diff options
Diffstat (limited to 'arch/powerpc/math-emu/sfp-machine.h')
-rw-r--r-- | arch/powerpc/math-emu/sfp-machine.h | 377 |
1 files changed, 0 insertions, 377 deletions
diff --git a/arch/powerpc/math-emu/sfp-machine.h b/arch/powerpc/math-emu/sfp-machine.h deleted file mode 100644 index 4b17d83cfcdd..000000000000 --- a/arch/powerpc/math-emu/sfp-machine.h +++ /dev/null @@ -1,377 +0,0 @@ -/* Machine-dependent software floating-point definitions. PPC version. - Copyright (C) 1997 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Library General Public License as - published by the Free Software Foundation; either version 2 of the - License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Library General Public License for more details. - - You should have received a copy of the GNU Library General Public - License along with the GNU C Library; see the file COPYING.LIB. If - not, write to the Free Software Foundation, Inc., - 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. - - Actually, this is a PPC (32bit) version, written based on the - i386, sparc, and sparc64 versions, by me, - Peter Maydell (pmaydell@chiark.greenend.org.uk). - Comments are by and large also mine, although they may be inaccurate. - - In picking out asm fragments I've gone with the lowest common - denominator, which also happens to be the hardware I have :-> - That is, a SPARC without hardware multiply and divide. - */ - -/* basic word size definitions */ -#define _FP_W_TYPE_SIZE 32 -#define _FP_W_TYPE unsigned long -#define _FP_WS_TYPE signed long -#define _FP_I_TYPE long - -#define __ll_B ((UWtype) 1 << (W_TYPE_SIZE / 2)) -#define __ll_lowpart(t) ((UWtype) (t) & (__ll_B - 1)) -#define __ll_highpart(t) ((UWtype) (t) >> (W_TYPE_SIZE / 2)) - -/* You can optionally code some things like addition in asm. For - * example, i386 defines __FP_FRAC_ADD_2 as asm. If you don't - * then you get a fragment of C code [if you change an #ifdef 0 - * in op-2.h] or a call to add_ssaaaa (see below). - * Good places to look for asm fragments to use are gcc and glibc. - * gcc's longlong.h is useful. - */ - -/* We need to know how to multiply and divide. If the host word size - * is >= 2*fracbits you can use FP_MUL_MEAT_n_imm(t,R,X,Y) which - * codes the multiply with whatever gcc does to 'a * b'. - * _FP_MUL_MEAT_n_wide(t,R,X,Y,f) is used when you have an asm - * function that can multiply two 1W values and get a 2W result. - * Otherwise you're stuck with _FP_MUL_MEAT_n_hard(t,R,X,Y) which - * does bitshifting to avoid overflow. - * For division there is FP_DIV_MEAT_n_imm(t,R,X,Y,f) for word size - * >= 2*fracbits, where f is either _FP_DIV_HELP_imm or - * _FP_DIV_HELP_ldiv (see op-1.h). - * _FP_DIV_MEAT_udiv() is if you have asm to do 2W/1W => (1W, 1W). - * [GCC and glibc have longlong.h which has the asm macro udiv_qrnnd - * to do this.] - * In general, 'n' is the number of words required to hold the type, - * and 't' is either S, D or Q for single/double/quad. - * -- PMM - */ -/* Example: SPARC64: - * #define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_imm(S,R,X,Y) - * #define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_1_wide(D,R,X,Y,umul_ppmm) - * #define _FP_MUL_MEAT_Q(R,X,Y) _FP_MUL_MEAT_2_wide(Q,R,X,Y,umul_ppmm) - * - * #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_imm(S,R,X,Y,_FP_DIV_HELP_imm) - * #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_1_udiv(D,R,X,Y) - * #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_2_udiv_64(Q,R,X,Y) - * - * Example: i386: - * #define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_wide(S,R,X,Y,_i386_mul_32_64) - * #define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_2_wide(D,R,X,Y,_i386_mul_32_64) - * - * #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y,_i386_div_64_32) - * #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv_64(D,R,X,Y) - */ - -#define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_wide(S,R,X,Y,umul_ppmm) -#define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_2_wide(D,R,X,Y,umul_ppmm) - -#define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y) -#define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv_64(D,R,X,Y) - -/* These macros define what NaN looks like. They're supposed to expand to - * a comma-separated set of 32bit unsigned ints that encode NaN. - */ -#define _FP_NANFRAC_S _FP_QNANBIT_S -#define _FP_NANFRAC_D _FP_QNANBIT_D, 0 -#define _FP_NANFRAC_Q _FP_QNANBIT_Q, 0, 0, 0 - -#define _FP_KEEPNANFRACP 1 - -/* This macro appears to be called when both X and Y are NaNs, and - * has to choose one and copy it to R. i386 goes for the larger of the - * two, sparc64 just picks Y. I don't understand this at all so I'll - * go with sparc64 because it's shorter :-> -- PMM - */ -#define _FP_CHOOSENAN(fs, wc, R, X, Y) \ - do { \ - R##_s = Y##_s; \ - _FP_FRAC_COPY_##wc(R,Y); \ - R##_c = FP_CLS_NAN; \ - } while (0) - - -extern void fp_unpack_d(long *, unsigned long *, unsigned long *, - long *, long *, void *); -extern int fp_pack_d(void *, long, unsigned long, unsigned long, long, long); -extern int fp_pack_ds(void *, long, unsigned long, unsigned long, long, long); - -#define __FP_UNPACK_RAW_1(fs, X, val) \ - do { \ - union _FP_UNION_##fs *_flo = \ - (union _FP_UNION_##fs *)val; \ - \ - X##_f = _flo->bits.frac; \ - X##_e = _flo->bits.exp; \ - X##_s = _flo->bits.sign; \ - } while (0) - -#define __FP_UNPACK_RAW_2(fs, X, val) \ - do { \ - union _FP_UNION_##fs *_flo = \ - (union _FP_UNION_##fs *)val; \ - \ - X##_f0 = _flo->bits.frac0; \ - X##_f1 = _flo->bits.frac1; \ - X##_e = _flo->bits.exp; \ - X##_s = _flo->bits.sign; \ - } while (0) - -#define __FP_UNPACK_S(X,val) \ - do { \ - __FP_UNPACK_RAW_1(S,X,val); \ - _FP_UNPACK_CANONICAL(S,1,X); \ - } while (0) - -#define __FP_UNPACK_D(X,val) \ - fp_unpack_d(&X##_s, &X##_f1, &X##_f0, &X##_e, &X##_c, val) - -#define __FP_PACK_RAW_1(fs, val, X) \ - do { \ - union _FP_UNION_##fs *_flo = \ - (union _FP_UNION_##fs *)val; \ - \ - _flo->bits.frac = X##_f; \ - _flo->bits.exp = X##_e; \ - _flo->bits.sign = X##_s; \ - } while (0) - -#define __FP_PACK_RAW_2(fs, val, X) \ - do { \ - union _FP_UNION_##fs *_flo = \ - (union _FP_UNION_##fs *)val; \ - \ - _flo->bits.frac0 = X##_f0; \ - _flo->bits.frac1 = X##_f1; \ - _flo->bits.exp = X##_e; \ - _flo->bits.sign = X##_s; \ - } while (0) - -#include <linux/kernel.h> -#include <linux/sched.h> - -#define __FPU_FPSCR (current->thread.fpscr.val) - -/* We only actually write to the destination register - * if exceptions signalled (if any) will not trap. - */ -#define __FPU_ENABLED_EXC \ -({ \ - (__FPU_FPSCR >> 3) & 0x1f; \ -}) - -#define __FPU_TRAP_P(bits) \ - ((__FPU_ENABLED_EXC & (bits)) != 0) - -#define __FP_PACK_S(val,X) \ -({ int __exc = _FP_PACK_CANONICAL(S,1,X); \ - if(!__exc || !__FPU_TRAP_P(__exc)) \ - __FP_PACK_RAW_1(S,val,X); \ - __exc; \ -}) - -#define __FP_PACK_D(val,X) \ - fp_pack_d(val, X##_s, X##_f1, X##_f0, X##_e, X##_c) - -#define __FP_PACK_DS(val,X) \ - fp_pack_ds(val, X##_s, X##_f1, X##_f0, X##_e, X##_c) - -/* Obtain the current rounding mode. */ -#define FP_ROUNDMODE \ -({ \ - __FPU_FPSCR & 0x3; \ -}) - -/* the asm fragments go here: all these are taken from glibc-2.0.5's - * stdlib/longlong.h - */ - -#include <linux/types.h> -#include <asm/byteorder.h> - -/* add_ssaaaa is used in op-2.h and should be equivalent to - * #define add_ssaaaa(sh,sl,ah,al,bh,bl) (sh = ah+bh+ (( sl = al+bl) < al)) - * add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1, - * high_addend_2, low_addend_2) adds two UWtype integers, composed by - * HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and LOW_ADDEND_2 - * respectively. The result is placed in HIGH_SUM and LOW_SUM. Overflow - * (i.e. carry out) is not stored anywhere, and is lost. - */ -#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ - do { \ - if (__builtin_constant_p (bh) && (bh) == 0) \ - __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{aze|addze} %0,%2" \ - : "=r" ((USItype)(sh)), \ - "=&r" ((USItype)(sl)) \ - : "%r" ((USItype)(ah)), \ - "%r" ((USItype)(al)), \ - "rI" ((USItype)(bl))); \ - else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0) \ - __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{ame|addme} %0,%2" \ - : "=r" ((USItype)(sh)), \ - "=&r" ((USItype)(sl)) \ - : "%r" ((USItype)(ah)), \ - "%r" ((USItype)(al)), \ - "rI" ((USItype)(bl))); \ - else \ - __asm__ ("{a%I5|add%I5c} %1,%4,%5\n\t{ae|adde} %0,%2,%3" \ - : "=r" ((USItype)(sh)), \ - "=&r" ((USItype)(sl)) \ - : "%r" ((USItype)(ah)), \ - "r" ((USItype)(bh)), \ - "%r" ((USItype)(al)), \ - "rI" ((USItype)(bl))); \ - } while (0) - -/* sub_ddmmss is used in op-2.h and udivmodti4.c and should be equivalent to - * #define sub_ddmmss(sh, sl, ah, al, bh, bl) (sh = ah-bh - ((sl = al-bl) > al)) - * sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend, - * high_subtrahend, low_subtrahend) subtracts two two-word UWtype integers, - * composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and - * LOW_SUBTRAHEND_2 respectively. The result is placed in HIGH_DIFFERENCE - * and LOW_DIFFERENCE. Overflow (i.e. carry out) is not stored anywhere, - * and is lost. - */ -#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ - do { \ - if (__builtin_constant_p (ah) && (ah) == 0) \ - __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfze|subfze} %0,%2" \ - : "=r" ((USItype)(sh)), \ - "=&r" ((USItype)(sl)) \ - : "r" ((USItype)(bh)), \ - "rI" ((USItype)(al)), \ - "r" ((USItype)(bl))); \ - else if (__builtin_constant_p (ah) && (ah) ==~(USItype) 0) \ - __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfme|subfme} %0,%2" \ - : "=r" ((USItype)(sh)), \ - "=&r" ((USItype)(sl)) \ - : "r" ((USItype)(bh)), \ - "rI" ((USItype)(al)), \ - "r" ((USItype)(bl))); \ - else if (__builtin_constant_p (bh) && (bh) == 0) \ - __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{ame|addme} %0,%2" \ - : "=r" ((USItype)(sh)), \ - "=&r" ((USItype)(sl)) \ - : "r" ((USItype)(ah)), \ - "rI" ((USItype)(al)), \ - "r" ((USItype)(bl))); \ - else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0) \ - __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{aze|addze} %0,%2" \ - : "=r" ((USItype)(sh)), \ - "=&r" ((USItype)(sl)) \ - : "r" ((USItype)(ah)), \ - "rI" ((USItype)(al)), \ - "r" ((USItype)(bl))); \ - else \ - __asm__ ("{sf%I4|subf%I4c} %1,%5,%4\n\t{sfe|subfe} %0,%3,%2" \ - : "=r" ((USItype)(sh)), \ - "=&r" ((USItype)(sl)) \ - : "r" ((USItype)(ah)), \ - "r" ((USItype)(bh)), \ - "rI" ((USItype)(al)), \ - "r" ((USItype)(bl))); \ - } while (0) - -/* asm fragments for mul and div */ - -/* umul_ppmm(high_prod, low_prod, multipler, multiplicand) multiplies two - * UWtype integers MULTIPLER and MULTIPLICAND, and generates a two UWtype - * word product in HIGH_PROD and LOW_PROD. - */ -#define umul_ppmm(ph, pl, m0, m1) \ - do { \ - USItype __m0 = (m0), __m1 = (m1); \ - __asm__ ("mulhwu %0,%1,%2" \ - : "=r" ((USItype)(ph)) \ - : "%r" (__m0), \ - "r" (__m1)); \ - (pl) = __m0 * __m1; \ - } while (0) - -/* udiv_qrnnd(quotient, remainder, high_numerator, low_numerator, - * denominator) divides a UDWtype, composed by the UWtype integers - * HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and places the quotient - * in QUOTIENT and the remainder in REMAINDER. HIGH_NUMERATOR must be less - * than DENOMINATOR for correct operation. If, in addition, the most - * significant bit of DENOMINATOR must be 1, then the pre-processor symbol - * UDIV_NEEDS_NORMALIZATION is defined to 1. - */ -#define udiv_qrnnd(q, r, n1, n0, d) \ - do { \ - UWtype __d1, __d0, __q1, __q0, __r1, __r0, __m; \ - __d1 = __ll_highpart (d); \ - __d0 = __ll_lowpart (d); \ - \ - __r1 = (n1) % __d1; \ - __q1 = (n1) / __d1; \ - __m = (UWtype) __q1 * __d0; \ - __r1 = __r1 * __ll_B | __ll_highpart (n0); \ - if (__r1 < __m) \ - { \ - __q1--, __r1 += (d); \ - if (__r1 >= (d)) /* we didn't get carry when adding to __r1 */ \ - if (__r1 < __m) \ - __q1--, __r1 += (d); \ - } \ - __r1 -= __m; \ - \ - __r0 = __r1 % __d1; \ - __q0 = __r1 / __d1; \ - __m = (UWtype) __q0 * __d0; \ - __r0 = __r0 * __ll_B | __ll_lowpart (n0); \ - if (__r0 < __m) \ - { \ - __q0--, __r0 += (d); \ - if (__r0 >= (d)) \ - if (__r0 < __m) \ - __q0--, __r0 += (d); \ - } \ - __r0 -= __m; \ - \ - (q) = (UWtype) __q1 * __ll_B | __q0; \ - (r) = __r0; \ - } while (0) - -#define UDIV_NEEDS_NORMALIZATION 1 - -#define abort() \ - return 0 - -#ifdef __BIG_ENDIAN -#define __BYTE_ORDER __BIG_ENDIAN -#else -#define __BYTE_ORDER __LITTLE_ENDIAN -#endif - -/* Exception flags. */ -#define EFLAG_INVALID (1 << (31 - 2)) -#define EFLAG_OVERFLOW (1 << (31 - 3)) -#define EFLAG_UNDERFLOW (1 << (31 - 4)) -#define EFLAG_DIVZERO (1 << (31 - 5)) -#define EFLAG_INEXACT (1 << (31 - 6)) - -#define EFLAG_VXSNAN (1 << (31 - 7)) -#define EFLAG_VXISI (1 << (31 - 8)) -#define EFLAG_VXIDI (1 << (31 - 9)) -#define EFLAG_VXZDZ (1 << (31 - 10)) -#define EFLAG_VXIMZ (1 << (31 - 11)) -#define EFLAG_VXVC (1 << (31 - 12)) -#define EFLAG_VXSOFT (1 << (31 - 21)) -#define EFLAG_VXSQRT (1 << (31 - 22)) -#define EFLAG_VXCVI (1 << (31 - 23)) |