x1101<<16)))
+ continue;
+ return num;
+ }
+
+ return -1;
+}
+
+int __init k8_scan_nodes(unsigned long start, unsigned long end)
+{
+ unsigned long prevbase;
+ struct node nodes[8];
+ int nodeid, i, nb;
+ int found = 0;
+ u32 reg;
+ unsigned numnodes;
+ nodemask_t nodes_parsed;
+
+ nodes_clear(nodes_parsed);
+
+ nb = find_northbridge();
+ if (nb < 0)
+ return nb;
+
+ printk(KERN_INFO "Scanning NUMA topology in Northbridge %d\n", nb);
+
+ reg = read_pci_config(0, nb, 0, 0x60);
+ numnodes = ((reg >> 4) & 0xF) + 1;
+
+ printk(KERN_INFO "Number of nodes %d\n", numnodes);
+
+ memset(&nodes,0,sizeof(nodes));
+ prevbase = 0;
+ for (i = 0; i < 8; i++) {
+ unsigned long base,limit;
+
+ base = read_pci_config(0, nb, 1, 0x40 + i*8);
+ limit = read_pci_config(0, nb, 1, 0x44 + i*8);
+
+ nodeid = limit & 7;
+ if ((base & 3) == 0) {
+ if (i < numnodes)
+ printk("Skipping disabled node %d\n", i);
+ continue;
+ }
+ if (nodeid >= numnodes) {
+ printk("Ignoring excess node %d (%lx:%lx)\n", nodeid,
+ base, limit);
+ continue;
+ }
+
+ if (!limit) {
+ printk(KERN_INFO "Skipping node entry %d (base %lx)\n", i,
+ base);
+ continue;
+ }
+ if ((base >> 8) & 3 || (limit >> 8) & 3) {
+ printk(KERN_ERR "Node %d using interleaving mode %lx/%lx\n",
+ nodeid, (base>>8)&3, (limit>>8) & 3);
+ return -1;
+ }
+ if (node_isset(nodeid, nodes_parsed)) {
+ printk(KERN_INFO "Node %d already present. Skipping\n",
+ nodeid);
+ continue;
+ }
+
+ limit >>= 16;
+ limit <<= 24;
+ limit |= (1<<24)-1;
+
+ if (limit > end_pfn << PAGE_SHIFT)
+ limit = end_pfn << PAGE_SHIFT;
+ if (limit <= base)
+ continue;
+
+ base >>= 16;
+ base <<= 24;
+
+ if (base < start)
+ base = start;
+ if (limit > end)
+ limit = end;
+ if (limit == base) {
+ printk(KERN_ERR "Empty node %d\n", nodeid);
+ continue;
+ }
+ if (limit < base) {
+ printk(KERN_ERR "Node %d bogus settings %lx-%lx.\n",
+ nodeid, base, limit);
+ continue;
+ }
+
+ /* Could sort here, but pun for now. Should not happen anyroads. */
+ if (prevbase > base) {
+ printk(KERN_ERR "Node map not sorted %lx,%lx\n",
+ prevbase,base);
+ return -1;
+ }
+
+ printk(KERN_INFO "Node %d MemBase %016lx Limit %016lx\n",
+ nodeid, base, limit);
+
+ found++;
+
+ nodes[nodeid].start = base;
+ nodes[nodeid].end = limit;
+
+ prevbase = base;
+
+ node_set(nodeid, nodes_parsed);
+ }
+
+ if (!found)
+ return -1;
+
+ memnode_shift = compute_hash_shift(nodes, numnodes);
+ if (memnode_shift < 0) {
+ printk(KERN_ERR "No NUMA node hash function found. Contact maintainer\n");
+ return -1;
+ }
+ printk(KERN_INFO "Using node hash shift of %d\n", memnode_shift);
+
+ for (i = 0; i < 8; i++) {
+ if (nodes[i].start != nodes[i].end) {
+ /* assume 1:1 NODE:CPU */
+ cpu_to_node[i] = i;
+ setup_node_bootmem(i, nodes[i].start, nodes[i].end);
+ }
+ }
+
+ numa_init_array();
+ return 0;
+}
diff --git a/arch/x86_64/mm/numa.c b/arch/x86_64/mm/numa.c
new file mode 100644
index 000000000000..fd9f25d7a6c4
--- /dev/null
+++ b/arch/x86_64/mm/numa.c
@@ -0,0 +1,294 @@
+/*
+ * Generic VM initialization for x86-64 NUMA setups.
+ * Copyright 2002,2003 Andi Kleen, SuSE Labs.
+ */
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/string.h>
+#include <linux/init.h>
+#include <linux/bootmem.h>
+#include <linux/mmzone.h>
+#include <linux/ctype.h>
+#include <linux/module.h>
+#include <linux/nodemask.h>
+
+#include <asm/e820.h>
+#include <asm/proto.h>
+#include <asm/dma.h>
+#include <asm/numa.h>
+#include <asm/acpi.h>
+
+#ifndef Dprintk
+#define Dprintk(x...)
+#endif
+
+struct pglist_data *node_data[MAX_NUMNODES];
+bootmem_data_t plat_node_bdata[MAX_NUMNODES];
+
+int memnode_shift;
+u8 memnodemap[NODEMAPSIZE];
+
+unsigned char cpu_to_node[NR_CPUS] = { [0 ... NR_CPUS-1] = NUMA_NO_NODE };
+cpumask_t node_to_cpumask[MAX_NUMNODES];
+
+int numa_off __initdata;
+
+int __init compute_hash_shift(struct node *nodes, int numnodes)
+{
+ int i;
+ int shift = 24;
+ u64 addr;
+
+ /* When in doubt use brute force. */
+ while (shift < 48) {
+ memset(memnodemap,0xff,sizeof(*memnodemap) * NODEMAPSIZE);
+ for (i = 0; i < numnodes; i++) {
+ if (nodes[i].start == nodes[i].end)
+ continue;
+ for (addr = nodes[i].start;
+ addr < nodes[i].end;
+ addr += (1UL << shift)) {
+ if (memnodemap[addr >> shift] != 0xff &&
+ memnodemap[addr >> shift] != i) {
+ printk(KERN_INFO
+ "node %d shift %d addr %Lx conflict %d\n",
+ i, shift, addr, memnodemap[addr>>shift]);
+ goto next;
+ }
+ memnodemap[addr >> shift] = i;
+ }
+ }
+ return shift;
+ next:
+ shift++;
+ }
+ memset(memnodemap,0,sizeof(*memnodemap) * NODEMAPSIZE);
+ return -1;
+}
+
+/* Initialize bootmem allocator for a node */
+void __init setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
+{
+ unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size, bootmap_start;
+ unsigned long nodedata_phys;
+ const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE);
+
+ start = round_up(start, ZONE_ALIGN);
+
+ printk("Bootmem setup node %d %016lx-%016lx\n", nodeid, start, end);
+
+ start_pfn = start >> PAGE_SHIFT;
+ end_pfn = end >> PAGE_SHIFT;
+
+ nodedata_phys = find_e820_area(start, end, pgdat_size);
+ if (nodedata_phys == -1L)
+ panic("Cannot find memory pgdat in node %d\n", nodeid);
+
+ Dprintk("nodedata_phys %lx\n", nodedata_phys);
+
+ node_data[nodeid] = phys_to_virt(nodedata_phys);
+ memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
+ NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid];
+ NODE_DATA(nodeid)->node_start_pfn = start_pfn;
+ NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn;
+
+ /* Find a place for the bootmem map */
+ bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
+ bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE);
+ bootmap_start = find_e820_area(bootmap_start, end, bootmap_pages<<PAGE_SHIFT);
+ if (bootmap_start == -1L)
+ panic("Not enough continuous space for bootmap on node %d", nodeid);
+ Dprintk("bootmap start %lu pages %lu\n", bootmap_start, bootmap_pages);
+
+ bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
+ bootmap_start >> PAGE_SHIFT,
+ start_pfn, end_pfn);
+
+ e820_bootmem_free(NODE_DATA(nodeid), start, end);
+
+ reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size);
+ reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start, bootmap_pages<<PAGE_SHIFT);
+ node_set_online(nodeid);
+}
+
+/* Initialize final allocator for a zone */
+void __init setup_node_zones(int nodeid)
+{
+ unsigned long start_pfn, end_pfn;
+ unsigned long zones[MAX_NR_ZONES];
+ unsigned long dma_end_pfn;
+
+ memset(zones, 0, sizeof(unsigned long) * MAX_NR_ZONES);
+
+ start_pfn = node_start_pfn(nodeid);
+ end_pfn = node_end_pfn(nodeid);
+
+ Dprintk(KERN_INFO "setting up node %d %lx-%lx\n", nodeid, start_pfn, end_pfn);
+
+ /* All nodes > 0 have a zero length zone DMA */
+ dma_end_pfn = __pa(MAX_DMA_ADDRESS) >> PAGE_SHIFT;
+ if (start_pfn < dma_end_pfn) {
+ zones[ZONE_DMA] = dma_end_pfn - start_pfn;
+ zones[ZONE_NORMAL] = end_pfn - dma_end_pfn;
+ } else {
+ zones[ZONE_NORMAL] = end_pfn - start_pfn;
+ }
+
+ free_area_init_node(nodeid, NODE_DATA(nodeid), zones,
+ start_pfn, NULL);
+}
+
+void __init numa_init_array(void)
+{
+ int rr, i;
+ /* There are unfortunately some poorly designed mainboards around
+ that only connect memory to a single CPU. This breaks the 1:1 cpu->node
+ mapping. To avoid this fill in the mapping for all possible
+ CPUs, as the number of CPUs is not known yet.
+ We round robin the existing nodes. */
+ rr = 0;
+ for (i = 0; i < NR_CPUS; i++) {
+ if (cpu_to_node[i] != NUMA_NO_NODE)
+ continue;
+ rr = next_node(rr, node_online_map);
+ if (rr == MAX_NUMNODES)
+ rr = first_node(node_online_map);
+ cpu_to_node[i] = rr;
+ rr++;
+ }
+
+ set_bit(0, &node_to_cpumask[cpu_to_node(0)]);
+}
+
+#ifdef CONFIG_NUMA_EMU
+int numa_fake __initdata = 0;
+
+/* Numa emulation */
+static int numa_emulation(unsigned long start_pfn, unsigned long end_pfn)
+{
+ int i;
+ struct node nodes[MAX_NUMNODES];
+ unsigned long sz = ((end_pfn - start_pfn)<<PAGE_SHIFT) / numa_fake;
+
+ /* Kludge needed for the hash function */
+ if (hweight64(sz) > 1) {
+ unsigned long x = 1;
+ while ((x << 1) < sz)
+ x <<= 1;
+ if (x < sz/2)
+ printk("Numa emulation unbalanced. Complain to maintainer\n");
+ sz = x;
+ }
+
+ memset(&nodes,0,sizeof(nodes));
+ for (i = 0; i < numa_fake; i++) {
+ nodes[i].start = (start_pfn<<PAGE_SHIFT) + i*sz;
+ if (i == numa_fake-1)
+ sz = (end_pfn<<PAGE_SHIFT) - nodes[i].start;
+ nodes[i].end = nodes[i].start + sz;
+ if (i != numa_fake-1)
+ nodes[i].end--;
+ printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n",
+ i,
+ nodes[i].start, nodes[i].end,
+ (nodes[i].end - nodes[i].start) >> 20);
+ node_set_online(i);
+ }
+ memnode_shift = compute_hash_shift(nodes, numa_fake);
+ if (memnode_shift < 0) {
+ memnode_shift = 0;
+ printk(KERN_ERR "No NUMA hash function found. Emulation disabled.\n");
+ return -1;
+ }
+ for_each_online_node(i)
+ setup_node_bootmem(i, nodes[i].start, nodes[i].end);
+ numa_init_array();
+ return 0;
+}
+#endif
+
+void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
+{
+ int i;
+
+#ifdef CONFIG_NUMA_EMU
+ if (numa_fake && !numa_emulation(start_pfn, end_pfn))
+ return;
+#endif
+
+#ifdef CONFIG_ACPI_NUMA
+ if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
+ end_pfn << PAGE_SHIFT))
+ return;
+#endif
+
+#ifdef CONFIG_K8_NUMA
+ if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT))
+ return;
+#endif
+ printk(KERN_INFO "%s\n",
+ numa_off ? "NUMA turned off" : "No NUMA configuration found");
+
+ printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
+ start_pfn << PAGE_SHIFT,
+ end_pfn << PAGE_SHIFT);
+ /* setup dummy node covering all memory */
+ memnode_shift = 63;
+ memnodemap[0] = 0;
+ nodes_clear(node_online_map);
+ node_set_online(0);
+ for (i = 0; i < NR_CPUS; i++)
+ cpu_to_node[i] = 0;
+ node_to_cpumask[0] = cpumask_of_cpu(0);
+ setup_node_bootmem(0, start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
+}
+
+__init void numa_add_cpu(int cpu)
+{
+ /* BP is initialized elsewhere */
+ if (cpu)
+ set_bit(cpu, &node_to_cpumask[cpu_to_node(cpu)]);
+}
+
+unsigned long __init numa_free_all_bootmem(void)
+{
+ int i;
+ unsigned long pages = 0;
+ for_each_online_node(i) {
+ pages += free_all_bootmem_node(NODE_DATA(i));
+ }
+ return pages;
+}
+
+void __init paging_init(void)
+{
+ int i;
+ for_each_online_node(i) {
+ setup_node_zones(i);
+ }
+}
+
+/* [numa=off] */
+__init int numa_setup(char *opt)
+{
+ if (!strncmp(opt,"off",3))
+ numa_off = 1;
+#ifdef CONFIG_NUMA_EMU
+ if(!strncmp(opt, "fake=", 5)) {
+ numa_fake = simple_strtoul(opt+5,NULL,0); ;
+ if (numa_fake >= MAX_NUMNODES)
+ numa_fake = MAX_NUMNODES;
+ }
+#endif
+#ifdef CONFIG_ACPI_NUMA
+ if (!strncmp(opt,"noacpi",6))
+ acpi_numa = -1;
+#endif
+ return 1;
+}
+
+EXPORT_SYMBOL(cpu_to_node);
+EXPORT_SYMBOL(node_to_cpumask);
+EXPORT_SYMBOL(memnode_shift);
+EXPORT_SYMBOL(memnodemap);
+EXPORT_SYMBOL(node_data);
diff --git a/arch/x86_64/mm/pageattr.c b/arch/x86_64/mm/pageattr.c
new file mode 100644
index 000000000000..94862e1ec032
--- /dev/null
+++ b/arch/x86_64/mm/pageattr.c
@@ -0,0 +1,235 @@
+/*
+ * Copyright 2002 Andi Kleen, SuSE Labs.
+ * Thanks to Ben LaHaise for precious feedback.
+ */
+
+#include <linux/config.h>
+#include <linux/mm.h>
+#include <linux/sched.h>
+#include <linux/highmem.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <asm/uaccess.h>
+#include <asm/processor.h>
+#include <asm/tlbflush.h>
+#include <asm/io.h>
+
+static inline pte_t *lookup_address(unsigned long address)
+{
+ pgd_t *pgd = pgd_offset_k(address);
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+ if (pgd_none(*pgd))
+ return NULL;
+ pud = pud_offset(pgd, address);
+ if (!pud_present(*pud))
+ return NULL;
+ pmd = pmd_offset(pud, address);
+ if (!pmd_present(*pmd))
+ return NULL;
+ if (pmd_large(*pmd))
+ return (pte_t *)pmd;
+ pte = pte_offset_kernel(pmd, address);
+ if (pte && !pte_present(*pte))
+ pte = NULL;
+ return pte;
+}
+
+static struct page *split_large_page(unsigned long address, pgprot_t prot,
+ pgprot_t ref_prot)
+{
+ int i;
+ unsigned long addr;
+ struct page *base = alloc_pages(GFP_KERNEL, 0);
+ pte_t *pbase;
+ if (!base)
+ return NULL;
+ address = __pa(address);
+ addr = address & LARGE_PAGE_MASK;
+ pbase = (pte_t *)page_address(base);
+ for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
+ pbase[i] = pfn_pte(addr >> PAGE_SHIFT,
+ addr == address ? prot : ref_prot);
+ }
+ return base;
+}
+
+
+static void flush_kernel_map(void *address)
+{
+ if (0 && address && cpu_has_clflush) {
+ /* is this worth it? */
+ int i;
+ for (i = 0; i < PAGE_SIZE; i += boot_cpu_data.x86_clflush_size)
+ asm volatile("clflush (%0)" :: "r" (address + i));
+ } else
+ asm volatile("wbinvd":::"memory");
+ if (address)
+ __flush_tlb_one(address);
+ else
+ __flush_tlb_all();
+}
+
+
+static inline void flush_map(unsigned long address)
+{
+ on_each_cpu(flush_kernel_map, (void *)address, 1, 1);
+}
+
+struct deferred_page {
+ struct deferred_page *next;
+ struct page *fpage;
+ unsigned long address;
+};
+static struct deferred_page *df_list; /* protected by init_mm.mmap_sem */
+
+static inline void save_page(unsigned long address, struct page *fpage)
+{
+ struct deferred_page *df;
+ df = kmalloc(sizeof(struct deferred_page), GFP_KERNEL);
+ if (!df) {
+ flush_map(address);
+ __free_page(fpage);
+ } else {
+ df->next = df_list;
+ df->fpage = fpage;
+ df->address = address;
+ df_list = df;
+ }
+}
+
+/*
+ * No more special protections in this 2/4MB area - revert to a
+ * large page again.
+ */
+static void revert_page(unsigned long address, pgprot_t ref_prot)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t large_pte;
+
+ pgd = pgd_offset_k(address);
+ BUG_ON(pgd_none(*pgd));
+ pud = pud_offset(pgd,address);
+ BUG_ON(pud_none(*pud));
+ pmd = pmd_offset(pud, address);
+ BUG_ON(pmd_val(*pmd) & _PAGE_PSE);
+ pgprot_val(ref_prot) |= _PAGE_PSE;
+ large_pte = mk_pte_phys(__pa(address) & LARGE_PAGE_MASK, ref_prot);
+ set_pte((pte_t *)pmd, large_pte);
+}
+
+static int
+__change_page_attr(unsigned long address, unsigned long pfn, pgprot_t prot,
+ pgprot_t ref_prot)
+{
+ pte_t *kpte;
+ struct page *kpte_page;
+ unsigned kpte_flags;
+ kpte = lookup_address(address);
+ if (!kpte) return 0;
+ kpte_page = virt_to_page(((unsigned long)kpte) & PAGE_MASK);
+ kpte_flags = pte_val(*kpte);
+ if (pgprot_val(prot) != pgprot_val(ref_prot)) {
+ if ((kpte_flags & _PAGE_PSE) == 0) {
+ set_pte(kpte, pfn_pte(pfn, prot));
+ } else {
+ /*
+ * split_large_page will take the reference for this change_page_attr
+ * on the split page.
+ */
+ struct page *split = split_large_page(address, prot, ref_prot);
+ if (!split)
+ return -ENOMEM;
+ set_pte(kpte,mk_pte(split, ref_prot));
+ kpte_page = split;
+ }
+ get_page(kpte_page);
+ } else if ((kpte_flags & _PAGE_PSE) == 0) {
+ set_pte(kpte, pfn_pte(pfn, ref_prot));
+ __put_page(kpte_page);
+ } else
+ BUG();
+
+ /* on x86-64 the direct mapping set at boot is not using 4k pages */
+ BUG_ON(PageReserved(kpte_page));
+
+ switch (page_count(kpte_page)) {
+ case 1:
+ save_page(address, kpte_page);
+ revert_page(address, ref_prot);
+ break;
+ case 0:
+ BUG(); /* memleak and failed 2M page regeneration */
+ }
+ return 0;
+}
+
+/*
+ * Change the page attributes of an page in the linear mapping.
+ *
+ * This should be used when a page is mapped with a different caching policy
+ * than write-back somewhere - some CPUs do not like it when mappings with
+ * different caching policies exist. This changes the page attributes of the
+ * in kernel linear mapping too.
+ *
+ * The caller needs to ensure that there are no conflicting mappings elsewhere.
+ * This function only deals with the kernel linear map.
+ *
+ * Caller must call global_flush_tlb() after this.
+ */
+int change_page_attr_addr(unsigned long address, int numpages, pgprot_t prot)
+{
+ int err = 0;
+ int i;
+
+ down_write(&init_mm.mmap_sem);
+ for (i = 0; i < numpages; i++, address += PAGE_SIZE) {
+ unsigned long pfn = __pa(address) >> PAGE_SHIFT;
+
+ err = __change_page_attr(address, pfn, prot, PAGE_KERNEL);
+ if (err)
+ break;
+ /* Handle kernel mapping too which aliases part of the
+ * lowmem */
+ if (__pa(address) < KERNEL_TEXT_SIZE) {
+ unsigned long addr2;
+ pgprot_t prot2 = prot;
+ addr2 = __START_KERNEL_map + __pa(address);
+ pgprot_val(prot2) &= ~_PAGE_NX;
+ err = __change_page_attr(addr2, pfn, prot2, PAGE_KERNEL_EXEC);
+ }
+ }
+ up_write(&init_mm.mmap_sem);
+ return err;
+}
+
+/* Don't call this for MMIO areas that may not have a mem_map entry */
+int change_page_attr(struct page *page, int numpages, pgprot_t prot)
+{
+ unsigned long addr = (unsigned long)page_address(page);
+ return change_page_attr_addr(addr, numpages, prot);
+}
+
+void global_flush_tlb(void)
+{
+ struct deferred_page *df, *next_df;
+
+ down_read(&init_mm.mmap_sem);
+ df = xchg(&df_list, NULL);
+ up_read(&init_mm.mmap_sem);
+ if (!df)
+ return;
+ flush_map((df && !df->next) ? df->address : 0);
+ for (; df; df = next_df) {
+ next_df = df->next;
+ if (df->fpage)
+ __free_page(df->fpage);
+ kfree(df);
+ }
+}
+
+EXPORT_SYMBOL(change_page_attr);
+EXPORT_SYMBOL(global_flush_tlb);
diff --git a/arch/x86_64/mm/srat.c b/arch/x86_64/mm/srat.c
new file mode 100644
index 000000000000..5d01b31472e1
--- /dev/null
+++ b/arch/x86_64/mm/srat.c
@@ -0,0 +1,217 @@
+/*
+ * ACPI 3.0 based NUMA setup
+ * Copyright 2004 Andi Kleen, SuSE Labs.
+ *
+ * Reads the ACPI SRAT table to figure out what memory belongs to which CPUs.
+ *
+ * Called from acpi_numa_init while reading the SRAT and SLIT tables.
+ * Assumes all memory regions belonging to a single proximity domain
+ * are in one chunk. Holes between them will be included in the node.
+ */
+
+#include <linux/kernel.h>
+#include <linux/acpi.h>
+#include <linux/mmzone.h>
+#include <linux/bitmap.h>
+#include <linux/module.h>
+#include <linux/topology.h>
+#include <asm/proto.h>
+#include <asm/numa.h>
+
+static struct acpi_table_slit *acpi_slit;
+
+static nodemask_t nodes_parsed __initdata;
+static nodemask_t nodes_found __initdata;
+static struct node nodes[MAX_NUMNODES] __initdata;
+static __u8 pxm2node[256] = { [0 ... 255] = 0xff };
+
+static __init int setup_node(int pxm)
+{
+ unsigned node = pxm2node[pxm];
+ if (node == 0xff) {
+ if (nodes_weight(nodes_found) >= MAX_NUMNODES)
+ return -1;
+ node = first_unset_node(nodes_found);
+ node_set(node, nodes_found);
+ pxm2node[pxm] = node;
+ }
+ return pxm2node[pxm];
+}
+
+static __init int conflicting_nodes(unsigned long start, unsigned long end)
+{
+ int i;
+ for_each_online_node(i) {
+ struct node *nd = &nodes[i];
+ if (nd->start == nd->end)
+ continue;
+ if (nd->end > start && nd->start < end)
+ return 1;
+ if (nd->end == end && nd->start == start)
+ return 1;
+ }
+ return -1;
+}
+
+static __init void cutoff_node(int i, unsigned long start, unsigned long end)
+{
+ struct node *nd = &nodes[i];
+ if (nd->start < start) {
+ nd->start = start;
+ if (nd->end < nd->start)
+ nd->start = nd->end;
+ }
+ if (nd->end > end) {
+ if (!(end & 0xfff))
+ end--;
+ nd->end = end;
+ if (nd->start > nd->end)
+ nd->start = nd->end;
+ }
+}
+
+static __init void bad_srat(void)
+{
+ printk(KERN_ERR "SRAT: SRAT not used.\n");
+ acpi_numa = -1;
+}
+
+static __init inline int srat_disabled(void)
+{
+ return numa_off || acpi_numa < 0;
+}
+
+/* Callback for SLIT parsing */
+void __init acpi_numa_slit_init(struct acpi_table_slit *slit)
+{
+ acpi_slit = slit;
+}
+
+/* Callback for Proximity Domain -> LAPIC mapping */
+void __init
+acpi_numa_processor_affinity_init(struct acpi_table_processor_affinity *pa)
+{
+ int pxm, node;
+ if (srat_disabled() || pa->flags.enabled == 0)
+ return;
+ pxm = pa->proximity_domain;
+ node = setup_node(pxm);
+ if (node < 0) {
+ printk(KERN_ERR "SRAT: Too many proximity domains %x\n", pxm);
+ bad_srat();
+ return;
+ }
+ if (pa->apic_id >= NR_CPUS) {
+ printk(KERN_ERR "SRAT: lapic %u too large.\n",
+ pa->apic_id);
+ bad_srat();
+ return;
+ }
+ cpu_to_node[pa->apic_id] = node;
+ acpi_numa = 1;
+ printk(KERN_INFO "SRAT: PXM %u -> APIC %u -> Node %u\n",
+ pxm, pa->apic_id, node);
+}
+
+/* Callback for parsing of the Proximity Domain <-> Memory Area mappings */
+void __init
+acpi_numa_memory_affinity_init(struct acpi_table_memory_affinity *ma)
+{
+ struct node *nd;
+ unsigned long start, end;
+ int node, pxm;
+ int i;
+
+ if (srat_disabled() || ma->flags.enabled == 0)
+ return;
+ /* hotplug bit is ignored for now */
+ pxm = ma->proximity_domain;
+ node = setup_node(pxm);
+ if (node < 0) {
+ printk(KERN_ERR "SRAT: Too many proximity domains.\n");
+ bad_srat();
+ return;
+ }
+ start = ma->base_addr_lo | ((u64)ma->base_addr_hi << 32);
+ end = start + (ma->length_lo | ((u64)ma->length_hi << 32));
+ i = conflicting_nodes(start, end);
+ if (i >= 0) {
+ printk(KERN_ERR
+ "SRAT: pxm %d overlap %lx-%lx with node %d(%Lx-%Lx)\n",
+ pxm, start, end, i, nodes[i].start, nodes[i].end);
+ bad_srat();
+ return;
+ }
+ nd = &nodes[node];
+ if (!node_test_and_set(node, nodes_parsed)) {
+ nd->start = start;
+ nd->end = end;
+ } else {
+ if (start < nd->start)
+ nd->start = start;
+ if (nd->end < end)
+ nd->end = end;
+ }
+ if (!(nd->end & 0xfff))
+ nd->end--;
+ printk(KERN_INFO "SRAT: Node %u PXM %u %Lx-%Lx\n", node, pxm,
+ nd->start, nd->end);
+}
+
+void __init acpi_numa_arch_fixup(void) {}
+
+/* Use the information discovered above to actually set up the nodes. */
+int __init acpi_scan_nodes(unsigned long start, unsigned long end)
+{
+ int i;
+ if (acpi_numa <= 0)
+ return -1;
+ memnode_shift = compute_hash_shift(nodes, nodes_weight(nodes_parsed));
+ if (memnode_shift < 0) {
+ printk(KERN_ERR
+ "SRAT: No NUMA node hash function found. Contact maintainer\n");
+ bad_srat();
+ return -1;
+ }
+ for (i = 0; i < MAX_NUMNODES; i++) {
+ if (!node_isset(i, nodes_parsed))
+ continue;
+ cutoff_node(i, start, end);
+ if (nodes[i].start == nodes[i].end) {
+ node_clear(i, nodes_parsed);
+ continue;
+ }
+ setup_node_bootmem(i, nodes[i].start, nodes[i].end);
+ }
+ for (i = 0; i < NR_CPUS; i++) {
+ if (cpu_to_node[i] == NUMA_NO_NODE)
+ continue;
+ if (!node_isset(cpu_to_node[i], nodes_parsed))
+ cpu_to_node[i] = NUMA_NO_NODE;
+ }
+ numa_init_array();
+ return 0;
+}
+
+int node_to_pxm(int n)
+{
+ int i;
+ if (pxm2node[n] == n)
+ return n;
+ for (i = 0; i < 256; i++)
+ if (pxm2node[i] == n)
+ return i;
+ return 0;
+}
+
+int __node_distance(int a, int b)
+{
+ int index;
+
+ if (!acpi_slit)
+ return a == b ? 10 : 20;
+ index = acpi_slit->localities * node_to_pxm(a);
+ return acpi_slit->entry[index + node_to_pxm(b)];
+}
+
+EXPORT_SYMBOL(__node_distance);
OpenPOWER on IntegriCloud