diff options
Diffstat (limited to 'arch/sparc64/kernel/pci_sabre.c')
-rw-r--r-- | arch/sparc64/kernel/pci_sabre.c | 1702 |
1 files changed, 1702 insertions, 0 deletions
diff --git a/arch/sparc64/kernel/pci_sabre.c b/arch/sparc64/kernel/pci_sabre.c new file mode 100644 index 000000000000..5525d1ec4af8 --- /dev/null +++ b/arch/sparc64/kernel/pci_sabre.c @@ -0,0 +1,1702 @@ +/* $Id: pci_sabre.c,v 1.42 2002/01/23 11:27:32 davem Exp $ + * pci_sabre.c: Sabre specific PCI controller support. + * + * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu) + * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be) + * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com) + */ + +#include <linux/kernel.h> +#include <linux/types.h> +#include <linux/pci.h> +#include <linux/init.h> +#include <linux/slab.h> +#include <linux/interrupt.h> + +#include <asm/apb.h> +#include <asm/pbm.h> +#include <asm/iommu.h> +#include <asm/irq.h> +#include <asm/smp.h> +#include <asm/oplib.h> + +#include "pci_impl.h" +#include "iommu_common.h" + +/* All SABRE registers are 64-bits. The following accessor + * routines are how they are accessed. The REG parameter + * is a physical address. + */ +#define sabre_read(__reg) \ +({ u64 __ret; \ + __asm__ __volatile__("ldxa [%1] %2, %0" \ + : "=r" (__ret) \ + : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \ + : "memory"); \ + __ret; \ +}) +#define sabre_write(__reg, __val) \ + __asm__ __volatile__("stxa %0, [%1] %2" \ + : /* no outputs */ \ + : "r" (__val), "r" (__reg), \ + "i" (ASI_PHYS_BYPASS_EC_E) \ + : "memory") + +/* SABRE PCI controller register offsets and definitions. */ +#define SABRE_UE_AFSR 0x0030UL +#define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */ +#define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */ +#define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */ +#define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */ +#define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */ +#define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */ +#define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */ +#define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */ +#define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */ +#define SABRE_UECE_AFAR 0x0038UL +#define SABRE_CE_AFSR 0x0040UL +#define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */ +#define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */ +#define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */ +#define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */ +#define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */ +#define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */ +#define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */ +#define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */ +#define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */ +#define SABRE_IOMMU_CONTROL 0x0200UL +#define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */ +#define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */ +#define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */ +#define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */ +#define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */ +#define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000 +#define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000 +#define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000 +#define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000 +#define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000 +#define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000 +#define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000 +#define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000 +#define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */ +#define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */ +#define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */ +#define SABRE_IOMMU_TSBBASE 0x0208UL +#define SABRE_IOMMU_FLUSH 0x0210UL +#define SABRE_IMAP_A_SLOT0 0x0c00UL +#define SABRE_IMAP_B_SLOT0 0x0c20UL +#define SABRE_IMAP_SCSI 0x1000UL +#define SABRE_IMAP_ETH 0x1008UL +#define SABRE_IMAP_BPP 0x1010UL +#define SABRE_IMAP_AU_REC 0x1018UL +#define SABRE_IMAP_AU_PLAY 0x1020UL +#define SABRE_IMAP_PFAIL 0x1028UL +#define SABRE_IMAP_KMS 0x1030UL +#define SABRE_IMAP_FLPY 0x1038UL +#define SABRE_IMAP_SHW 0x1040UL +#define SABRE_IMAP_KBD 0x1048UL +#define SABRE_IMAP_MS 0x1050UL +#define SABRE_IMAP_SER 0x1058UL +#define SABRE_IMAP_UE 0x1070UL +#define SABRE_IMAP_CE 0x1078UL +#define SABRE_IMAP_PCIERR 0x1080UL +#define SABRE_IMAP_GFX 0x1098UL +#define SABRE_IMAP_EUPA 0x10a0UL +#define SABRE_ICLR_A_SLOT0 0x1400UL +#define SABRE_ICLR_B_SLOT0 0x1480UL +#define SABRE_ICLR_SCSI 0x1800UL +#define SABRE_ICLR_ETH 0x1808UL +#define SABRE_ICLR_BPP 0x1810UL +#define SABRE_ICLR_AU_REC 0x1818UL +#define SABRE_ICLR_AU_PLAY 0x1820UL +#define SABRE_ICLR_PFAIL 0x1828UL +#define SABRE_ICLR_KMS 0x1830UL +#define SABRE_ICLR_FLPY 0x1838UL +#define SABRE_ICLR_SHW 0x1840UL +#define SABRE_ICLR_KBD 0x1848UL +#define SABRE_ICLR_MS 0x1850UL +#define SABRE_ICLR_SER 0x1858UL +#define SABRE_ICLR_UE 0x1870UL +#define SABRE_ICLR_CE 0x1878UL +#define SABRE_ICLR_PCIERR 0x1880UL +#define SABRE_WRSYNC 0x1c20UL +#define SABRE_PCICTRL 0x2000UL +#define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */ +#define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */ +#define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */ +#define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */ +#define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */ +#define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */ +#define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */ +#define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */ +#define SABRE_PIOAFSR 0x2010UL +#define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */ +#define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */ +#define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */ +#define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */ +#define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */ +#define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */ +#define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */ +#define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */ +#define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */ +#define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */ +#define SABRE_PIOAFAR 0x2018UL +#define SABRE_PCIDIAG 0x2020UL +#define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */ +#define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */ +#define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */ +#define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */ +#define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */ +#define SABRE_PCITASR 0x2028UL +#define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */ +#define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */ +#define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */ +#define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */ +#define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */ +#define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */ +#define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */ +#define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */ +#define SABRE_PIOBUF_DIAG 0x5000UL +#define SABRE_DMABUF_DIAGLO 0x5100UL +#define SABRE_DMABUF_DIAGHI 0x51c0UL +#define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */ +#define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */ +#define SABRE_IOMMU_VADIAG 0xa400UL +#define SABRE_IOMMU_TCDIAG 0xa408UL +#define SABRE_IOMMU_TAG 0xa580UL +#define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */ +#define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */ +#define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */ +#define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */ +#define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */ +#define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */ +#define SABRE_IOMMU_DATA 0xa600UL +#define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */ +#define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */ +#define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */ +#define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */ +#define SABRE_PCI_IRQSTATE 0xa800UL +#define SABRE_OBIO_IRQSTATE 0xa808UL +#define SABRE_FFBCFG 0xf000UL +#define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */ +#define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */ +#define SABRE_MCCTRL0 0xf010UL +#define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */ +#define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */ +#define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */ +#define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */ +#define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */ +#define SABRE_MCCTRL1 0xf018UL +#define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */ +#define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */ +#define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */ +#define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */ +#define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */ +#define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */ +#define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */ +#define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */ +#define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */ +#define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */ +#define SABRE_RESETCTRL 0xf020UL + +#define SABRE_CONFIGSPACE 0x001000000UL +#define SABRE_IOSPACE 0x002000000UL +#define SABRE_IOSPACE_SIZE 0x000ffffffUL +#define SABRE_MEMSPACE 0x100000000UL +#define SABRE_MEMSPACE_SIZE 0x07fffffffUL + +/* UltraSparc-IIi Programmer's Manual, page 325, PCI + * configuration space address format: + * + * 32 24 23 16 15 11 10 8 7 2 1 0 + * --------------------------------------------------------- + * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 | + * --------------------------------------------------------- + */ +#define SABRE_CONFIG_BASE(PBM) \ + ((PBM)->config_space | (1UL << 24)) +#define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \ + (((unsigned long)(BUS) << 16) | \ + ((unsigned long)(DEVFN) << 8) | \ + ((unsigned long)(REG))) + +static int hummingbird_p; +static struct pci_bus *sabre_root_bus; + +static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm, + unsigned char bus, + unsigned int devfn, + int where) +{ + if (!pbm) + return NULL; + return (void *) + (SABRE_CONFIG_BASE(pbm) | + SABRE_CONFIG_ENCODE(bus, devfn, where)); +} + +static int sabre_out_of_range(unsigned char devfn) +{ + if (hummingbird_p) + return 0; + + return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) || + ((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) || + (PCI_SLOT(devfn) > 1)); +} + +static int __sabre_out_of_range(struct pci_pbm_info *pbm, + unsigned char bus, + unsigned char devfn) +{ + if (hummingbird_p) + return 0; + + return ((pbm->parent == 0) || + ((pbm == &pbm->parent->pbm_B) && + (bus == pbm->pci_first_busno) && + PCI_SLOT(devfn) > 8) || + ((pbm == &pbm->parent->pbm_A) && + (bus == pbm->pci_first_busno) && + PCI_SLOT(devfn) > 8)); +} + +static int __sabre_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn, + int where, int size, u32 *value) +{ + struct pci_pbm_info *pbm = bus_dev->sysdata; + unsigned char bus = bus_dev->number; + u32 *addr; + u16 tmp16; + u8 tmp8; + + switch (size) { + case 1: + *value = 0xff; + break; + case 2: + *value = 0xffff; + break; + case 4: + *value = 0xffffffff; + break; + } + + addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where); + if (!addr) + return PCIBIOS_SUCCESSFUL; + + if (__sabre_out_of_range(pbm, bus, devfn)) + return PCIBIOS_SUCCESSFUL; + + switch (size) { + case 1: + pci_config_read8((u8 *) addr, &tmp8); + *value = tmp8; + break; + + case 2: + if (where & 0x01) { + printk("pci_read_config_word: misaligned reg [%x]\n", + where); + return PCIBIOS_SUCCESSFUL; + } + pci_config_read16((u16 *) addr, &tmp16); + *value = tmp16; + break; + + case 4: + if (where & 0x03) { + printk("pci_read_config_dword: misaligned reg [%x]\n", + where); + return PCIBIOS_SUCCESSFUL; + } + pci_config_read32(addr, value); + break; + } + + return PCIBIOS_SUCCESSFUL; +} + +static int sabre_read_pci_cfg(struct pci_bus *bus, unsigned int devfn, + int where, int size, u32 *value) +{ + if (!bus->number && sabre_out_of_range(devfn)) { + switch (size) { + case 1: + *value = 0xff; + break; + case 2: + *value = 0xffff; + break; + case 4: + *value = 0xffffffff; + break; + } + return PCIBIOS_SUCCESSFUL; + } + + if (bus->number || PCI_SLOT(devfn)) + return __sabre_read_pci_cfg(bus, devfn, where, size, value); + + /* When accessing PCI config space of the PCI controller itself (bus + * 0, device slot 0, function 0) there are restrictions. Each + * register must be accessed as it's natural size. Thus, for example + * the Vendor ID must be accessed as a 16-bit quantity. + */ + + switch (size) { + case 1: + if (where < 8) { + u32 tmp32; + u16 tmp16; + + __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32); + tmp16 = (u16) tmp32; + if (where & 1) + *value = tmp16 >> 8; + else + *value = tmp16 & 0xff; + } else + return __sabre_read_pci_cfg(bus, devfn, where, 1, value); + break; + + case 2: + if (where < 8) + return __sabre_read_pci_cfg(bus, devfn, where, 2, value); + else { + u32 tmp32; + u8 tmp8; + + __sabre_read_pci_cfg(bus, devfn, where, 1, &tmp32); + tmp8 = (u8) tmp32; + *value = tmp8; + __sabre_read_pci_cfg(bus, devfn, where + 1, 1, &tmp32); + tmp8 = (u8) tmp32; + *value |= tmp8 << 8; + } + break; + + case 4: { + u32 tmp32; + u16 tmp16; + + sabre_read_pci_cfg(bus, devfn, where, 2, &tmp32); + tmp16 = (u16) tmp32; + *value = tmp16; + sabre_read_pci_cfg(bus, devfn, where + 2, 2, &tmp32); + tmp16 = (u16) tmp32; + *value |= tmp16 << 16; + break; + } + } + return PCIBIOS_SUCCESSFUL; +} + +static int __sabre_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn, + int where, int size, u32 value) +{ + struct pci_pbm_info *pbm = bus_dev->sysdata; + unsigned char bus = bus_dev->number; + u32 *addr; + + addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where); + if (!addr) + return PCIBIOS_SUCCESSFUL; + + if (__sabre_out_of_range(pbm, bus, devfn)) + return PCIBIOS_SUCCESSFUL; + + switch (size) { + case 1: + pci_config_write8((u8 *) addr, value); + break; + + case 2: + if (where & 0x01) { + printk("pci_write_config_word: misaligned reg [%x]\n", + where); + return PCIBIOS_SUCCESSFUL; + } + pci_config_write16((u16 *) addr, value); + break; + + case 4: + if (where & 0x03) { + printk("pci_write_config_dword: misaligned reg [%x]\n", + where); + return PCIBIOS_SUCCESSFUL; + } + pci_config_write32(addr, value); + break; + } + + return PCIBIOS_SUCCESSFUL; +} + +static int sabre_write_pci_cfg(struct pci_bus *bus, unsigned int devfn, + int where, int size, u32 value) +{ + if (bus->number) + return __sabre_write_pci_cfg(bus, devfn, where, size, value); + + if (sabre_out_of_range(devfn)) + return PCIBIOS_SUCCESSFUL; + + switch (size) { + case 1: + if (where < 8) { + u32 tmp32; + u16 tmp16; + + __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32); + tmp16 = (u16) tmp32; + if (where & 1) { + value &= 0x00ff; + value |= tmp16 << 8; + } else { + value &= 0xff00; + value |= tmp16; + } + tmp32 = (u32) tmp16; + return __sabre_write_pci_cfg(bus, devfn, where & ~1, 2, tmp32); + } else + return __sabre_write_pci_cfg(bus, devfn, where, 1, value); + break; + case 2: + if (where < 8) + return __sabre_write_pci_cfg(bus, devfn, where, 2, value); + else { + __sabre_write_pci_cfg(bus, devfn, where, 1, value & 0xff); + __sabre_write_pci_cfg(bus, devfn, where + 1, 1, value >> 8); + } + break; + case 4: + sabre_write_pci_cfg(bus, devfn, where, 2, value & 0xffff); + sabre_write_pci_cfg(bus, devfn, where + 2, 2, value >> 16); + break; + } + return PCIBIOS_SUCCESSFUL; +} + +static struct pci_ops sabre_ops = { + .read = sabre_read_pci_cfg, + .write = sabre_write_pci_cfg, +}; + +static unsigned long sabre_pcislot_imap_offset(unsigned long ino) +{ + unsigned int bus = (ino & 0x10) >> 4; + unsigned int slot = (ino & 0x0c) >> 2; + + if (bus == 0) + return SABRE_IMAP_A_SLOT0 + (slot * 8); + else + return SABRE_IMAP_B_SLOT0 + (slot * 8); +} + +static unsigned long __onboard_imap_off[] = { +/*0x20*/ SABRE_IMAP_SCSI, +/*0x21*/ SABRE_IMAP_ETH, +/*0x22*/ SABRE_IMAP_BPP, +/*0x23*/ SABRE_IMAP_AU_REC, +/*0x24*/ SABRE_IMAP_AU_PLAY, +/*0x25*/ SABRE_IMAP_PFAIL, +/*0x26*/ SABRE_IMAP_KMS, +/*0x27*/ SABRE_IMAP_FLPY, +/*0x28*/ SABRE_IMAP_SHW, +/*0x29*/ SABRE_IMAP_KBD, +/*0x2a*/ SABRE_IMAP_MS, +/*0x2b*/ SABRE_IMAP_SER, +/*0x2c*/ 0 /* reserved */, +/*0x2d*/ 0 /* reserved */, +/*0x2e*/ SABRE_IMAP_UE, +/*0x2f*/ SABRE_IMAP_CE, +/*0x30*/ SABRE_IMAP_PCIERR, +}; +#define SABRE_ONBOARD_IRQ_BASE 0x20 +#define SABRE_ONBOARD_IRQ_LAST 0x30 +#define sabre_onboard_imap_offset(__ino) \ + __onboard_imap_off[(__ino) - SABRE_ONBOARD_IRQ_BASE] + +#define sabre_iclr_offset(ino) \ + ((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \ + (SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3))) + +/* PCI SABRE INO number to Sparc PIL level. */ +static unsigned char sabre_pil_table[] = { +/*0x00*/0, 0, 0, 0, /* PCI A slot 0 Int A, B, C, D */ +/*0x04*/0, 0, 0, 0, /* PCI A slot 1 Int A, B, C, D */ +/*0x08*/0, 0, 0, 0, /* PCI A slot 2 Int A, B, C, D */ +/*0x0c*/0, 0, 0, 0, /* PCI A slot 3 Int A, B, C, D */ +/*0x10*/0, 0, 0, 0, /* PCI B slot 0 Int A, B, C, D */ +/*0x14*/0, 0, 0, 0, /* PCI B slot 1 Int A, B, C, D */ +/*0x18*/0, 0, 0, 0, /* PCI B slot 2 Int A, B, C, D */ +/*0x1c*/0, 0, 0, 0, /* PCI B slot 3 Int A, B, C, D */ +/*0x20*/4, /* SCSI */ +/*0x21*/5, /* Ethernet */ +/*0x22*/8, /* Parallel Port */ +/*0x23*/13, /* Audio Record */ +/*0x24*/14, /* Audio Playback */ +/*0x25*/15, /* PowerFail */ +/*0x26*/4, /* second SCSI */ +/*0x27*/11, /* Floppy */ +/*0x28*/4, /* Spare Hardware */ +/*0x29*/9, /* Keyboard */ +/*0x2a*/4, /* Mouse */ +/*0x2b*/12, /* Serial */ +/*0x2c*/10, /* Timer 0 */ +/*0x2d*/11, /* Timer 1 */ +/*0x2e*/15, /* Uncorrectable ECC */ +/*0x2f*/15, /* Correctable ECC */ +/*0x30*/15, /* PCI Bus A Error */ +/*0x31*/15, /* PCI Bus B Error */ +/*0x32*/15, /* Power Management */ +}; + +static int __init sabre_ino_to_pil(struct pci_dev *pdev, unsigned int ino) +{ + int ret; + + if (pdev && + pdev->vendor == PCI_VENDOR_ID_SUN && + pdev->device == PCI_DEVICE_ID_SUN_RIO_USB) + return 9; + + ret = sabre_pil_table[ino]; + if (ret == 0 && pdev == NULL) { + ret = 4; + } else if (ret == 0) { + switch ((pdev->class >> 16) & 0xff) { + case PCI_BASE_CLASS_STORAGE: + ret = 4; + break; + + case PCI_BASE_CLASS_NETWORK: + ret = 6; + break; + + case PCI_BASE_CLASS_DISPLAY: + ret = 9; + break; + + case PCI_BASE_CLASS_MULTIMEDIA: + case PCI_BASE_CLASS_MEMORY: + case PCI_BASE_CLASS_BRIDGE: + case PCI_BASE_CLASS_SERIAL: + ret = 10; + break; + + default: + ret = 4; + break; + }; + } + return ret; +} + +static unsigned int __init sabre_irq_build(struct pci_pbm_info *pbm, + struct pci_dev *pdev, + unsigned int ino) +{ + struct ino_bucket *bucket; + unsigned long imap, iclr; + unsigned long imap_off, iclr_off; + int pil, inofixup = 0; + + ino &= PCI_IRQ_INO; + if (ino < SABRE_ONBOARD_IRQ_BASE) { + /* PCI slot */ + imap_off = sabre_pcislot_imap_offset(ino); + } else { + /* onboard device */ + if (ino > SABRE_ONBOARD_IRQ_LAST) { + prom_printf("sabre_irq_build: Wacky INO [%x]\n", ino); + prom_halt(); + } + imap_off = sabre_onboard_imap_offset(ino); + } + + /* Now build the IRQ bucket. */ + pil = sabre_ino_to_pil(pdev, ino); + + if (PIL_RESERVED(pil)) + BUG(); + + imap = pbm->controller_regs + imap_off; + imap += 4; + + iclr_off = sabre_iclr_offset(ino); + iclr = pbm->controller_regs + iclr_off; + iclr += 4; + + if ((ino & 0x20) == 0) + inofixup = ino & 0x03; + + bucket = __bucket(build_irq(pil, inofixup, iclr, imap)); + bucket->flags |= IBF_PCI; + + if (pdev) { + struct pcidev_cookie *pcp = pdev->sysdata; + + /* When a device lives behind a bridge deeper in the + * PCI bus topology than APB, a special sequence must + * run to make sure all pending DMA transfers at the + * time of IRQ delivery are visible in the coherency + * domain by the cpu. This sequence is to perform + * a read on the far side of the non-APB bridge, then + * perform a read of Sabre's DMA write-sync register. + * + * Currently, the PCI_CONFIG register for the device + * is used for this read from the far side of the bridge. + */ + if (pdev->bus->number != pcp->pbm->pci_first_busno) { + bucket->flags |= IBF_DMA_SYNC; + bucket->synctab_ent = dma_sync_reg_table_entry++; + dma_sync_reg_table[bucket->synctab_ent] = + (unsigned long) sabre_pci_config_mkaddr( + pcp->pbm, + pdev->bus->number, pdev->devfn, PCI_COMMAND); + } + } + return __irq(bucket); +} + +/* SABRE error handling support. */ +static void sabre_check_iommu_error(struct pci_controller_info *p, + unsigned long afsr, + unsigned long afar) +{ + struct pci_iommu *iommu = p->pbm_A.iommu; + unsigned long iommu_tag[16]; + unsigned long iommu_data[16]; + unsigned long flags; + u64 control; + int i; + + spin_lock_irqsave(&iommu->lock, flags); + control = sabre_read(iommu->iommu_control); + if (control & SABRE_IOMMUCTRL_ERR) { + char *type_string; + + /* Clear the error encountered bit. + * NOTE: On Sabre this is write 1 to clear, + * which is different from Psycho. + */ + sabre_write(iommu->iommu_control, control); + switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) { + case 1: + type_string = "Invalid Error"; + break; + case 3: + type_string = "ECC Error"; + break; + default: + type_string = "Unknown"; + break; + }; + printk("SABRE%d: IOMMU Error, type[%s]\n", + p->index, type_string); + + /* Enter diagnostic mode and probe for error'd + * entries in the IOTLB. + */ + control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR); + sabre_write(iommu->iommu_control, + (control | SABRE_IOMMUCTRL_DENAB)); + for (i = 0; i < 16; i++) { + unsigned long base = p->pbm_A.controller_regs; + + iommu_tag[i] = + sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL)); + iommu_data[i] = + sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL)); + sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0); + sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0); + } + sabre_write(iommu->iommu_control, control); + + for (i = 0; i < 16; i++) { + unsigned long tag, data; + + tag = iommu_tag[i]; + if (!(tag & SABRE_IOMMUTAG_ERR)) + continue; + + data = iommu_data[i]; + switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) { + case 1: + type_string = "Invalid Error"; + break; + case 3: + type_string = "ECC Error"; + break; + default: + type_string = "Unknown"; + break; + }; + printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n", + p->index, i, tag, type_string, + ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0), + ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8), + ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT)); + printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n", + p->index, i, data, + ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0), + ((data & SABRE_IOMMUDATA_USED) ? 1 : 0), + ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0), + ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT)); + } + } + spin_unlock_irqrestore(&iommu->lock, flags); +} + +static irqreturn_t sabre_ue_intr(int irq, void *dev_id, struct pt_regs *regs) +{ + struct pci_controller_info *p = dev_id; + unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_UE_AFSR; + unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR; + unsigned long afsr, afar, error_bits; + int reported; + + /* Latch uncorrectable error status. */ + afar = sabre_read(afar_reg); + afsr = sabre_read(afsr_reg); + + /* Clear the primary/secondary error status bits. */ + error_bits = afsr & + (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR | + SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR | + SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE); + if (!error_bits) + return IRQ_NONE; + sabre_write(afsr_reg, error_bits); + + /* Log the error. */ + printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n", + p->index, + ((error_bits & SABRE_UEAFSR_PDRD) ? + "DMA Read" : + ((error_bits & SABRE_UEAFSR_PDWR) ? + "DMA Write" : "???")), + ((error_bits & SABRE_UEAFSR_PDTE) ? + ":Translation Error" : "")); + printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n", + p->index, + (afsr & SABRE_UEAFSR_BMSK) >> 32UL, + (afsr & SABRE_UEAFSR_OFF) >> 29UL, + ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0)); + printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar); + printk("SABRE%d: UE Secondary errors [", p->index); + reported = 0; + if (afsr & SABRE_UEAFSR_SDRD) { + reported++; + printk("(DMA Read)"); + } + if (afsr & SABRE_UEAFSR_SDWR) { + reported++; + printk("(DMA Write)"); + } + if (afsr & SABRE_UEAFSR_SDTE) { + reported++; + printk("(Translation Error)"); + } + if (!reported) + printk("(none)"); + printk("]\n"); + + /* Interrogate IOMMU for error status. */ + sabre_check_iommu_error(p, afsr, afar); + + return IRQ_HANDLED; +} + +static irqreturn_t sabre_ce_intr(int irq, void *dev_id, struct pt_regs *regs) +{ + struct pci_controller_info *p = dev_id; + unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_CE_AFSR; + unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR; + unsigned long afsr, afar, error_bits; + int reported; + + /* Latch error status. */ + afar = sabre_read(afar_reg); + afsr = sabre_read(afsr_reg); + + /* Clear primary/secondary error status bits. */ + error_bits = afsr & + (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR | + SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR); + if (!error_bits) + return IRQ_NONE; + sabre_write(afsr_reg, error_bits); + + /* Log the error. */ + printk("SABRE%d: Correctable Error, primary error type[%s]\n", + p->index, + ((error_bits & SABRE_CEAFSR_PDRD) ? + "DMA Read" : + ((error_bits & SABRE_CEAFSR_PDWR) ? + "DMA Write" : "???"))); + + /* XXX Use syndrome and afar to print out module string just like + * XXX UDB CE trap handler does... -DaveM + */ + printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] " + "was_block(%d)\n", + p->index, + (afsr & SABRE_CEAFSR_ESYND) >> 48UL, + (afsr & SABRE_CEAFSR_BMSK) >> 32UL, + (afsr & SABRE_CEAFSR_OFF) >> 29UL, + ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0)); + printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar); + printk("SABRE%d: CE Secondary errors [", p->index); + reported = 0; + if (afsr & SABRE_CEAFSR_SDRD) { + reported++; + printk("(DMA Read)"); + } + if (afsr & SABRE_CEAFSR_SDWR) { + reported++; + printk("(DMA Write)"); + } + if (!reported) + printk("(none)"); + printk("]\n"); + + return IRQ_HANDLED; +} + +static irqreturn_t sabre_pcierr_intr_other(struct pci_controller_info *p) +{ + unsigned long csr_reg, csr, csr_error_bits; + irqreturn_t ret = IRQ_NONE; + u16 stat; + + csr_reg = p->pbm_A.controller_regs + SABRE_PCICTRL; + csr = sabre_read(csr_reg); + csr_error_bits = + csr & SABRE_PCICTRL_SERR; + if (csr_error_bits) { + /* Clear the errors. */ + sabre_write(csr_reg, csr); + + /* Log 'em. */ + if (csr_error_bits & SABRE_PCICTRL_SERR) + printk("SABRE%d: PCI SERR signal asserted.\n", + p->index); + ret = IRQ_HANDLED; + } + pci_read_config_word(sabre_root_bus->self, + PCI_STATUS, &stat); + if (stat & (PCI_STATUS_PARITY | + PCI_STATUS_SIG_TARGET_ABORT | + PCI_STATUS_REC_TARGET_ABORT | + PCI_STATUS_REC_MASTER_ABORT | + PCI_STATUS_SIG_SYSTEM_ERROR)) { + printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n", + p->index, stat); + pci_write_config_word(sabre_root_bus->self, + PCI_STATUS, 0xffff); + ret = IRQ_HANDLED; + } + return ret; +} + +static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id, struct pt_regs *regs) +{ + struct pci_controller_info *p = dev_id; + unsigned long afsr_reg, afar_reg; + unsigned long afsr, afar, error_bits; + int reported; + + afsr_reg = p->pbm_A.controller_regs + SABRE_PIOAFSR; + afar_reg = p->pbm_A.controller_regs + SABRE_PIOAFAR; + + /* Latch error status. */ + afar = sabre_read(afar_reg); + afsr = sabre_read(afsr_reg); + + /* Clear primary/secondary error status bits. */ + error_bits = afsr & + (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA | + SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR | + SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA | + SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR); + if (!error_bits) + return sabre_pcierr_intr_other(p); + sabre_write(afsr_reg, error_bits); + + /* Log the error. */ + printk("SABRE%d: PCI Error, primary error type[%s]\n", + p->index, + (((error_bits & SABRE_PIOAFSR_PMA) ? + "Master Abort" : + ((error_bits & SABRE_PIOAFSR_PTA) ? + "Target Abort" : + ((error_bits & SABRE_PIOAFSR_PRTRY) ? + "Excessive Retries" : + ((error_bits & SABRE_PIOAFSR_PPERR) ? + "Parity Error" : "???")))))); + printk("SABRE%d: bytemask[%04lx] was_block(%d)\n", + p->index, + (afsr & SABRE_PIOAFSR_BMSK) >> 32UL, + (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0); + printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar); + printk("SABRE%d: PCI Secondary errors [", p->index); + reported = 0; + if (afsr & SABRE_PIOAFSR_SMA) { + reported++; + printk("(Master Abort)"); + } + if (afsr & SABRE_PIOAFSR_STA) { + reported++; + printk("(Target Abort)"); + } + if (afsr & SABRE_PIOAFSR_SRTRY) { + reported++; + printk("(Excessive Retries)"); + } + if (afsr & SABRE_PIOAFSR_SPERR) { + reported++; + printk("(Parity Error)"); + } + if (!reported) + printk("(none)"); + printk("]\n"); + + /* For the error types shown, scan both PCI buses for devices + * which have logged that error type. + */ + + /* If we see a Target Abort, this could be the result of an + * IOMMU translation error of some sort. It is extremely + * useful to log this information as usually it indicates + * a bug in the IOMMU support code or a PCI device driver. + */ + if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) { + sabre_check_iommu_error(p, afsr, afar); + pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus); + pci_scan_for_target_abort(p, &p->pbm_B, p->pbm_B.pci_bus); + } + if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA)) { + pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus); + pci_scan_for_master_abort(p, &p->pbm_B, p->pbm_B.pci_bus); + } + /* For excessive retries, SABRE/PBM will abort the device + * and there is no way to specifically check for excessive + * retries in the config space status registers. So what + * we hope is that we'll catch it via the master/target + * abort events. + */ + + if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR)) { + pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus); + pci_scan_for_parity_error(p, &p->pbm_B, p->pbm_B.pci_bus); + } + + return IRQ_HANDLED; +} + +/* XXX What about PowerFail/PowerManagement??? -DaveM */ +#define SABRE_UE_INO 0x2e +#define SABRE_CE_INO 0x2f +#define SABRE_PCIERR_INO 0x30 +static void __init sabre_register_error_handlers(struct pci_controller_info *p) +{ + struct pci_pbm_info *pbm = &p->pbm_A; /* arbitrary */ + unsigned long base = pbm->controller_regs; + unsigned long irq, portid = pbm->portid; + u64 tmp; + + /* We clear the error bits in the appropriate AFSR before + * registering the handler so that we don't get spurious + * interrupts. + */ + sabre_write(base + SABRE_UE_AFSR, + (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR | + SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR | + SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE)); + irq = sabre_irq_build(pbm, NULL, (portid << 6) | SABRE_UE_INO); + if (request_irq(irq, sabre_ue_intr, + SA_SHIRQ, "SABRE UE", p) < 0) { + prom_printf("SABRE%d: Cannot register UE interrupt.\n", + p->index); + prom_halt(); + } + + sabre_write(base + SABRE_CE_AFSR, + (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR | + SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR)); + irq = sabre_irq_build(pbm, NULL, (portid << 6) | SABRE_CE_INO); + if (request_irq(irq, sabre_ce_intr, + SA_SHIRQ, "SABRE CE", p) < 0) { + prom_printf("SABRE%d: Cannot register CE interrupt.\n", + p->index); + prom_halt(); + } + + irq = sabre_irq_build(pbm, NULL, (portid << 6) | SABRE_PCIERR_INO); + if (request_irq(irq, sabre_pcierr_intr, + SA_SHIRQ, "SABRE PCIERR", p) < 0) { + prom_printf("SABRE%d: Cannot register PciERR interrupt.\n", + p->index); + prom_halt(); + } + + tmp = sabre_read(base + SABRE_PCICTRL); + tmp |= SABRE_PCICTRL_ERREN; + sabre_write(base + SABRE_PCICTRL, tmp); +} + +static void __init sabre_resource_adjust(struct pci_dev *pdev, + struct resource *res, + struct resource *root) +{ + struct pci_pbm_info *pbm = pdev->bus->sysdata; + unsigned long base; + + if (res->flags & IORESOURCE_IO) + base = pbm->controller_regs + SABRE_IOSPACE; + else + base = pbm->controller_regs + SABRE_MEMSPACE; + + res->start += base; + res->end += base; +} + +static void __init sabre_base_address_update(struct pci_dev *pdev, int resource) +{ + struct pcidev_cookie *pcp = pdev->sysdata; + struct pci_pbm_info *pbm = pcp->pbm; + struct resource *res; + unsigned long base; + u32 reg; + int where, size, is_64bit; + + res = &pdev->resource[resource]; + if (resource < 6) { + where = PCI_BASE_ADDRESS_0 + (resource * 4); + } else if (resource == PCI_ROM_RESOURCE) { + where = pdev->rom_base_reg; + } else { + /* Somebody might have asked allocation of a non-standard resource */ + return; + } + + is_64bit = 0; + if (res->flags & IORESOURCE_IO) + base = pbm->controller_regs + SABRE_IOSPACE; + else { + base = pbm->controller_regs + SABRE_MEMSPACE; + if ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK) + == PCI_BASE_ADDRESS_MEM_TYPE_64) + is_64bit = 1; + } + + size = res->end - res->start; + pci_read_config_dword(pdev, where, ®); + reg = ((reg & size) | + (((u32)(res->start - base)) & ~size)); + if (resource == PCI_ROM_RESOURCE) { + reg |= PCI_ROM_ADDRESS_ENABLE; + res->flags |= IORESOURCE_ROM_ENABLE; + } + pci_write_config_dword(pdev, where, reg); + + /* This knows that the upper 32-bits of the address + * must be zero. Our PCI common layer enforces this. + */ + if (is_64bit) + pci_write_config_dword(pdev, where + 4, 0); +} + +static void __init apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus) +{ + struct pci_dev *pdev; + + list_for_each_entry(pdev, &sabre_bus->devices, bus_list) { + + if (pdev->vendor == PCI_VENDOR_ID_SUN && + pdev->device == PCI_DEVICE_ID_SUN_SIMBA) { + u32 word32; + u16 word16; + + sabre_read_pci_cfg(pdev->bus, pdev->devfn, + PCI_COMMAND, 2, &word32); + word16 = (u16) word32; + word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY | + PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | + PCI_COMMAND_IO; + word32 = (u32) word16; + sabre_write_pci_cfg(pdev->bus, pdev->devfn, + PCI_COMMAND, 2, word32); + + /* Status register bits are "write 1 to clear". */ + sabre_write_pci_cfg(pdev->bus, pdev->devfn, + PCI_STATUS, 2, 0xffff); + sabre_write_pci_cfg(pdev->bus, pdev->devfn, + PCI_SEC_STATUS, 2, 0xffff); + + /* Use a primary/seconday latency timer value + * of 64. + */ + sabre_write_pci_cfg(pdev->bus, pdev->devfn, + PCI_LATENCY_TIMER, 1, 64); + sabre_write_pci_cfg(pdev->bus, pdev->devfn, + PCI_SEC_LATENCY_TIMER, 1, 64); + + /* Enable reporting/forwarding of master aborts, + * parity, and SERR. + */ + sabre_write_pci_cfg(pdev->bus, pdev->devfn, + PCI_BRIDGE_CONTROL, 1, + (PCI_BRIDGE_CTL_PARITY | + PCI_BRIDGE_CTL_SERR | + PCI_BRIDGE_CTL_MASTER_ABORT)); + } + } +} + +static struct pcidev_cookie *alloc_bridge_cookie(struct pci_pbm_info *pbm) +{ + struct pcidev_cookie *cookie = kmalloc(sizeof(*cookie), GFP_KERNEL); + + if (!cookie) { + prom_printf("SABRE: Critical allocation failure.\n"); + prom_halt(); + } + + /* All we care about is the PBM. */ + memset(cookie, 0, sizeof(*cookie)); + cookie->pbm = pbm; + + return cookie; +} + +static void __init sabre_scan_bus(struct pci_controller_info *p) +{ + static int once; + struct pci_bus *sabre_bus, *pbus; + struct pci_pbm_info *pbm; + struct pcidev_cookie *cookie; + int sabres_scanned; + + /* The APB bridge speaks to the Sabre host PCI bridge + * at 66Mhz, but the front side of APB runs at 33Mhz + * for both segments. + */ + p->pbm_A.is_66mhz_capable = 0; + p->pbm_B.is_66mhz_capable = 0; + + /* This driver has not been verified to handle + * multiple SABREs yet, so trap this. + * + * Also note that the SABRE host bridge is hardwired + * to live at bus 0. + */ + if (once != 0) { + prom_printf("SABRE: Multiple controllers unsupported.\n"); + prom_halt(); + } + once++; + + cookie = alloc_bridge_cookie(&p->pbm_A); + + sabre_bus = pci_scan_bus(p->pci_first_busno, + p->pci_ops, + &p->pbm_A); + pci_fixup_host_bridge_self(sabre_bus); + sabre_bus->self->sysdata = cookie; + + sabre_root_bus = sabre_bus; + + apb_init(p, sabre_bus); + + sabres_scanned = 0; + + list_for_each_entry(pbus, &sabre_bus->children, node) { + + if (pbus->number == p->pbm_A.pci_first_busno) { + pbm = &p->pbm_A; + } else if (pbus->number == p->pbm_B.pci_first_busno) { + pbm = &p->pbm_B; + } else + continue; + + cookie = alloc_bridge_cookie(pbm); + pbus->self->sysdata = cookie; + + sabres_scanned++; + + pbus->sysdata = pbm; + pbm->pci_bus = pbus; + pci_fill_in_pbm_cookies(pbus, pbm, pbm->prom_node); + pci_record_assignments(pbm, pbus); + pci_assign_unassigned(pbm, pbus); + pci_fixup_irq(pbm, pbus); + pci_determine_66mhz_disposition(pbm, pbus); + pci_setup_busmastering(pbm, pbus); + } + + if (!sabres_scanned) { + /* Hummingbird, no APBs. */ + pbm = &p->pbm_A; + sabre_bus->sysdata = pbm; + pbm->pci_bus = sabre_bus; + pci_fill_in_pbm_cookies(sabre_bus, pbm, pbm->prom_node); + pci_record_assignments(pbm, sabre_bus); + pci_assign_unassigned(pbm, sabre_bus); + pci_fixup_irq(pbm, sabre_bus); + pci_determine_66mhz_disposition(pbm, sabre_bus); + pci_setup_busmastering(pbm, sabre_bus); + } + + sabre_register_error_handlers(p); +} + +static void __init sabre_iommu_init(struct pci_controller_info *p, + int tsbsize, unsigned long dvma_offset, + u32 dma_mask) +{ + struct pci_iommu *iommu = p->pbm_A.iommu; + unsigned long tsbbase, i, order; + u64 control; + + /* Setup initial software IOMMU state. */ + spin_lock_init(&iommu->lock); + iommu->iommu_cur_ctx = 0; + + /* Register addresses. */ + iommu->iommu_control = p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL; + iommu->iommu_tsbbase = p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE; + iommu->iommu_flush = p->pbm_A.controller_regs + SABRE_IOMMU_FLUSH; + iommu->write_complete_reg = p->pbm_A.controller_regs + SABRE_WRSYNC; + /* Sabre's IOMMU lacks ctx flushing. */ + iommu->iommu_ctxflush = 0; + + /* Invalidate TLB Entries. */ + control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL); + control |= SABRE_IOMMUCTRL_DENAB; + sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control); + + for(i = 0; i < 16; i++) { + sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0); + sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0); + } + + /* Leave diag mode enabled for full-flushing done + * in pci_iommu.c + */ + + iommu->dummy_page = __get_free_pages(GFP_KERNEL, 0); + if (!iommu->dummy_page) { + prom_printf("PSYCHO_IOMMU: Error, gfp(dummy_page) failed.\n"); + prom_halt(); + } + memset((void *)iommu->dummy_page, 0, PAGE_SIZE); + iommu->dummy_page_pa = (unsigned long) __pa(iommu->dummy_page); + + tsbbase = __get_free_pages(GFP_KERNEL, order = get_order(tsbsize * 1024 * 8)); + if (!tsbbase) { + prom_printf("SABRE_IOMMU: Error, gfp(tsb) failed.\n"); + prom_halt(); + } + iommu->page_table = (iopte_t *)tsbbase; + iommu->page_table_map_base = dvma_offset; + iommu->dma_addr_mask = dma_mask; + pci_iommu_table_init(iommu, PAGE_SIZE << order); + + sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE, __pa(tsbbase)); + + control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL); + control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ); + control |= SABRE_IOMMUCTRL_ENAB; + switch(tsbsize) { + case 64: + control |= SABRE_IOMMU_TSBSZ_64K; + iommu->page_table_sz_bits = 16; + break; + case 128: + control |= SABRE_IOMMU_TSBSZ_128K; + iommu->page_table_sz_bits = 17; + break; + default: + prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize); + prom_halt(); + break; + } + sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control); + + /* We start with no consistent mappings. */ + iommu->lowest_consistent_map = + 1 << (iommu->page_table_sz_bits - PBM_LOGCLUSTERS); + + for (i = 0; i < PBM_NCLUSTERS; i++) { + iommu->alloc_info[i].flush = 0; + iommu->alloc_info[i].next = 0; + } +} + +static void __init pbm_register_toplevel_resources(struct pci_controller_info *p, + struct pci_pbm_info *pbm) +{ + char *name = pbm->name; + unsigned long ibase = p->pbm_A.controller_regs + SABRE_IOSPACE; + unsigned long mbase = p->pbm_A.controller_regs + SABRE_MEMSPACE; + unsigned int devfn; + unsigned long first, last, i; + u8 *addr, map; + + sprintf(name, "SABRE%d PBM%c", + p->index, + (pbm == &p->pbm_A ? 'A' : 'B')); + pbm->io_space.name = pbm->mem_space.name = name; + + devfn = PCI_DEVFN(1, (pbm == &p->pbm_A) ? 0 : 1); + addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_IO_ADDRESS_MAP); + map = 0; + pci_config_read8(addr, &map); + + first = 8; + last = 0; + for (i = 0; i < 8; i++) { + if ((map & (1 << i)) != 0) { + if (first > i) + first = i; + if (last < i) + last = i; + } + } + pbm->io_space.start = ibase + (first << 21UL); + pbm->io_space.end = ibase + (last << 21UL) + ((1 << 21UL) - 1); + pbm->io_space.flags = IORESOURCE_IO; + + addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_MEM_ADDRESS_MAP); + map = 0; + pci_config_read8(addr, &map); + + first = 8; + last = 0; + for (i = 0; i < 8; i++) { + if ((map & (1 << i)) != 0) { + if (first > i) + first = i; + if (last < i) + last = i; + } + } + pbm->mem_space.start = mbase + (first << 29UL); + pbm->mem_space.end = mbase + (last << 29UL) + ((1 << 29UL) - 1); + pbm->mem_space.flags = IORESOURCE_MEM; + + if (request_resource(&ioport_resource, &pbm->io_space) < 0) { + prom_printf("Cannot register PBM-%c's IO space.\n", + (pbm == &p->pbm_A ? 'A' : 'B')); + prom_halt(); + } + if (request_resource(&iomem_resource, &pbm->mem_space) < 0) { + prom_printf("Cannot register PBM-%c's MEM space.\n", + (pbm == &p->pbm_A ? 'A' : 'B')); + prom_halt(); + } + + /* Register legacy regions if this PBM covers that area. */ + if (pbm->io_space.start == ibase && + pbm->mem_space.start == mbase) + pci_register_legacy_regions(&pbm->io_space, + &pbm->mem_space); +} + +static void __init sabre_pbm_init(struct pci_controller_info *p, int sabre_node, u32 dma_begin) +{ + struct pci_pbm_info *pbm; + char namebuf[128]; + u32 busrange[2]; + int node, simbas_found; + + simbas_found = 0; + node = prom_getchild(sabre_node); + while ((node = prom_searchsiblings(node, "pci")) != 0) { + int err; + + err = prom_getproperty(node, "model", namebuf, sizeof(namebuf)); + if ((err <= 0) || strncmp(namebuf, "SUNW,simba", err)) + goto next_pci; + + err = prom_getproperty(node, "bus-range", + (char *)&busrange[0], sizeof(busrange)); + if (err == 0 || err == -1) { + prom_printf("APB: Error, cannot get PCI bus-range.\n"); + prom_halt(); + } + + simbas_found++; + if (busrange[0] == 1) + pbm = &p->pbm_B; + else + pbm = &p->pbm_A; + pbm->chip_type = PBM_CHIP_TYPE_SABRE; + pbm->parent = p; + pbm->prom_node = node; + pbm->pci_first_slot = 1; + pbm->pci_first_busno = busrange[0]; + pbm->pci_last_busno = busrange[1]; + + prom_getstring(node, "name", pbm->prom_name, sizeof(pbm->prom_name)); + err = prom_getproperty(node, "ranges", + (char *)pbm->pbm_ranges, + sizeof(pbm->pbm_ranges)); + if (err != -1) + pbm->num_pbm_ranges = + (err / sizeof(struct linux_prom_pci_ranges)); + else + pbm->num_pbm_ranges = 0; + + err = prom_getproperty(node, "interrupt-map", + (char *)pbm->pbm_intmap, + sizeof(pbm->pbm_intmap)); + if (err != -1) { + pbm->num_pbm_intmap = (err / sizeof(struct linux_prom_pci_intmap)); + err = prom_getproperty(node, "interrupt-map-mask", + (char *)&pbm->pbm_intmask, + sizeof(pbm->pbm_intmask)); + if (err == -1) { + prom_printf("APB: Fatal error, no interrupt-map-mask.\n"); + prom_halt(); + } + } else { + pbm->num_pbm_intmap = 0; + memset(&pbm->pbm_intmask, 0, sizeof(pbm->pbm_intmask)); + } + + pbm_register_toplevel_resources(p, pbm); + + next_pci: + node = prom_getsibling(node); + if (!node) + break; + } + if (simbas_found == 0) { + int err; + + /* No APBs underneath, probably this is a hummingbird + * system. + */ + pbm = &p->pbm_A; + pbm->parent = p; + pbm->prom_node = sabre_node; + pbm->pci_first_busno = p->pci_first_busno; + pbm->pci_last_busno = p->pci_last_busno; + + prom_getstring(sabre_node, "name", pbm->prom_name, sizeof(pbm->prom_name)); + err = prom_getproperty(sabre_node, "ranges", + (char *) pbm->pbm_ranges, + sizeof(pbm->pbm_ranges)); + if (err != -1) + pbm->num_pbm_ranges = + (err / sizeof(struct linux_prom_pci_ranges)); + else + pbm->num_pbm_ranges = 0; + + err = prom_getproperty(sabre_node, "interrupt-map", + (char *) pbm->pbm_intmap, + sizeof(pbm->pbm_intmap)); + + if (err != -1) { + pbm->num_pbm_intmap = (err / sizeof(struct linux_prom_pci_intmap)); + err = prom_getproperty(sabre_node, "interrupt-map-mask", + (char *)&pbm->pbm_intmask, + sizeof(pbm->pbm_intmask)); + if (err == -1) { + prom_printf("Hummingbird: Fatal error, no interrupt-map-mask.\n"); + prom_halt(); + } + } else { + pbm->num_pbm_intmap = 0; + memset(&pbm->pbm_intmask, 0, sizeof(pbm->pbm_intmask)); + } + + + sprintf(pbm->name, "SABRE%d PBM%c", p->index, + (pbm == &p->pbm_A ? 'A' : 'B')); + pbm->io_space.name = pbm->mem_space.name = pbm->name; + + /* Hack up top-level resources. */ + pbm->io_space.start = p->pbm_A.controller_regs + SABRE_IOSPACE; + pbm->io_space.end = pbm->io_space.start + (1UL << 24) - 1UL; + pbm->io_space.flags = IORESOURCE_IO; + + pbm->mem_space.start = p->pbm_A.controller_regs + SABRE_MEMSPACE; + pbm->mem_space.end = pbm->mem_space.start + (unsigned long)dma_begin - 1UL; + pbm->mem_space.flags = IORESOURCE_MEM; + + if (request_resource(&ioport_resource, &pbm->io_space) < 0) { + prom_printf("Cannot register Hummingbird's IO space.\n"); + prom_halt(); + } + if (request_resource(&iomem_resource, &pbm->mem_space) < 0) { + prom_printf("Cannot register Hummingbird's MEM space.\n"); + prom_halt(); + } + + pci_register_legacy_regions(&pbm->io_space, + &pbm->mem_space); + } +} + +void __init sabre_init(int pnode, char *model_name) +{ + struct linux_prom64_registers pr_regs[2]; + struct pci_controller_info *p; + struct pci_iommu *iommu; + int tsbsize, err; + u32 busrange[2]; + u32 vdma[2]; + u32 upa_portid, dma_mask; + u64 clear_irq; + + hummingbird_p = 0; + if (!strcmp(model_name, "pci108e,a001")) + hummingbird_p = 1; + else if (!strcmp(model_name, "SUNW,sabre")) { + char compat[64]; + + if (prom_getproperty(pnode, "compatible", + compat, sizeof(compat)) > 0 && + !strcmp(compat, "pci108e,a001")) { + hummingbird_p = 1; + } else { + int cpu_node; + + /* Of course, Sun has to encode things a thousand + * different ways, inconsistently. + */ + cpu_find_by_instance(0, &cpu_node, NULL); + if (prom_getproperty(cpu_node, "name", + compat, sizeof(compat)) > 0 && + !strcmp(compat, "SUNW,UltraSPARC-IIe")) + hummingbird_p = 1; + } + } + + p = kmalloc(sizeof(*p), GFP_ATOMIC); + if (!p) { + prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n"); + prom_halt(); + } + memset(p, 0, sizeof(*p)); + + iommu = kmalloc(sizeof(*iommu), GFP_ATOMIC); + if (!iommu) { + prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n"); + prom_halt(); + } + memset(iommu, 0, sizeof(*iommu)); + p->pbm_A.iommu = p->pbm_B.iommu = iommu; + + upa_portid = prom_getintdefault(pnode, "upa-portid", 0xff); + + p->next = pci_controller_root; + pci_controller_root = p; + + p->pbm_A.portid = upa_portid; + p->pbm_B.portid = upa_portid; + p->index = pci_num_controllers++; + p->pbms_same_domain = 1; + p->scan_bus = sabre_scan_bus; + p->irq_build = sabre_irq_build; + p->base_address_update = sabre_base_address_update; + p->resource_adjust = sabre_resource_adjust; + p->pci_ops = &sabre_ops; + + /* + * Map in SABRE register set and report the presence of this SABRE. + */ + err = prom_getproperty(pnode, "reg", + (char *)&pr_regs[0], sizeof(pr_regs)); + if(err == 0 || err == -1) { + prom_printf("SABRE: Error, cannot get U2P registers " + "from PROM.\n"); + prom_halt(); + } + + /* + * First REG in property is base of entire SABRE register space. + */ + p->pbm_A.controller_regs = pr_regs[0].phys_addr; + p->pbm_B.controller_regs = pr_regs[0].phys_addr; + pci_dma_wsync = p->pbm_A.controller_regs + SABRE_WRSYNC; + + printk("PCI: Found SABRE, main regs at %016lx, wsync at %016lx\n", + p->pbm_A.controller_regs, pci_dma_wsync); + + /* Clear interrupts */ + + /* PCI first */ + for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8) + sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL); + + /* Then OBIO */ + for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8) + sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL); + + /* Error interrupts are enabled later after the bus scan. */ + sabre_write(p->pbm_A.controller_regs + SABRE_PCICTRL, + (SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR | + SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN)); + + /* Now map in PCI config space for entire SABRE. */ + p->pbm_A.config_space = p->pbm_B.config_space = + (p->pbm_A.controller_regs + SABRE_CONFIGSPACE); + printk("SABRE: Shared PCI config space at %016lx\n", + p->pbm_A.config_space); + + err = prom_getproperty(pnode, "virtual-dma", + (char *)&vdma[0], sizeof(vdma)); + if(err == 0 || err == -1) { + prom_printf("SABRE: Error, cannot get virtual-dma property " + "from PROM.\n"); + prom_halt(); + } + + dma_mask = vdma[0]; + switch(vdma[1]) { + case 0x20000000: + dma_mask |= 0x1fffffff; + tsbsize = 64; + break; + case 0x40000000: + dma_mask |= 0x3fffffff; + tsbsize = 128; + break; + + case 0x80000000: + dma_mask |= 0x7fffffff; + tsbsize = 128; + break; + default: + prom_printf("SABRE: strange virtual-dma size.\n"); + prom_halt(); + } + + sabre_iommu_init(p, tsbsize, vdma[0], dma_mask); + + printk("SABRE: DVMA at %08x [%08x]\n", vdma[0], vdma[1]); + + err = prom_getproperty(pnode, "bus-range", + (char *)&busrange[0], sizeof(busrange)); + if(err == 0 || err == -1) { + prom_printf("SABRE: Error, cannot get PCI bus-range " + " from PROM.\n"); + prom_halt(); + } + + p->pci_first_busno = busrange[0]; + p->pci_last_busno = busrange[1]; + + /* + * Look for APB underneath. + */ + sabre_pbm_init(p, pnode, vdma[0]); +} |