diff options
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/cpu-freq/user-guide.txt | 6 | ||||
-rw-r--r-- | Documentation/credentials.txt | 582 | ||||
-rw-r--r-- | Documentation/feature-removal-schedule.txt | 12 | ||||
-rw-r--r-- | Documentation/filesystems/proc.txt | 9 | ||||
-rw-r--r-- | Documentation/kernel-parameters.txt | 37 | ||||
-rw-r--r-- | Documentation/nmi_watchdog.txt | 5 | ||||
-rw-r--r-- | Documentation/scheduler/sched-design-CFS.txt | 21 | ||||
-rw-r--r-- | Documentation/sh/kgdb.txt | 179 | ||||
-rw-r--r-- | Documentation/sound/alsa/ALSA-Configuration.txt | 330 | ||||
-rw-r--r-- | Documentation/sound/alsa/HD-Audio-Models.txt | 348 | ||||
-rw-r--r-- | Documentation/sound/alsa/HD-Audio.txt | 577 | ||||
-rw-r--r-- | Documentation/sound/alsa/Procfile.txt | 10 | ||||
-rw-r--r-- | Documentation/sound/alsa/soc/machine.txt | 8 | ||||
-rw-r--r-- | Documentation/x86/boot.txt | 6 | ||||
-rw-r--r-- | Documentation/x86/pat.txt | 24 | ||||
-rw-r--r-- | Documentation/x86/x86_64/boot-options.txt | 11 | ||||
-rw-r--r-- | Documentation/x86/x86_64/mm.txt | 2 |
17 files changed, 1635 insertions, 532 deletions
diff --git a/Documentation/cpu-freq/user-guide.txt b/Documentation/cpu-freq/user-guide.txt index 4f3f3840320e..e3443ddcfb89 100644 --- a/Documentation/cpu-freq/user-guide.txt +++ b/Documentation/cpu-freq/user-guide.txt @@ -93,10 +93,8 @@ Several "PowerBook" and "iBook2" notebooks are supported. 1.5 SuperH ---------- -The following SuperH processors are supported by cpufreq: - -SH-3 -SH-4 +All SuperH processors supporting rate rounding through the clock +framework are supported by cpufreq. 1.6 Blackfin ------------ diff --git a/Documentation/credentials.txt b/Documentation/credentials.txt new file mode 100644 index 000000000000..df03169782ea --- /dev/null +++ b/Documentation/credentials.txt @@ -0,0 +1,582 @@ + ==================== + CREDENTIALS IN LINUX + ==================== + +By: David Howells <dhowells@redhat.com> + +Contents: + + (*) Overview. + + (*) Types of credentials. + + (*) File markings. + + (*) Task credentials. + + - Immutable credentials. + - Accessing task credentials. + - Accessing another task's credentials. + - Altering credentials. + - Managing credentials. + + (*) Open file credentials. + + (*) Overriding the VFS's use of credentials. + + +======== +OVERVIEW +======== + +There are several parts to the security check performed by Linux when one +object acts upon another: + + (1) Objects. + + Objects are things in the system that may be acted upon directly by + userspace programs. Linux has a variety of actionable objects, including: + + - Tasks + - Files/inodes + - Sockets + - Message queues + - Shared memory segments + - Semaphores + - Keys + + As a part of the description of all these objects there is a set of + credentials. What's in the set depends on the type of object. + + (2) Object ownership. + + Amongst the credentials of most objects, there will be a subset that + indicates the ownership of that object. This is used for resource + accounting and limitation (disk quotas and task rlimits for example). + + In a standard UNIX filesystem, for instance, this will be defined by the + UID marked on the inode. + + (3) The objective context. + + Also amongst the credentials of those objects, there will be a subset that + indicates the 'objective context' of that object. This may or may not be + the same set as in (2) - in standard UNIX files, for instance, this is the + defined by the UID and the GID marked on the inode. + + The objective context is used as part of the security calculation that is + carried out when an object is acted upon. + + (4) Subjects. + + A subject is an object that is acting upon another object. + + Most of the objects in the system are inactive: they don't act on other + objects within the system. Processes/tasks are the obvious exception: + they do stuff; they access and manipulate things. + + Objects other than tasks may under some circumstances also be subjects. + For instance an open file may send SIGIO to a task using the UID and EUID + given to it by a task that called fcntl(F_SETOWN) upon it. In this case, + the file struct will have a subjective context too. + + (5) The subjective context. + + A subject has an additional interpretation of its credentials. A subset + of its credentials forms the 'subjective context'. The subjective context + is used as part of the security calculation that is carried out when a + subject acts. + + A Linux task, for example, has the FSUID, FSGID and the supplementary + group list for when it is acting upon a file - which are quite separate + from the real UID and GID that normally form the objective context of the + task. + + (6) Actions. + + Linux has a number of actions available that a subject may perform upon an + object. The set of actions available depends on the nature of the subject + and the object. + + Actions include reading, writing, creating and deleting files; forking or + signalling and tracing tasks. + + (7) Rules, access control lists and security calculations. + + When a subject acts upon an object, a security calculation is made. This + involves taking the subjective context, the objective context and the + action, and searching one or more sets of rules to see whether the subject + is granted or denied permission to act in the desired manner on the + object, given those contexts. + + There are two main sources of rules: + + (a) Discretionary access control (DAC): + + Sometimes the object will include sets of rules as part of its + description. This is an 'Access Control List' or 'ACL'. A Linux + file may supply more than one ACL. + + A traditional UNIX file, for example, includes a permissions mask that + is an abbreviated ACL with three fixed classes of subject ('user', + 'group' and 'other'), each of which may be granted certain privileges + ('read', 'write' and 'execute' - whatever those map to for the object + in question). UNIX file permissions do not allow the arbitrary + specification of subjects, however, and so are of limited use. + + A Linux file might also sport a POSIX ACL. This is a list of rules + that grants various permissions to arbitrary subjects. + + (b) Mandatory access control (MAC): + + The system as a whole may have one or more sets of rules that get + applied to all subjects and objects, regardless of their source. + SELinux and Smack are examples of this. + + In the case of SELinux and Smack, each object is given a label as part + of its credentials. When an action is requested, they take the + subject label, the object label and the action and look for a rule + that says that this action is either granted or denied. + + +==================== +TYPES OF CREDENTIALS +==================== + +The Linux kernel supports the following types of credentials: + + (1) Traditional UNIX credentials. + + Real User ID + Real Group ID + + The UID and GID are carried by most, if not all, Linux objects, even if in + some cases it has to be invented (FAT or CIFS files for example, which are + derived from Windows). These (mostly) define the objective context of + that object, with tasks being slightly different in some cases. + + Effective, Saved and FS User ID + Effective, Saved and FS Group ID + Supplementary groups + + These are additional credentials used by tasks only. Usually, an + EUID/EGID/GROUPS will be used as the subjective context, and real UID/GID + will be used as the objective. For tasks, it should be noted that this is + not always true. + + (2) Capabilities. + + Set of permitted capabilities + Set of inheritable capabilities + Set of effective capabilities + Capability bounding set + + These are only carried by tasks. They indicate superior capabilities + granted piecemeal to a task that an ordinary task wouldn't otherwise have. + These are manipulated implicitly by changes to the traditional UNIX + credentials, but can also be manipulated directly by the capset() system + call. + + The permitted capabilities are those caps that the process might grant + itself to its effective or permitted sets through capset(). This + inheritable set might also be so constrained. + + The effective capabilities are the ones that a task is actually allowed to + make use of itself. + + The inheritable capabilities are the ones that may get passed across + execve(). + + The bounding set limits the capabilities that may be inherited across + execve(), especially when a binary is executed that will execute as UID 0. + + (3) Secure management flags (securebits). + + These are only carried by tasks. These govern the way the above + credentials are manipulated and inherited over certain operations such as + execve(). They aren't used directly as objective or subjective + credentials. + + (4) Keys and keyrings. + + These are only carried by tasks. They carry and cache security tokens + that don't fit into the other standard UNIX credentials. They are for + making such things as network filesystem keys available to the file + accesses performed by processes, without the necessity of ordinary + programs having to know about security details involved. + + Keyrings are a special type of key. They carry sets of other keys and can + be searched for the desired key. Each process may subscribe to a number + of keyrings: + + Per-thread keying + Per-process keyring + Per-session keyring + + When a process accesses a key, if not already present, it will normally be + cached on one of these keyrings for future accesses to find. + + For more information on using keys, see Documentation/keys.txt. + + (5) LSM + + The Linux Security Module allows extra controls to be placed over the + operations that a task may do. Currently Linux supports two main + alternate LSM options: SELinux and Smack. + + Both work by labelling the objects in a system and then applying sets of + rules (policies) that say what operations a task with one label may do to + an object with another label. + + (6) AF_KEY + + This is a socket-based approach to credential management for networking + stacks [RFC 2367]. It isn't discussed by this document as it doesn't + interact directly with task and file credentials; rather it keeps system + level credentials. + + +When a file is opened, part of the opening task's subjective context is +recorded in the file struct created. This allows operations using that file +struct to use those credentials instead of the subjective context of the task +that issued the operation. An example of this would be a file opened on a +network filesystem where the credentials of the opened file should be presented +to the server, regardless of who is actually doing a read or a write upon it. + + +============= +FILE MARKINGS +============= + +Files on disk or obtained over the network may have annotations that form the +objective security context of that file. Depending on the type of filesystem, +this may include one or more of the following: + + (*) UNIX UID, GID, mode; + + (*) Windows user ID; + + (*) Access control list; + + (*) LSM security label; + + (*) UNIX exec privilege escalation bits (SUID/SGID); + + (*) File capabilities exec privilege escalation bits. + +These are compared to the task's subjective security context, and certain +operations allowed or disallowed as a result. In the case of execve(), the +privilege escalation bits come into play, and may allow the resulting process +extra privileges, based on the annotations on the executable file. + + +================ +TASK CREDENTIALS +================ + +In Linux, all of a task's credentials are held in (uid, gid) or through +(groups, keys, LSM security) a refcounted structure of type 'struct cred'. +Each task points to its credentials by a pointer called 'cred' in its +task_struct. + +Once a set of credentials has been prepared and committed, it may not be +changed, barring the following exceptions: + + (1) its reference count may be changed; + + (2) the reference count on the group_info struct it points to may be changed; + + (3) the reference count on the security data it points to may be changed; + + (4) the reference count on any keyrings it points to may be changed; + + (5) any keyrings it points to may be revoked, expired or have their security + attributes changed; and + + (6) the contents of any keyrings to which it points may be changed (the whole + point of keyrings being a shared set of credentials, modifiable by anyone + with appropriate access). + +To alter anything in the cred struct, the copy-and-replace principle must be +adhered to. First take a copy, then alter the copy and then use RCU to change +the task pointer to make it point to the new copy. There are wrappers to aid +with this (see below). + +A task may only alter its _own_ credentials; it is no longer permitted for a +task to alter another's credentials. This means the capset() system call is no +longer permitted to take any PID other than the one of the current process. +Also keyctl_instantiate() and keyctl_negate() functions no longer permit +attachment to process-specific keyrings in the requesting process as the +instantiating process may need to create them. + + +IMMUTABLE CREDENTIALS +--------------------- + +Once a set of credentials has been made public (by calling commit_creds() for +example), it must be considered immutable, barring two exceptions: + + (1) The reference count may be altered. + + (2) Whilst the keyring subscriptions of a set of credentials may not be + changed, the keyrings subscribed to may have their contents altered. + +To catch accidental credential alteration at compile time, struct task_struct +has _const_ pointers to its credential sets, as does struct file. Furthermore, +certain functions such as get_cred() and put_cred() operate on const pointers, +thus rendering casts unnecessary, but require to temporarily ditch the const +qualification to be able to alter the reference count. + + +ACCESSING TASK CREDENTIALS +-------------------------- + +A task being able to alter only its own credentials permits the current process +to read or replace its own credentials without the need for any form of locking +- which simplifies things greatly. It can just call: + + const struct cred *current_cred() + +to get a pointer to its credentials structure, and it doesn't have to release +it afterwards. + +There are convenience wrappers for retrieving specific aspects of a task's +credentials (the value is simply returned in each case): + + uid_t current_uid(void) Current's real UID + gid_t current_gid(void) Current's real GID + uid_t current_euid(void) Current's effective UID + gid_t current_egid(void) Current's effective GID + uid_t current_fsuid(void) Current's file access UID + gid_t current_fsgid(void) Current's file access GID + kernel_cap_t current_cap(void) Current's effective capabilities + void *current_security(void) Current's LSM security pointer + struct user_struct *current_user(void) Current's user account + +There are also convenience wrappers for retrieving specific associated pairs of +a task's credentials: + + void current_uid_gid(uid_t *, gid_t *); + void current_euid_egid(uid_t *, gid_t *); + void current_fsuid_fsgid(uid_t *, gid_t *); + +which return these pairs of values through their arguments after retrieving +them from the current task's credentials. + + +In addition, there is a function for obtaining a reference on the current +process's current set of credentials: + + const struct cred *get_current_cred(void); + +and functions for getting references to one of the credentials that don't +actually live in struct cred: + + struct user_struct *get_current_user(void); + struct group_info *get_current_groups(void); + +which get references to the current process's user accounting structure and +supplementary groups list respectively. + +Once a reference has been obtained, it must be released with put_cred(), +free_uid() or put_group_info() as appropriate. + + +ACCESSING ANOTHER TASK'S CREDENTIALS +------------------------------------ + +Whilst a task may access its own credentials without the need for locking, the +same is not true of a task wanting to access another task's credentials. It +must use the RCU read lock and rcu_dereference(). + +The rcu_dereference() is wrapped by: + + const struct cred *__task_cred(struct task_struct *task); + +This should be used inside the RCU read lock, as in the following example: + + void foo(struct task_struct *t, struct foo_data *f) + { + const struct cred *tcred; + ... + rcu_read_lock(); + tcred = __task_cred(t); + f->uid = tcred->uid; + f->gid = tcred->gid; + f->groups = get_group_info(tcred->groups); + rcu_read_unlock(); + ... + } + +A function need not get RCU read lock to use __task_cred() if it is holding a +spinlock at the time as this implicitly holds the RCU read lock. + +Should it be necessary to hold another task's credentials for a long period of +time, and possibly to sleep whilst doing so, then the caller should get a +reference on them using: + + const struct cred *get_task_cred(struct task_struct *task); + +This does all the RCU magic inside of it. The caller must call put_cred() on +the credentials so obtained when they're finished with. + +There are a couple of convenience functions to access bits of another task's +credentials, hiding the RCU magic from the caller: + + uid_t task_uid(task) Task's real UID + uid_t task_euid(task) Task's effective UID + +If the caller is holding a spinlock or the RCU read lock at the time anyway, +then: + + __task_cred(task)->uid + __task_cred(task)->euid + +should be used instead. Similarly, if multiple aspects of a task's credentials +need to be accessed, RCU read lock or a spinlock should be used, __task_cred() +called, the result stored in a temporary pointer and then the credential +aspects called from that before dropping the lock. This prevents the +potentially expensive RCU magic from being invoked multiple times. + +Should some other single aspect of another task's credentials need to be +accessed, then this can be used: + + task_cred_xxx(task, member) + +where 'member' is a non-pointer member of the cred struct. For instance: + + uid_t task_cred_xxx(task, suid); + +will retrieve 'struct cred::suid' from the task, doing the appropriate RCU +magic. This may not be used for pointer members as what they point to may +disappear the moment the RCU read lock is dropped. + + +ALTERING CREDENTIALS +-------------------- + +As previously mentioned, a task may only alter its own credentials, and may not +alter those of another task. This means that it doesn't need to use any +locking to alter its own credentials. + +To alter the current process's credentials, a function should first prepare a +new set of credentials by calling: + + struct cred *prepare_creds(void); + +this locks current->cred_replace_mutex and then allocates and constructs a +duplicate of the current process's credentials, returning with the mutex still +held if successful. It returns NULL if not successful (out of memory). + +The mutex prevents ptrace() from altering the ptrace state of a process whilst +security checks on credentials construction and changing is taking place as +the ptrace state may alter the outcome, particularly in the case of execve(). + +The new credentials set should be altered appropriately, and any security +checks and hooks done. Both the current and the proposed sets of credentials +are available for this purpose as current_cred() will return the current set +still at this point. + + +When the credential set is ready, it should be committed to the current process +by calling: + + int commit_creds(struct cred *new); + +This will alter various aspects of the credentials and the process, giving the +LSM a chance to do likewise, then it will use rcu_assign_pointer() to actually +commit the new credentials to current->cred, it will release +current->cred_replace_mutex to allow ptrace() to take place, and it will notify +the scheduler and others of the changes. + +This function is guaranteed to return 0, so that it can be tail-called at the +end of such functions as sys_setresuid(). + +Note that this function consumes the caller's reference to the new credentials. +The caller should _not_ call put_cred() on the new credentials afterwards. + +Furthermore, once this function has been called on a new set of credentials, +those credentials may _not_ be changed further. + + +Should the security checks fail or some other error occur after prepare_creds() +has been called, then the following function should be invoked: + + void abort_creds(struct cred *new); + +This releases the lock on current->cred_replace_mutex that prepare_creds() got +and then releases the new credentials. + + +A typical credentials alteration function would look something like this: + + int alter_suid(uid_t suid) + { + struct cred *new; + int ret; + + new = prepare_creds(); + if (!new) + return -ENOMEM; + + new->suid = suid; + ret = security_alter_suid(new); + if (ret < 0) { + abort_creds(new); + return ret; + } + + return commit_creds(new); + } + + +MANAGING CREDENTIALS +-------------------- + +There are some functions to help manage credentials: + + (*) void put_cred(const struct cred *cred); + + This releases a reference to the given set of credentials. If the + reference count reaches zero, the credentials will be scheduled for + destruction by the RCU system. + + (*) const struct cred *get_cred(const struct cred *cred); + + This gets a reference on a live set of credentials, returning a pointer to + that set of credentials. + + (*) struct cred *get_new_cred(struct cred *cred); + + This gets a reference on a set of credentials that is under construction + and is thus still mutable, returning a pointer to that set of credentials. + + +===================== +OPEN FILE CREDENTIALS +===================== + +When a new file is opened, a reference is obtained on the opening task's +credentials and this is attached to the file struct as 'f_cred' in place of +'f_uid' and 'f_gid'. Code that used to access file->f_uid and file->f_gid +should now access file->f_cred->fsuid and file->f_cred->fsgid. + +It is safe to access f_cred without the use of RCU or locking because the +pointer will not change over the lifetime of the file struct, and nor will the +contents of the cred struct pointed to, barring the exceptions listed above +(see the Task Credentials section). + + +======================================= +OVERRIDING THE VFS'S USE OF CREDENTIALS +======================================= + +Under some circumstances it is desirable to override the credentials used by +the VFS, and that can be done by calling into such as vfs_mkdir() with a +different set of credentials. This is done in the following places: + + (*) sys_faccessat(). + + (*) do_coredump(). + + (*) nfs4recover.c. diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt index c28a2ac88f9d..1a8af7354e79 100644 --- a/Documentation/feature-removal-schedule.txt +++ b/Documentation/feature-removal-schedule.txt @@ -244,18 +244,6 @@ Who: Michael Buesch <mb@bu3sch.de> --------------------------- -What: init_mm export -When: 2.6.26 -Why: Not used in-tree. The current out-of-tree users used it to - work around problems in the CPA code which should be resolved - by now. One usecase was described to provide verification code - of the CPA operation. That's a good idea in general, but such - code / infrastructure should be in the kernel and not in some - out-of-tree driver. -Who: Thomas Gleixner <tglx@linutronix.de> - ----------------------------- - What: usedac i386 kernel parameter When: 2.6.27 Why: replaced by allowdac and no dac combination diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt index bb1b0dd3bfcb..71df353e367c 100644 --- a/Documentation/filesystems/proc.txt +++ b/Documentation/filesystems/proc.txt @@ -1339,10 +1339,13 @@ nmi_watchdog Enables/Disables the NMI watchdog on x86 systems. When the value is non-zero the NMI watchdog is enabled and will continuously test all online cpus to -determine whether or not they are still functioning properly. +determine whether or not they are still functioning properly. Currently, +passing "nmi_watchdog=" parameter at boot time is required for this function +to work. -Because the NMI watchdog shares registers with oprofile, by disabling the NMI -watchdog, oprofile may have more registers to utilize. +If LAPIC NMI watchdog method is in use (nmi_watchdog=2 kernel parameter), the +NMI watchdog shares registers with oprofile. By disabling the NMI watchdog, +oprofile may have more registers to utilize. msgmni ------ diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index f44552e07913..68e7694c0ac7 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -1405,7 +1405,20 @@ and is between 256 and 4096 characters. It is defined in the file when a NMI is triggered. Format: [state][,regs][,debounce][,die] - nmi_watchdog= [KNL,BUGS=X86-32] Debugging features for SMP kernels + nmi_watchdog= [KNL,BUGS=X86-32,X86-64] Debugging features for SMP kernels + Format: [panic,][num] + Valid num: 0,1,2 + 0 - turn nmi_watchdog off + 1 - use the IO-APIC timer for the NMI watchdog + 2 - use the local APIC for the NMI watchdog using + a performance counter. Note: This will use one performance + counter and the local APIC's performance vector. + When panic is specified panic when an NMI watchdog timeout occurs. + This is useful when you use a panic=... timeout and need the box + quickly up again. + Instead of 1 and 2 it is possible to use the following + symbolic names: lapic and ioapic + Example: nmi_watchdog=2 or nmi_watchdog=panic,lapic no387 [BUGS=X86-32] Tells the kernel to use the 387 maths emulation library even if a 387 maths coprocessor @@ -1461,6 +1474,10 @@ and is between 256 and 4096 characters. It is defined in the file instruction doesn't work correctly and not to use it. + no_file_caps Tells the kernel not to honor file capabilities. The + only way then for a file to be executed with privilege + is to be setuid root or executed by root. + nohalt [IA-64] Tells the kernel not to use the power saving function PAL_HALT_LIGHT when idle. This increases power-consumption. On the positive side, it reduces @@ -1638,6 +1655,17 @@ and is between 256 and 4096 characters. It is defined in the file nomsi [MSI] If the PCI_MSI kernel config parameter is enabled, this kernel boot option can be used to disable the use of MSI interrupts system-wide. + noioapicquirk [APIC] Disable all boot interrupt quirks. + Safety option to keep boot IRQs enabled. This + should never be necessary. + ioapicreroute [APIC] Enable rerouting of boot IRQs to the + primary IO-APIC for bridges that cannot disable + boot IRQs. This fixes a source of spurious IRQs + when the system masks IRQs. + noioapicreroute [APIC] Disable workaround that uses the + boot IRQ equivalent of an IRQ that connects to + a chipset where boot IRQs cannot be disabled. + The opposite of ioapicreroute. biosirq [X86-32] Use PCI BIOS calls to get the interrupt routing table. These calls are known to be buggy on several machines and they hang the machine @@ -2270,6 +2298,13 @@ and is between 256 and 4096 characters. It is defined in the file Format: <io>,<irq>,<dma>,<dma2>,<sb_io>,<sb_irq>,<sb_dma>,<mpu_io>,<mpu_irq> + tsc= Disable clocksource-must-verify flag for TSC. + Format: <string> + [x86] reliable: mark tsc clocksource as reliable, this + disables clocksource verification at runtime. + Used to enable high-resolution timer mode on older + hardware, and in virtualized environment. + turbografx.map[2|3]= [HW,JOY] TurboGraFX parallel port interface Format: diff --git a/Documentation/nmi_watchdog.txt b/Documentation/nmi_watchdog.txt index 90aa4531cb67..bf9f80a98282 100644 --- a/Documentation/nmi_watchdog.txt +++ b/Documentation/nmi_watchdog.txt @@ -69,6 +69,11 @@ to the overall system performance. On x86 nmi_watchdog is disabled by default so you have to enable it with a boot time parameter. +It's possible to disable the NMI watchdog in run-time by writing "0" to +/proc/sys/kernel/nmi_watchdog. Writing "1" to the same file will re-enable +the NMI watchdog. Notice that you still need to use "nmi_watchdog=" parameter +at boot time. + NOTE: In kernels prior to 2.4.2-ac18 the NMI-oopser is enabled unconditionally on x86 SMP boxes. diff --git a/Documentation/scheduler/sched-design-CFS.txt b/Documentation/scheduler/sched-design-CFS.txt index eb471c7a905e..8398ca4ff4ed 100644 --- a/Documentation/scheduler/sched-design-CFS.txt +++ b/Documentation/scheduler/sched-design-CFS.txt @@ -273,3 +273,24 @@ task groups and modify their CPU share using the "cgroups" pseudo filesystem. # #Launch gmplayer (or your favourite movie player) # echo <movie_player_pid> > multimedia/tasks + +8. Implementation note: user namespaces + +User namespaces are intended to be hierarchical. But they are currently +only partially implemented. Each of those has ramifications for CFS. + +First, since user namespaces are hierarchical, the /sys/kernel/uids +presentation is inadequate. Eventually we will likely want to use sysfs +tagging to provide private views of /sys/kernel/uids within each user +namespace. + +Second, the hierarchical nature is intended to support completely +unprivileged use of user namespaces. So if using user groups, then +we want the users in a user namespace to be children of the user +who created it. + +That is currently unimplemented. So instead, every user in a new +user namespace will receive 1024 shares just like any user in the +initial user namespace. Note that at the moment creation of a new +user namespace requires each of CAP_SYS_ADMIN, CAP_SETUID, and +CAP_SETGID. diff --git a/Documentation/sh/kgdb.txt b/Documentation/sh/kgdb.txt deleted file mode 100644 index 05b4ba89d28c..000000000000 --- a/Documentation/sh/kgdb.txt +++ /dev/null @@ -1,179 +0,0 @@ - -This file describes the configuration and behavior of KGDB for the SH -kernel. Based on a description from Henry Bell <henry.bell@st.com>, it -has been modified to account for quirks in the current implementation. - -Version -======= - -This version of KGDB was written for 2.4.xx kernels for the SH architecture. -Further documentation is available from the linux-sh project website. - - -Debugging Setup: Host -====================== - -The two machines will be connected together via a serial line - this -should be a null modem cable i.e. with a twist. - -On your DEVELOPMENT machine, go to your kernel source directory and -build the kernel, enabling KGDB support in the "kernel hacking" section. -This includes the KGDB code, and also makes the kernel be compiled with -the "-g" option set -- necessary for debugging. - -To install this new kernel, use the following installation procedure. - -Decide on which tty port you want the machines to communicate, then -cable them up back-to-back using the null modem. On the DEVELOPMENT -machine, you may wish to create an initialization file called .gdbinit -(in the kernel source directory or in your home directory) to execute -commonly-used commands at startup. - -A minimal .gdbinit might look like this: - - file vmlinux - set remotebaud 115200 - target remote /dev/ttyS0 - -Change the "target" definition so that it specifies the tty port that -you intend to use. Change the "remotebaud" definition to match the -data rate that you are going to use for the com line (115200 is the -default). - -Debugging Setup: Target -======================== - -By default, the KGDB stub will communicate with the host GDB using -ttySC1 at 115200 baud, 8 databits, no parity; these defaults can be -changed in the kernel configuration. As the kernel starts up, KGDB will -initialize so that breakpoints, kernel segfaults, and so forth will -generally enter the debugger. - -This behavior can be modified by including the "kgdb" option in the -kernel command line; this option has the general form: - - kgdb=<ttyspec>,<action> - -The <ttyspec> indicates the port to use, and can optionally specify -baud, parity and databits -- e.g. "ttySC0,9600N8" or "ttySC1,19200". - -The <action> can be "halt" or "disabled". The "halt" action enters the -debugger via a breakpoint as soon as kgdb is initialized; the "disabled" -action causes kgdb to ignore kernel segfaults and such until explicitly -entered by a breakpoint in the code or by external action (sysrq or NMI). - -(Both <ttyspec> and <action> can appear alone, w/o the separating comma.) - -For example, if you wish to debug early in kernel startup code, you -might specify the halt option: - - kgdb=halt - -Boot the TARGET machine, which will appear to hang. - -On your DEVELOPMENT machine, cd to the source directory and run the gdb -program. (This is likely to be a cross GDB which runs on your host but -is built for an SH target.) If everything is working correctly you -should see gdb print out a few lines indicating that a breakpoint has -been taken. It will actually show a line of code in the target kernel -inside the gdbstub activation code. - -NOTE: BE SURE TO TERMINATE OR SUSPEND any other host application which -may be using the same serial port (for example, a terminal emulator you -have been using to connect to the target boot code.) Otherwise, data -from the target may not all get to GDB! - -You can now use whatever gdb commands you like to set breakpoints. -Enter "continue" to start your target machine executing again. At this -point the target system will run at full speed until it encounters -your breakpoint or gets a segment violation in the kernel, or whatever. - -Serial Ports: KGDB, Console -============================ - -This version of KGDB may not gracefully handle conflict with other -drivers in the kernel using the same port. If KGDB is configured on the -same port (and with the same parameters) as the kernel console, or if -CONFIG_SH_KGDB_CONSOLE is configured, things should be fine (though in -some cases console messages may appear twice through GDB). But if the -KGDB port is not the kernel console and used by another serial driver -which assumes different serial parameters (e.g. baud rate) KGDB may not -recover. - -Also, when KGDB is entered via sysrq-g (requires CONFIG_KGDB_SYSRQ) and -the kgdb port uses the same port as the console, detaching GDB will not -restore the console to working order without the port being re-opened. - -Another serious consequence of this is that GDB currently CANNOT break -into KGDB externally (e.g. via ^C or <BREAK>); unless a breakpoint or -error is encountered, the only way to enter KGDB after the initial halt -(see above) is via NMI (CONFIG_KGDB_NMI) or sysrq-g (CONFIG_KGDB_SYSRQ). - -Code is included for the basic Hitachi Solution Engine boards to allow -the use of ttyS0 for KGDB if desired; this is less robust, but may be -useful in some cases. (This cannot be selected using the config file, -but only through the kernel command line, e.g. "kgdb=ttyS0", though the -configured defaults for baud rate etc. still apply if not overridden.) - -If gdbstub Does Not Work -======================== - -If it doesn't work, you will have to troubleshoot it. Do the easy -things first like double checking your cabling and data rates. You -might try some non-kernel based programs to see if the back-to-back -connection works properly. Just something simple like cat /etc/hosts -/dev/ttyS0 on one machine and cat /dev/ttyS0 on the other will tell you -if you can send data from one machine to the other. There is no point -in tearing out your hair in the kernel if the line doesn't work. - -If you need to debug the GDB/KGDB communication itself, the gdb commands -"set debug remote 1" and "set debug serial 1" may be useful, but be -warned: they produce a lot of output. - -Threads -======= - -Each process in a target machine is seen as a gdb thread. gdb thread related -commands (info threads, thread n) can be used. CONFIG_KGDB_THREAD must -be defined for this to work. - -In this version, kgdb reports PID_MAX (32768) as the process ID for the -idle process (pid 0), since GDB does not accept 0 as an ID. - -Detaching (exiting KGDB) -========================= - -There are two ways to resume full-speed target execution: "continue" and -"detach". With "continue", GDB inserts any specified breakpoints in the -target code and resumes execution; the target is still in "gdb mode". -If a breakpoint or other debug event (e.g. NMI) happens, the target -halts and communicates with GDB again, which is waiting for it. - -With "detach", GDB does *not* insert any breakpoints; target execution -is resumed and GDB stops communicating (does not wait for the target). -In this case, the target is no longer in "gdb mode" -- for example, -console messages no longer get sent separately to the KGDB port, or -encapsulated for GDB. If a debug event (e.g. NMI) occurs, the target -will re-enter "gdb mode" and will display this fact on the console; you -must give a new "target remote" command to gdb. - -NOTE: TO AVOID LOSSING CONSOLE MESSAGES IN CASE THE KERNEL CONSOLE AND -KGDB USING THE SAME PORT, THE TARGET WAITS FOR ANY INPUT CHARACTER ON -THE KGDB PORT AFTER A DETACH COMMAND. For example, after the detach you -could start a terminal emulator on the same host port and enter a <cr>; -however, this program must then be terminated or suspended in order to -use GBD again if KGDB is re-entered. - - -Acknowledgements -================ - -This code was mostly generated by Henry Bell <henry.bell@st.com>; -largely from KGDB by Amit S. Kale <akale@veritas.com> - extracts from -code by Glenn Engel, Jim Kingdon, David Grothe <dave@gcom.com>, Tigran -Aivazian <tigran@sco.com>, William Gatliff <bgat@open-widgets.com>, Ben -Lee, Steve Chamberlain and Benoit Miller <fulg@iname.com> are also -included. - -Jeremy Siegel -<jsiegel@mvista.com> diff --git a/Documentation/sound/alsa/ALSA-Configuration.txt b/Documentation/sound/alsa/ALSA-Configuration.txt index 394d7d378dc7..841a9365d5fd 100644 --- a/Documentation/sound/alsa/ALSA-Configuration.txt +++ b/Documentation/sound/alsa/ALSA-Configuration.txt @@ -757,6 +757,8 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. model - force the model name position_fix - Fix DMA pointer (0 = auto, 1 = use LPIB, 2 = POSBUF) probe_mask - Bitmask to probe codecs (default = -1, meaning all slots) + probe_only - Only probing and no codec initialization (default=off); + Useful to check the initial codec status for debugging bdl_pos_adj - Specifies the DMA IRQ timing delay in samples. Passing -1 will make the driver to choose the appropriate value based on the controller chip. @@ -772,327 +774,23 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. This module supports multiple cards and autoprobe. + See Documentation/sound/alsa/HD-Audio.txt for more details about + HD-audio driver. + Each codec may have a model table for different configurations. If your machine isn't listed there, the default (usually minimal) configuration is set up. You can pass "model=<name>" option to specify a certain model in such a case. There are different - models depending on the codec chip. - - Model name Description - ---------- ----------- - ALC880 - 3stack 3-jack in back and a headphone out - 3stack-digout 3-jack in back, a HP out and a SPDIF out - 5stack 5-jack in back, 2-jack in front - 5stack-digout 5-jack in back, 2-jack in front, a SPDIF out - 6stack 6-jack in back, 2-jack in front - 6stack-digout 6-jack with a SPDIF out - w810 3-jack - z71v 3-jack (HP shared SPDIF) - asus 3-jack (ASUS Mobo) - asus-w1v ASUS W1V - asus-dig ASUS with SPDIF out - asus-dig2 ASUS with SPDIF out (using GPIO2) - uniwill 3-jack - fujitsu Fujitsu Laptops (Pi1536) - F1734 2-jack - lg LG laptop (m1 express dual) - lg-lw LG LW20/LW25 laptop - tcl TCL S700 - clevo Clevo laptops (m520G, m665n) - medion Medion Rim 2150 - test for testing/debugging purpose, almost all controls can be - adjusted. Appearing only when compiled with - $CONFIG_SND_DEBUG=y - auto auto-config reading BIOS (default) - - ALC260 - hp HP machines - hp-3013 HP machines (3013-variant) - hp-dc7600 HP DC7600 - fujitsu Fujitsu S7020 - acer Acer TravelMate - will Will laptops (PB V7900) - replacer Replacer 672V - basic fixed pin assignment (old default model) - test for testing/debugging purpose, almost all controls can - adjusted. Appearing only when compiled with - $CONFIG_SND_DEBUG=y - auto auto-config reading BIOS (default) - - ALC262 - fujitsu Fujitsu Laptop - hp-bpc HP xw4400/6400/8400/9400 laptops - hp-bpc-d7000 HP BPC D7000 - hp-tc-t5735 HP Thin Client T5735 - hp-rp5700 HP RP5700 - benq Benq ED8 - benq-t31 Benq T31 - hippo Hippo (ATI) with jack detection, Sony UX-90s - hippo_1 Hippo (Benq) with jack detection - sony-assamd Sony ASSAMD - toshiba-s06 Toshiba S06 - toshiba-rx1 Toshiba RX1 - ultra Samsung Q1 Ultra Vista model - lenovo-3000 Lenovo 3000 y410 - nec NEC Versa S9100 - basic fixed pin assignment w/o SPDIF - auto auto-config reading BIOS (default) - - ALC267/268 - quanta-il1 Quanta IL1 mini-notebook - 3stack 3-stack model - toshiba Toshiba A205 - acer Acer laptops - acer-aspire Acer Aspire One - dell Dell OEM laptops (Vostro 1200) - zepto Zepto laptops - test for testing/debugging purpose, almost all controls can - adjusted. Appearing only when compiled with - $CONFIG_SND_DEBUG=y - auto auto-config reading BIOS (default) - - ALC269 - basic Basic preset - quanta Quanta FL1 - eeepc-p703 ASUS Eeepc P703 P900A - eeepc-p901 ASUS Eeepc P901 S101 - - ALC662/663 - 3stack-dig 3-stack (2-channel) with SPDIF - 3stack-6ch 3-stack (6-channel) - 3stack-6ch-dig 3-stack (6-channel) with SPDIF - 6stack-dig 6-stack with SPDIF - lenovo-101e Lenovo laptop - eeepc-p701 ASUS Eeepc P701 - eeepc-ep20 ASUS Eeepc EP20 - ecs ECS/Foxconn mobo - m51va ASUS M51VA - g71v ASUS G71V - h13 ASUS H13 - g50v ASUS G50V - asus-mode1 ASUS - asus-mode2 ASUS - asus-mode3 ASUS - asus-mode4 ASUS - asus-mode5 ASUS - asus-mode6 ASUS - auto auto-config reading BIOS (default) - - ALC882/885 - 3stack-dig 3-jack with SPDIF I/O - 6stack-dig 6-jack digital with SPDIF I/O - arima Arima W820Di1 - targa Targa T8, MSI-1049 T8 - asus-a7j ASUS A7J - asus-a7m ASUS A7M - macpro MacPro support - mbp3 Macbook Pro rev3 - imac24 iMac 24'' with jack detection - w2jc ASUS W2JC - auto auto-config reading BIOS (default) - - ALC883/888 - 3stack-dig 3-jack with SPDIF I/O - 6stack-dig 6-jack digital with SPDIF I/O - 3stack-6ch 3-jack 6-channel - 3stack-6ch-dig 3-jack 6-channel with SPDIF I/O - 6stack-dig-demo 6-jack digital for Intel demo board - acer Acer laptops (Travelmate 3012WTMi, Aspire 5600, etc) - acer-aspire Acer Aspire 9810 - medion Medion Laptops - medion-md2 Medion MD2 - targa-dig Targa/MSI - targa-2ch-dig Targs/MSI with 2-channel - laptop-eapd 3-jack with SPDIF I/O and EAPD (Clevo M540JE, M550JE) - lenovo-101e Lenovo 101E - lenovo-nb0763 Lenovo NB0763 - lenovo-ms7195-dig Lenovo MS7195 - lenovo-sky Lenovo Sky - haier-w66 Haier W66 - 3stack-hp HP machines with 3stack (Lucknow, Samba boards) - 6stack-dell Dell machines with 6stack (Inspiron 530) - mitac Mitac 8252D - clevo-m720 Clevo M720 laptop series - fujitsu-pi2515 Fujitsu AMILO Pi2515 - 3stack-6ch-intel Intel DG33* boards - auto auto-config reading BIOS (default) - - ALC861/660 - 3stack 3-jack - 3stack-dig 3-jack with SPDIF I/O - 6stack-dig 6-jack with SPDIF I/O - 3stack-660 3-jack (for ALC660) - uniwill-m31 Uniwill M31 laptop - toshiba Toshiba laptop support - asus Asus laptop support - asus-laptop ASUS F2/F3 laptops - auto auto-config reading BIOS (default) - - ALC861VD/660VD - 3stack 3-jack - 3stack-dig 3-jack with SPDIF OUT - 6stack-dig 6-jack with SPDIF OUT - 3stack-660 3-jack (for ALC660VD) - 3stack-660-digout 3-jack with SPDIF OUT (for ALC660VD) - lenovo Lenovo 3000 C200 - dallas Dallas laptops - hp HP TX1000 - auto auto-config reading BIOS (default) - - CMI9880 - minimal 3-jack in back - min_fp 3-jack in back, 2-jack in front - full 6-jack in back, 2-jack in front - full_dig 6-jack in back, 2-jack in front, SPDIF I/O - allout 5-jack in back, 2-jack in front, SPDIF out - auto auto-config reading BIOS (default) - - AD1882 / AD1882A - 3stack 3-stack mode (default) - 6stack 6-stack mode - - AD1884A / AD1883 / AD1984A / AD1984B - desktop 3-stack desktop (default) - laptop laptop with HP jack sensing - mobile mobile devices with HP jack sensing - thinkpad Lenovo Thinkpad X300 - - AD1884 - N/A - - AD1981 - basic 3-jack (default) - hp HP nx6320 - thinkpad Lenovo Thinkpad T60/X60/Z60 - toshiba Toshiba U205 - - AD1983 - N/A - - AD1984 - basic default configuration - thinkpad Lenovo Thinkpad T61/X61 - dell Dell T3400 - - AD1986A - 6stack 6-jack, separate surrounds (default) - 3stack 3-stack, shared surrounds - laptop 2-channel only (FSC V2060, Samsung M50) - laptop-eapd 2-channel with EAPD (Samsung R65, ASUS A6J) - laptop-automute 2-channel with EAPD and HP-automute (Lenovo N100) - ultra 2-channel with EAPD (Samsung Ultra tablet PC) - - AD1988/AD1988B/AD1989A/AD1989B - 6stack 6-jack - 6stack-dig ditto with SPDIF - 3stack 3-jack - 3stack-dig ditto with SPDIF - laptop 3-jack with hp-jack automute - laptop-dig ditto with SPDIF - auto auto-config reading BIOS (default) - - Conexant 5045 - laptop-hpsense Laptop with HP sense (old model laptop) - laptop-micsense Laptop with Mic sense (old model fujitsu) - laptop-hpmicsense Laptop with HP and Mic senses - benq Benq R55E - test for testing/debugging purpose, almost all controls - can be adjusted. Appearing only when compiled with - $CONFIG_SND_DEBUG=y - - Conexant 5047 - laptop Basic Laptop config - laptop-hp Laptop config for some HP models (subdevice 30A5) - laptop-eapd Laptop config with EAPD support - test for testing/debugging purpose, almost all controls - can be adjusted. Appearing only when compiled with - $CONFIG_SND_DEBUG=y - - Conexant 5051 - laptop Basic Laptop config (default) - hp HP Spartan laptop - - STAC9200 - ref Reference board - dell-d21 Dell (unknown) - dell-d22 Dell (unknown) - dell-d23 Dell (unknown) - dell-m21 Dell Inspiron 630m, Dell Inspiron 640m - dell-m22 Dell Latitude D620, Dell Latitude D820 - dell-m23 Dell XPS M1710, Dell Precision M90 - dell-m24 Dell Latitude 120L - dell-m25 Dell Inspiron E1505n - dell-m26 Dell Inspiron 1501 - dell-m27 Dell Inspiron E1705/9400 - gateway Gateway laptops with EAPD control - panasonic Panasonic CF-74 - - STAC9205/9254 - ref Reference board - dell-m42 Dell (unknown) - dell-m43 Dell Precision - dell-m44 Dell Inspiron - - STAC9220/9221 - ref Reference board - 3stack D945 3stack - 5stack D945 5stack + SPDIF - intel-mac-v1 Intel Mac Type 1 - intel-mac-v2 Intel Mac Type 2 - intel-mac-v3 Intel Mac Type 3 - intel-mac-v4 Intel Mac Type 4 - intel-mac-v5 Intel Mac Type 5 - intel-mac-auto Intel Mac (detect type according to subsystem id) - macmini Intel Mac Mini (equivalent with type 3) - macbook Intel Mac Book (eq. type 5) - macbook-pro-v1 Intel Mac Book Pro 1st generation (eq. type 3) - macbook-pro Intel Mac Book Pro 2nd generation (eq. type 3) - imac-intel Intel iMac (eq. type 2) - imac-intel-20 Intel iMac (newer version) (eq. type 3) - dell-d81 Dell (unknown) - dell-d82 Dell (unknown) - dell-m81 Dell (unknown) - dell-m82 Dell XPS M1210 - - STAC9202/9250/9251 - ref Reference board, base config - m2-2 Some Gateway MX series laptops - m6 Some Gateway NX series laptops - pa6 Gateway NX860 series - - STAC9227/9228/9229/927x - ref Reference board - ref-no-jd Reference board without HP/Mic jack detection - 3stack D965 3stack - 5stack D965 5stack + SPDIF - dell-3stack Dell Dimension E520 - dell-bios Fixes with Dell BIOS setup - - STAC92HD71B* - ref Reference board - dell-m4-1 Dell desktops - dell-m4-2 Dell desktops - dell-m4-3 Dell desktops - - STAC92HD73* - ref Reference board - no-jd BIOS setup but without jack-detection - dell-m6-amic Dell desktops/laptops with analog mics - dell-m6-dmic Dell desktops/laptops with digital mics - dell-m6 Dell desktops/laptops with both type of mics - - STAC9872 - vaio Setup for VAIO FE550G/SZ110 - vaio-ar Setup for VAIO AR + models depending on the codec chip. The list of available models + is found in HD-Audio-Models.txt The model name "genric" is treated as a special case. When this model is given, the driver uses the generic codec parser without "codec-patch". It's sometimes good for testing and debugging. If the default configuration doesn't work and one of the above - matches with your device, report it together with the PCI - subsystem ID (output of "lspci -nv") to ALSA BTS or alsa-devel + matches with your device, report it together with alsa-info.sh + output (with --no-upload option) to kernel bugzilla or alsa-devel ML (see the section "Links and Addresses"). power_save and power_save_controller options are for power-saving @@ -1652,7 +1350,8 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. * AuzenTech X-Meridian * Bgears b-Enspirer * Club3D Theatron DTS - * HT-Omega Claro + * HT-Omega Claro (plus) + * HT-Omega Claro halo (XT) * Razer Barracuda AC-1 * Sondigo Inferno @@ -2409,8 +2108,11 @@ Links and Addresses ALSA project homepage http://www.alsa-project.org - ALSA Bug Tracking System - https://bugtrack.alsa-project.org/bugs/ + Kernel Bugzilla + http://bugzilla.kernel.org/ ALSA Developers ML mailto:alsa-devel@alsa-project.org + + alsa-info.sh script + http://www.alsa-project.org/alsa-info.sh diff --git a/Documentation/sound/alsa/HD-Audio-Models.txt b/Documentation/sound/alsa/HD-Audio-Models.txt new file mode 100644 index 000000000000..4b7ac21ea9eb --- /dev/null +++ b/Documentation/sound/alsa/HD-Audio-Models.txt @@ -0,0 +1,348 @@ + Model name Description + ---------- ----------- +ALC880 +====== + 3stack 3-jack in back and a headphone out + 3stack-digout 3-jack in back, a HP out and a SPDIF out + 5stack 5-jack in back, 2-jack in front + 5stack-digout 5-jack in back, 2-jack in front, a SPDIF out + 6stack 6-jack in back, 2-jack in front + 6stack-digout 6-jack with a SPDIF out + w810 3-jack + z71v 3-jack (HP shared SPDIF) + asus 3-jack (ASUS Mobo) + asus-w1v ASUS W1V + asus-dig ASUS with SPDIF out + asus-dig2 ASUS with SPDIF out (using GPIO2) + uniwill 3-jack + fujitsu Fujitsu Laptops (Pi1536) + F1734 2-jack + lg LG laptop (m1 express dual) + lg-lw LG LW20/LW25 laptop + tcl TCL S700 + clevo Clevo laptops (m520G, m665n) + medion Medion Rim 2150 + test for testing/debugging purpose, almost all controls can be + adjusted. Appearing only when compiled with + $CONFIG_SND_DEBUG=y + auto auto-config reading BIOS (default) + +ALC260 +====== + hp HP machines + hp-3013 HP machines (3013-variant) + hp-dc7600 HP DC7600 + fujitsu Fujitsu S7020 + acer Acer TravelMate + will Will laptops (PB V7900) + replacer Replacer 672V + basic fixed pin assignment (old default model) + test for testing/debugging purpose, almost all controls can + adjusted. Appearing only when compiled with + $CONFIG_SND_DEBUG=y + auto auto-config reading BIOS (default) + +ALC262 +====== + fujitsu Fujitsu Laptop + hp-bpc HP xw4400/6400/8400/9400 laptops + hp-bpc-d7000 HP BPC D7000 + hp-tc-t5735 HP Thin Client T5735 + hp-rp5700 HP RP5700 + benq Benq ED8 + benq-t31 Benq T31 + hippo Hippo (ATI) with jack detection, Sony UX-90s + hippo_1 Hippo (Benq) with jack detection + sony-assamd Sony ASSAMD + toshiba-s06 Toshiba S06 + toshiba-rx1 Toshiba RX1 + ultra Samsung Q1 Ultra Vista model + lenovo-3000 Lenovo 3000 y410 + nec NEC Versa S9100 + basic fixed pin assignment w/o SPDIF + auto auto-config reading BIOS (default) + +ALC267/268 +========== + quanta-il1 Quanta IL1 mini-notebook + 3stack 3-stack model + toshiba Toshiba A205 + acer Acer laptops + acer-dmic Acer laptops with digital-mic + acer-aspire Acer Aspire One + dell Dell OEM laptops (Vostro 1200) + zepto Zepto laptops + test for testing/debugging purpose, almost all controls can + adjusted. Appearing only when compiled with + $CONFIG_SND_DEBUG=y + auto auto-config reading BIOS (default) + +ALC269 +====== + basic Basic preset + quanta Quanta FL1 + eeepc-p703 ASUS Eeepc P703 P900A + eeepc-p901 ASUS Eeepc P901 S101 + fujitsu FSC Amilo + auto auto-config reading BIOS (default) + +ALC662/663 +========== + 3stack-dig 3-stack (2-channel) with SPDIF + 3stack-6ch 3-stack (6-channel) + 3stack-6ch-dig 3-stack (6-channel) with SPDIF + 6stack-dig 6-stack with SPDIF + lenovo-101e Lenovo laptop + eeepc-p701 ASUS Eeepc P701 + eeepc-ep20 ASUS Eeepc EP20 + ecs ECS/Foxconn mobo + m51va ASUS M51VA + g71v ASUS G71V + h13 ASUS H13 + g50v ASUS G50V + asus-mode1 ASUS + asus-mode2 ASUS + asus-mode3 ASUS + asus-mode4 ASUS + asus-mode5 ASUS + asus-mode6 ASUS + auto auto-config reading BIOS (default) + +ALC882/885 +========== + 3stack-dig 3-jack with SPDIF I/O + 6stack-dig 6-jack digital with SPDIF I/O + arima Arima W820Di1 + targa Targa T8, MSI-1049 T8 + asus-a7j ASUS A7J + asus-a7m ASUS A7M + macpro MacPro support + mbp3 Macbook Pro rev3 + imac24 iMac 24'' with jack detection + w2jc ASUS W2JC + auto auto-config reading BIOS (default) + +ALC883/888 +========== + 3stack-dig 3-jack with SPDIF I/O + 6stack-dig 6-jack digital with SPDIF I/O + 3stack-6ch 3-jack 6-channel + 3stack-6ch-dig 3-jack 6-channel with SPDIF I/O + 6stack-dig-demo 6-jack digital for Intel demo board + acer Acer laptops (Travelmate 3012WTMi, Aspire 5600, etc) + acer-aspire Acer Aspire 9810 + acer-aspire-4930g Acer Aspire 4930G + medion Medion Laptops + medion-md2 Medion MD2 + targa-dig Targa/MSI + targa-2ch-dig Targs/MSI with 2-channel + laptop-eapd 3-jack with SPDIF I/O and EAPD (Clevo M540JE, M550JE) + lenovo-101e Lenovo 101E + lenovo-nb0763 Lenovo NB0763 + lenovo-ms7195-dig Lenovo MS7195 + lenovo-sky Lenovo Sky + haier-w66 Haier W66 + 3stack-hp HP machines with 3stack (Lucknow, Samba boards) + 6stack-dell Dell machines with 6stack (Inspiron 530) + mitac Mitac 8252D + clevo-m720 Clevo M720 laptop series + fujitsu-pi2515 Fujitsu AMILO Pi2515 + fujitsu-xa3530 Fujitsu AMILO XA3530 + 3stack-6ch-intel Intel DG33* boards + auto auto-config reading BIOS (default) + +ALC861/660 +========== + 3stack 3-jack + 3stack-dig 3-jack with SPDIF I/O + 6stack-dig 6-jack with SPDIF I/O + 3stack-660 3-jack (for ALC660) + uniwill-m31 Uniwill M31 laptop + toshiba Toshiba laptop support + asus Asus laptop support + asus-laptop ASUS F2/F3 laptops + auto auto-config reading BIOS (default) + +ALC861VD/660VD +============== + 3stack 3-jack + 3stack-dig 3-jack with SPDIF OUT + 6stack-dig 6-jack with SPDIF OUT + 3stack-660 3-jack (for ALC660VD) + 3stack-660-digout 3-jack with SPDIF OUT (for ALC660VD) + lenovo Lenovo 3000 C200 + dallas Dallas laptops + hp HP TX1000 + asus-v1s ASUS V1Sn + auto auto-config reading BIOS (default) + +CMI9880 +======= + minimal 3-jack in back + min_fp 3-jack in back, 2-jack in front + full 6-jack in back, 2-jack in front + full_dig 6-jack in back, 2-jack in front, SPDIF I/O + allout 5-jack in back, 2-jack in front, SPDIF out + auto auto-config reading BIOS (default) + +AD1882 / AD1882A +================ + 3stack 3-stack mode (default) + 6stack 6-stack mode + +AD1884A / AD1883 / AD1984A / AD1984B +==================================== + desktop 3-stack desktop (default) + laptop laptop with HP jack sensing + mobile mobile devices with HP jack sensing + thinkpad Lenovo Thinkpad X300 + +AD1884 +====== + N/A + +AD1981 +====== + basic 3-jack (default) + hp HP nx6320 + thinkpad Lenovo Thinkpad T60/X60/Z60 + toshiba Toshiba U205 + +AD1983 +====== + N/A + +AD1984 +====== + basic default configuration + thinkpad Lenovo Thinkpad T61/X61 + dell Dell T3400 + +AD1986A +======= + 6stack 6-jack, separate surrounds (default) + 3stack 3-stack, shared surrounds + laptop 2-channel only (FSC V2060, Samsung M50) + laptop-eapd 2-channel with EAPD (ASUS A6J) + laptop-automute 2-channel with EAPD and HP-automute (Lenovo N100) + ultra 2-channel with EAPD (Samsung Ultra tablet PC) + samsung 2-channel with EAPD (Samsung R65) + +AD1988/AD1988B/AD1989A/AD1989B +============================== + 6stack 6-jack + 6stack-dig ditto with SPDIF + 3stack 3-jack + 3stack-dig ditto with SPDIF + laptop 3-jack with hp-jack automute + laptop-dig ditto with SPDIF + auto auto-config reading BIOS (default) + +Conexant 5045 +============= + laptop-hpsense Laptop with HP sense (old model laptop) + laptop-micsense Laptop with Mic sense (old model fujitsu) + laptop-hpmicsense Laptop with HP and Mic senses + benq Benq R55E + test for testing/debugging purpose, almost all controls + can be adjusted. Appearing only when compiled with + $CONFIG_SND_DEBUG=y + +Conexant 5047 +============= + laptop Basic Laptop config + laptop-hp Laptop config for some HP models (subdevice 30A5) + laptop-eapd Laptop config with EAPD support + test for testing/debugging purpose, almost all controls + can be adjusted. Appearing only when compiled with + $CONFIG_SND_DEBUG=y + +Conexant 5051 +============= + laptop Basic Laptop config (default) + hp HP Spartan laptop + +STAC9200 +======== + ref Reference board + dell-d21 Dell (unknown) + dell-d22 Dell (unknown) + dell-d23 Dell (unknown) + dell-m21 Dell Inspiron 630m, Dell Inspiron 640m + dell-m22 Dell Latitude D620, Dell Latitude D820 + dell-m23 Dell XPS M1710, Dell Precision M90 + dell-m24 Dell Latitude 120L + dell-m25 Dell Inspiron E1505n + dell-m26 Dell Inspiron 1501 + dell-m27 Dell Inspiron E1705/9400 + gateway Gateway laptops with EAPD control + panasonic Panasonic CF-74 + +STAC9205/9254 +============= + ref Reference board + dell-m42 Dell (unknown) + dell-m43 Dell Precision + dell-m44 Dell Inspiron + +STAC9220/9221 +============= + ref Reference board + 3stack D945 3stack + 5stack D945 5stack + SPDIF + intel-mac-v1 Intel Mac Type 1 + intel-mac-v2 Intel Mac Type 2 + intel-mac-v3 Intel Mac Type 3 + intel-mac-v4 Intel Mac Type 4 + intel-mac-v5 Intel Mac Type 5 + intel-mac-auto Intel Mac (detect type according to subsystem id) + macmini Intel Mac Mini (equivalent with type 3) + macbook Intel Mac Book (eq. type 5) + macbook-pro-v1 Intel Mac Book Pro 1st generation (eq. type 3) + macbook-pro Intel Mac Book Pro 2nd generation (eq. type 3) + imac-intel Intel iMac (eq. type 2) + imac-intel-20 Intel iMac (newer version) (eq. type 3) + dell-d81 Dell (unknown) + dell-d82 Dell (unknown) + dell-m81 Dell (unknown) + dell-m82 Dell XPS M1210 + +STAC9202/9250/9251 +================== + ref Reference board, base config + m2-2 Some Gateway MX series laptops + m6 Some Gateway NX series laptops + pa6 Gateway NX860 series + +STAC9227/9228/9229/927x +======================= + ref Reference board + ref-no-jd Reference board without HP/Mic jack detection + 3stack D965 3stack + 5stack D965 5stack + SPDIF + dell-3stack Dell Dimension E520 + dell-bios Fixes with Dell BIOS setup + +STAC92HD71B* +============ + ref Reference board + dell-m4-1 Dell desktops + dell-m4-2 Dell desktops + dell-m4-3 Dell desktops + +STAC92HD73* +=========== + ref Reference board + no-jd BIOS setup but without jack-detection + dell-m6-amic Dell desktops/laptops with analog mics + dell-m6-dmic Dell desktops/laptops with digital mics + dell-m6 Dell desktops/laptops with both type of mics + +STAC92HD83* +=========== + ref Reference board + +STAC9872 +======== + vaio Setup for VAIO FE550G/SZ110 + vaio-ar Setup for VAIO AR diff --git a/Documentation/sound/alsa/HD-Audio.txt b/Documentation/sound/alsa/HD-Audio.txt new file mode 100644 index 000000000000..8d68fff71839 --- /dev/null +++ b/Documentation/sound/alsa/HD-Audio.txt @@ -0,0 +1,577 @@ +MORE NOTES ON HD-AUDIO DRIVER +============================= + Takashi Iwai <tiwai@suse.de> + + +GENERAL +------- + +HD-audio is the new standard on-board audio component on modern PCs +after AC97. Although Linux has been supporting HD-audio since long +time ago, there are often problems with new machines. A part of the +problem is broken BIOS, and the rest is the driver implementation. +This document explains the brief trouble-shooting and debugging +methods for the HD-audio hardware. + +The HD-audio component consists of two parts: the controller chip and +the codec chips on the HD-audio bus. Linux provides a single driver +for all controllers, snd-hda-intel. Although the driver name contains +a word of a well-known harware vendor, it's not specific to it but for +all controller chips by other companies. Since the HD-audio +controllers are supposed to be compatible, the single snd-hda-driver +should work in most cases. But, not surprisingly, there are known +bugs and issues specific to each controller type. The snd-hda-intel +driver has a bunch of workarounds for these as described below. + +A controller may have multiple codecs. Usually you have one audio +codec and optionally one modem codec. In theory, there might be +multiple audio codecs, e.g. for analog and digital outputs, and the +driver might not work properly because of conflict of mixer elements. +This should be fixed in future if such hardware really exists. + +The snd-hda-intel driver has several different codec parsers depending +on the codec. It has a generic parser as a fallback, but this +functionality is fairly limited until now. Instead of the generic +parser, usually the codec-specific parser (coded in patch_*.c) is used +for the codec-specific implementations. The details about the +codec-specific problems are explained in the later sections. + +If you are interested in the deep debugging of HD-audio, read the +HD-audio specification at first. The specification is found on +Intel's web page, for example: + +- http://www.intel.com/standards/hdaudio/ + + +HD-AUDIO CONTROLLER +------------------- + +DMA-Position Problem +~~~~~~~~~~~~~~~~~~~~ +The most common problem of the controller is the inaccurate DMA +pointer reporting. The DMA pointer for playback and capture can be +read in two ways, either via a LPIB register or via a position-buffer +map. As default the driver tries to read from the io-mapped +position-buffer, and falls back to LPIB if the position-buffer appears +dead. However, this detection isn't perfect on some devices. In such +a case, you can change the default method via `position_fix` option. + +`position_fix=1` means to use LPIB method explicitly. +`position_fix=2` means to use the position-buffer. 0 is the default +value, the automatic check and fallback to LPIB as described in the +above. If you get a problem of repeated sounds, this option might +help. + +In addition to that, every controller is known to be broken regarding +the wake-up timing. It wakes up a few samples before actually +processing the data on the buffer. This caused a lot of problems, for +example, with ALSA dmix or JACK. Since 2.6.27 kernel, the driver puts +an artificial delay to the wake up timing. This delay is controlled +via `bdl_pos_adj` option. + +When `bdl_pos_adj` is a negative value (as default), it's assigned to +an appropriate value depending on the controller chip. For Intel +chips, it'd be 1 while it'd be 32 for others. Usually this works. +Only in case it doesn't work and you get warning messages, you should +change this parameter to other values. + + +Codec-Probing Problem +~~~~~~~~~~~~~~~~~~~~~ +A less often but a more severe problem is the codec probing. When +BIOS reports the available codec slots wrongly, the driver gets +confused and tries to access the non-existing codec slot. This often +results in the total screw-up, and destructs the further communication +with the codec chips. The symptom appears usually as error messages +like: +------------------------------------------------------------------------ + hda_intel: azx_get_response timeout, switching to polling mode: + last cmd=0x12345678 + hda_intel: azx_get_response timeout, switching to single_cmd mode: + last cmd=0x12345678 +------------------------------------------------------------------------ + +The first line is a warning, and this is usually relatively harmless. +It means that the codec response isn't notified via an IRQ. The +driver uses explicit polling method to read the response. It gives +very slight CPU overhead, but you'd unlikely notice it. + +The second line is, however, a fatal error. If this happens, usually +it means that something is really wrong. Most likely you are +accessing a non-existing codec slot. + +Thus, if the second error message appears, try to narrow the probed +codec slots via `probe_mask` option. It's a bitmask, and each bit +corresponds to the codec slot. For example, to probe only the first +slot, pass `probe_mask=1`. For the first and the third slots, pass +`probe_mask=5` (where 5 = 1 | 4), and so on. + +Since 2.6.29 kernel, the driver has a more robust probing method, so +this error might happen rarely, though. + + +Interrupt Handling +~~~~~~~~~~~~~~~~~~ +In rare but some cases, the interrupt isn't properly handled as +default. You would notice this by the DMA transfer error reported by +ALSA PCM core, for example. Using MSI might help in such a case. +Pass `enable_msi=1` option for enabling MSI. + + +HD-AUDIO CODEC +-------------- + +Model Option +~~~~~~~~~~~~ +The most common problem regarding the HD-audio driver is the +unsupported codec features or the mismatched device configuration. +Most of codec-specific code has several preset models, either to +override the BIOS setup or to provide more comprehensive features. + +The driver checks PCI SSID and looks through the static configuration +table until any matching entry is found. If you have a new machine, +you may see a message like below: +------------------------------------------------------------------------ + hda_codec: Unknown model for ALC880, trying auto-probe from BIOS... +------------------------------------------------------------------------ +Even if you see such a message, DON'T PANIC. Take a deep breath and +keep your towel. First of all, it's an informational message, no +warning, no error. This means that the PCI SSID of your device isn't +listed in the known preset model (white-)list. But, this doesn't mean +that the driver is broken. Many codec-drivers provide the automatic +configuration mechanism based on the BIOS setup. + +The HD-audio codec has usually "pin" widgets, and BIOS sets the default +configuration of each pin, which indicates the location, the +connection type, the jack color, etc. The HD-audio driver can guess +the right connection judging from these default configuration values. +However -- some codec-support codes, such as patch_analog.c, don't +support the automatic probing (yet as of 2.6.28). And, BIOS is often, +yes, pretty often broken. It sets up wrong values and screws up the +driver. + +The preset model is provided basically to overcome such a situation. +When the matching preset model is found in the white-list, the driver +assumes the static configuration of that preset and builds the mixer +elements and PCM streams based on the static information. Thus, if +you have a newer machine with a slightly different PCI SSID from the +existing one, you may have a good chance to re-use the same model. +You can pass the `model` option to specify the preset model instead of +PCI SSID look-up. + +What `model` option values are available depends on the codec chip. +Check your codec chip from the codec proc file (see "Codec Proc-File" +section below). It will show the vendor/product name of your codec +chip. Then, see Documentation/sound/alsa/HD-Audio-Modelstxt file, +the section of HD-audio driver. You can find a list of codecs +and `model` options belonging to each codec. For example, for Realtek +ALC262 codec chip, pass `model=ultra` for devices that are compatible +with Samsung Q1 Ultra. + +Thus, the first thing you can do for any brand-new, unsupported and +non-working HD-audio hardware is to check HD-audio codec and several +different `model` option values. If you have a luck, some of them +might suit with your device well. + +Some codecs such as ALC880 have a special model option `model=test`. +This configures the driver to provide as many mixer controls as +possible for every single pin feature except for the unsolicited +events (and maybe some other specials). Adjust each mixer element and +try the I/O in the way of trial-and-error until figuring out the whole +I/O pin mappings. + +Note that `model=generic` has a special meaning. It means to use the +generic parser regardless of the codec. Usually the codec-specific +parser is much better than the generic parser (as now). Thus this +option is more about the debugging purpose. + + +Speaker and Headphone Output +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +One of the most frequent (and obvious) bugs with HD-audio is the +silent output from either or both of a built-in speaker and a +headphone jack. In general, you should try a headphone output at +first. A speaker output often requires more additional controls like +the external amplifier bits. Thus a headphone output has a slightly +better chance. + +Before making a bug report, double-check whether the mixer is set up +correctly. The recent version of snd-hda-intel driver provides mostly +"Master" volume control as well as "Front" volume (where Front +indicates the front-channels). In addition, there can be individual +"Headphone" and "Speaker" controls. + +Ditto for the speaker output. There can be "External Amplifier" +switch on some codecs. Turn on this if present. + +Another related problem is the automatic mute of speaker output by +headphone plugging. This feature is implemented in most cases, but +not on every preset model or codec-support code. + +In anyway, try a different model option if you have such a problem. +Some other models may match better and give you more matching +functionality. If none of the available models works, send a bug +report. See the bug report section for details. + +If you are masochistic enough to debug the driver problem, note the +following: + +- The speaker (and the headphone, too) output often requires the + external amplifier. This can be set usually via EAPD verb or a + certain GPIO. If the codec pin supports EAPD, you have a better + chance via SET_EAPD_BTL verb (0x70c). On others, GPIO pin (mostly + it's either GPIO0 or GPIO1) may turn on/off EAPD. +- Some Realtek codecs require special vendor-specific coefficients to + turn on the amplifier. See patch_realtek.c. +- IDT codecs may have extra power-enable/disable controls on each + analog pin. See patch_sigmatel.c. +- Very rare but some devices don't accept the pin-detection verb until + triggered. Issuing GET_PIN_SENSE verb (0xf09) may result in the + codec-communication stall. Some examples are found in + patch_realtek.c. + + +Capture Problems +~~~~~~~~~~~~~~~~ +The capture problems are often because of missing setups of mixers. +Thus, before submitting a bug report, make sure that you set up the +mixer correctly. For example, both "Capture Volume" and "Capture +Switch" have to be set properly in addition to the right "Capture +Source" or "Input Source" selection. Some devices have "Mic Boost" +volume or switch. + +When the PCM device is opened via "default" PCM (without pulse-audio +plugin), you'll likely have "Digital Capture Volume" control as well. +This is provided for the extra gain/attenuation of the signal in +software, especially for the inputs without the hardware volume +control such as digital microphones. Unless really needed, this +should be set to exactly 50%, corresponding to 0dB -- neither extra +gain nor attenuation. When you use "hw" PCM, i.e., a raw access PCM, +this control will have no influence, though. + +It's known that some codecs / devices have fairly bad analog circuits, +and the recorded sound contains a certain DC-offset. This is no bug +of the driver. + +Most of modern laptops have no analog CD-input connection. Thus, the +recording from CD input won't work in many cases although the driver +provides it as the capture source. Use CDDA instead. + +The automatic switching of the built-in and external mic per plugging +is implemented on some codec models but not on every model. Partly +because of my laziness but mostly lack of testers. Feel free to +submit the improvement patch to the author. + + +Direct Debugging +~~~~~~~~~~~~~~~~ +If no model option gives you a better result, and you are a tough guy +to fight against evil, try debugging via hitting the raw HD-audio +codec verbs to the device. Some tools are available: hda-emu and +hda-analyzer. The detailed description is found in the sections +below. You'd need to enable hwdep for using these tools. See "Kernel +Configuration" section. + + +OTHER ISSUES +------------ + +Kernel Configuration +~~~~~~~~~~~~~~~~~~~~ +In general, I recommend you to enable the sound debug option, +`CONFIG_SND_DEBUG=y`, no matter whether you are debugging or not. +This enables snd_printd() macro and others, and you'll get additional +kernel messages at probing. + +In addition, you can enable `CONFIG_SND_DEBUG_VERBOSE=y`. But this +will give you far more messages. Thus turn this on only when you are +sure to want it. + +Don't forget to turn on the appropriate `CONFIG_SND_HDA_CODEC_*` +options. Note that each of them corresponds to the codec chip, not +the controller chip. Thus, even if lspci shows the Nvidia controller, +you may need to choose the option for other vendors. If you are +unsure, just select all yes. + +`CONFIG_SND_HDA_HWDEP` is a useful option for debugging the driver. +When this is enabled, the driver creates hardware-dependent devices +(one per each codec), and you have a raw access to the device via +these device files. For example, `hwC0D2` will be created for the +codec slot #2 of the first card (#0). For debug-tools such as +hda-verb and hda-analyzer, the hwdep device has to be enabled. +Thus, it'd be better to turn this on always. + +`CONFIG_SND_HDA_RECONFIG` is a new option, and this depends on the +hwdep option above. When enabled, you'll have some sysfs files under +the corresponding hwdep directory. See "HD-audio reconfiguration" +section below. + +`CONFIG_SND_HDA_POWER_SAVE` option enables the power-saving feature. +See "Power-saving" section below. + + +Codec Proc-File +~~~~~~~~~~~~~~~ +The codec proc-file is a treasure-chest for debugging HD-audio. +It shows most of useful information of each codec widget. + +The proc file is located in /proc/asound/card*/codec#*, one file per +each codec slot. You can know the codec vendor, product id and +names, the type of each widget, capabilities and so on. +This file, however, doesn't show the jack sensing state, so far. This +is because the jack-sensing might be depending on the trigger state. + +This file will be picked up by the debug tools, and also it can be fed +to the emulator as the primary codec information. See the debug tools +section below. + +This proc file can be also used to check whether the generic parser is +used. When the generic parser is used, the vendor/product ID name +will appear as "Realtek ID 0262", instead of "Realtek ALC262". + + +HD-Audio Reconfiguration +~~~~~~~~~~~~~~~~~~~~~~~~ +This is an experimental feature to allow you re-configure the HD-audio +codec dynamically without reloading the driver. The following sysfs +files are available under each codec-hwdep device directory (e.g. +/sys/class/sound/hwC0D0): + +vendor_id:: + Shows the 32bit codec vendor-id hex number. You can change the + vendor-id value by writing to this file. +subsystem_id:: + Shows the 32bit codec subsystem-id hex number. You can change the + subsystem-id value by writing to this file. +revision_id:: + Shows the 32bit codec revision-id hex number. You can change the + revision-id value by writing to this file. +afg:: + Shows the AFG ID. This is read-only. +mfg:: + Shows the MFG ID. This is read-only. +name:: + Shows the codec name string. Can be changed by writing to this + file. +modelname:: + Shows the currently set `model` option. Can be changed by writing + to this file. +init_verbs:: + The extra verbs to execute at initialization. You can add a verb by + writing to this file. Pass tree numbers, nid, verb and parameter. +hints:: + Shows hint strings for codec parsers for any use. Right now it's + not used. +reconfig:: + Triggers the codec re-configuration. When any value is written to + this file, the driver re-initialize and parses the codec tree + again. All the changes done by the sysfs entries above are taken + into account. +clear:: + Resets the codec, removes the mixer elements and PCM stuff of the + specified codec, and clear all init verbs and hints. + + +Power-Saving +~~~~~~~~~~~~ +The power-saving is a kind of auto-suspend of the device. When the +device is inactive for a certain time, the device is automatically +turned off to save the power. The time to go down is specified via +`power_save` module option, and this option can be changed dynamically +via sysfs. + +The power-saving won't work when the analog loopback is enabled on +some codecs. Make sure that you mute all unneeded signal routes when +you want the power-saving. + +The power-saving feature might cause audible click noises at each +power-down/up depending on the device. Some of them might be +solvable, but some are hard, I'm afraid. Some distros such as +openSUSE enables the power-saving feature automatically when the power +cable is unplugged. Thus, if you hear noises, suspect first the +power-saving. See /sys/module/snd_hda_intel/parameters/power_save to +check the current value. If it's non-zero, the feature is turned on. + + +Development Tree +~~~~~~~~~~~~~~~~ +The latest development codes for HD-audio are found on sound git tree: + +- git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6.git + +The master branch or for-next branches can be used as the main +development branches in general while the HD-audio specific patches +are committed in topic/hda branch. + +If you are using the latest Linus tree, it'd be better to pull the +above GIT tree onto it. If you are using the older kernels, an easy +way to try the latest ALSA code is to build from the snapshot +tarball. There are daily tarballs and the latest snapshot tarball. +All can be built just like normal alsa-driver release packages, that +is, installed via the usual spells: configure, make and make +install(-modules). See INSTALL in the package. The snapshot tarballs +are found at: + +- ftp://ftp.kernel.org/pub/linux/kernel/people/tiwai/snapshot/ + + +Sending a Bug Report +~~~~~~~~~~~~~~~~~~~~ +If any model or module options don't work for your device, it's time +to send a bug report to the developers. Give the following in your +bug report: + +- Hardware vendor, product and model names +- Kernel version (and ALSA-driver version if you built externally) +- `alsa-info.sh` output; run with `--no-upload` option. See the + section below about alsa-info + +If it's a regression, at best, send alsa-info outputs of both working +and non-working kernels. This is really helpful because we can +compare the codec registers directly. + +Send a bug report either the followings: + +kernel-bugzilla:: + http://bugme.linux-foundation.org/ +alsa-devel ML:: + alsa-devel@alsa-project.org + + +DEBUG TOOLS +----------- + +This section describes some tools available for debugging HD-audio +problems. + +alsa-info +~~~~~~~~~ +The script `alsa-info.sh` is a very useful tool to gather the audio +device information. You can fetch the latest version from: + +- http://www.alsa-project.org/alsa-info.sh + +Run this script as root, and it will gather the important information +such as the module lists, module parameters, proc file contents +including the codec proc files, mixer outputs and the control +elements. As default, it will store the information onto a web server +on alsa-project.org. But, if you send a bug report, it'd be better to +run with `--no-upload` option, and attach the generated file. + +There are some other useful options. See `--help` option output for +details. + + +hda-verb +~~~~~~~~ +hda-verb is a tiny program that allows you to access the HD-audio +codec directly. You can execute a raw HD-audio codec verb with this. +This program accesses the hwdep device, thus you need to enable the +kernel config `CONFIG_SND_HDA_HWDEP=y` beforehand. + +The hda-verb program takes four arguments: the hwdep device file, the +widget NID, the verb and the parameter. When you access to the codec +on the slot 2 of the card 0, pass /dev/snd/hwC0D2 to the first +argument, typically. (However, the real path name depends on the +system.) + +The second parameter is the widget number-id to access. The third +parameter can be either a hex/digit number or a string corresponding +to a verb. Similarly, the last parameter is the value to write, or +can be a string for the parameter type. + +------------------------------------------------------------------------ + % hda-verb /dev/snd/hwC0D0 0x12 0x701 2 + nid = 0x12, verb = 0x701, param = 0x2 + value = 0x0 + + % hda-verb /dev/snd/hwC0D0 0x0 PARAMETERS VENDOR_ID + nid = 0x0, verb = 0xf00, param = 0x0 + value = 0x10ec0262 + + % hda-verb /dev/snd/hwC0D0 2 set_a 0xb080 + nid = 0x2, verb = 0x300, param = 0xb080 + value = 0x0 +------------------------------------------------------------------------ + +Although you can issue any verbs with this program, the driver state +won't be always updated. For example, the volume values are usually +cached in the driver, and thus changing the widget amp value directly +via hda-verb won't change the mixer value. + +The hda-verb program is found in the ftp directory: + +- ftp://ftp.kernel.org/pub/linux/kernel/people/tiwai/misc/ + +Also a git repository is available: + +- git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/hda-verb.git + +See README file in the tarball for more details about hda-verb +program. + + +hda-analyzer +~~~~~~~~~~~~ +hda-analyzer provides a graphical interface to access the raw HD-audio +control, based on pyGTK2 binding. It's a more powerful version of +hda-verb. The program gives you an easy-to-use GUI stuff for showing +the widget information and adjusting the amp values, as well as the +proc-compatible output. + +The hda-analyzer is a part of alsa.git repository in +alsa-project.org: + +- http://git.alsa-project.org/?p=alsa.git;a=tree;f=hda-analyzer + + +Codecgraph +~~~~~~~~~~ +Codecgraph is a utility program to generate a graph and visualizes the +codec-node connection of a codec chip. It's especially useful when +you analyze or debug a codec without a proper datasheet. The program +parses the given codec proc file and converts to SVG via graphiz +program. + +The tarball and GIT trees are found in the web page at: + +- http://helllabs.org/codecgraph/ + + +hda-emu +~~~~~~~ +hda-emu is an HD-audio emulator. The main purpose of this program is +to debug an HD-audio codec without the real hardware. Thus, it +doesn't emulate the behavior with the real audio I/O, but it just +dumps the codec register changes and the ALSA-driver internal changes +at probing and operating the HD-audio driver. + +The program requires a codec proc-file to simulate. Get a proc file +for the target codec beforehand, or pick up an example codec from the +codec proc collections in the tarball. Then, run the program with the +proc file, and the hda-emu program will start parsing the codec file +and simulates the HD-audio driver: + +------------------------------------------------------------------------ + % hda-emu codecs/stac9200-dell-d820-laptop + # Parsing.. + hda_codec: Unknown model for STAC9200, using BIOS defaults + hda_codec: pin nid 08 bios pin config 40c003fa + .... +------------------------------------------------------------------------ + +The program gives you only a very dumb command-line interface. You +can get a proc-file dump at the current state, get a list of control +(mixer) elements, set/get the control element value, simulate the PCM +operation, the jack plugging simulation, etc. + +The package is found in: + +- ftp://ftp.kernel.org/pub/linux/kernel/people/tiwai/misc/ + +A git repository is available: + +- git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/hda-emu.git + +See README file in the tarball for more details about hda-emu +program. diff --git a/Documentation/sound/alsa/Procfile.txt b/Documentation/sound/alsa/Procfile.txt index f738b296440a..bba2dbb79d81 100644 --- a/Documentation/sound/alsa/Procfile.txt +++ b/Documentation/sound/alsa/Procfile.txt @@ -153,6 +153,16 @@ card*/codec#* Shows the general codec information and the attribute of each widget node. +card*/eld#* + Available for HDMI or DisplayPort interfaces. + Shows ELD(EDID Like Data) info retrieved from the attached HDMI sink, + and describes its audio capabilities and configurations. + + Some ELD fields may be modified by doing `echo name hex_value > eld#*`. + Only do this if you are sure the HDMI sink provided value is wrong. + And if that makes your HDMI audio work, please report to us so that we + can fix it in future kernel releases. + Sequencer Information --------------------- diff --git a/Documentation/sound/alsa/soc/machine.txt b/Documentation/sound/alsa/soc/machine.txt index f370e7db86af..bab7711ce963 100644 --- a/Documentation/sound/alsa/soc/machine.txt +++ b/Documentation/sound/alsa/soc/machine.txt @@ -9,7 +9,7 @@ the audio subsystem with the kernel as a platform device and is represented by the following struct:- /* SoC machine */ -struct snd_soc_machine { +struct snd_soc_card { char *name; int (*probe)(struct platform_device *pdev); @@ -67,10 +67,10 @@ static struct snd_soc_dai_link corgi_dai = { .ops = &corgi_ops, }; -struct snd_soc_machine then sets up the machine with it's DAIs. e.g. +struct snd_soc_card then sets up the machine with it's DAIs. e.g. /* corgi audio machine driver */ -static struct snd_soc_machine snd_soc_machine_corgi = { +static struct snd_soc_card snd_soc_corgi = { .name = "Corgi", .dai_link = &corgi_dai, .num_links = 1, @@ -90,7 +90,7 @@ static struct wm8731_setup_data corgi_wm8731_setup = { /* corgi audio subsystem */ static struct snd_soc_device corgi_snd_devdata = { - .machine = &snd_soc_machine_corgi, + .machine = &snd_soc_corgi, .platform = &pxa2xx_soc_platform, .codec_dev = &soc_codec_dev_wm8731, .codec_data = &corgi_wm8731_setup, diff --git a/Documentation/x86/boot.txt b/Documentation/x86/boot.txt index 83c0033ee9e0..fcdc62b3c3d8 100644 --- a/Documentation/x86/boot.txt +++ b/Documentation/x86/boot.txt @@ -349,7 +349,7 @@ Protocol: 2.00+ 3 SYSLINUX 4 EtherBoot 5 ELILO - 7 GRuB + 7 GRUB 8 U-BOOT 9 Xen A Gujin @@ -537,8 +537,8 @@ Type: read Offset/size: 0x248/4 Protocol: 2.08+ - If non-zero then this field contains the offset from the end of the - real-mode code to the payload. + If non-zero then this field contains the offset from the beginning + of the protected-mode code to the payload. The payload may be compressed. The format of both the compressed and uncompressed data should be determined using the standard magic diff --git a/Documentation/x86/pat.txt b/Documentation/x86/pat.txt index c93ff5f4c0dd..cf08c9fff3cd 100644 --- a/Documentation/x86/pat.txt +++ b/Documentation/x86/pat.txt @@ -80,6 +80,30 @@ pci proc | -- | -- | WC | | | | | ------------------------------------------------------------------- +Advanced APIs for drivers +------------------------- +A. Exporting pages to users with remap_pfn_range, io_remap_pfn_range, +vm_insert_pfn + +Drivers wanting to export some pages to userspace do it by using mmap +interface and a combination of +1) pgprot_noncached() +2) io_remap_pfn_range() or remap_pfn_range() or vm_insert_pfn() + +With PAT support, a new API pgprot_writecombine is being added. So, drivers can +continue to use the above sequence, with either pgprot_noncached() or +pgprot_writecombine() in step 1, followed by step 2. + +In addition, step 2 internally tracks the region as UC or WC in memtype +list in order to ensure no conflicting mapping. + +Note that this set of APIs only works with IO (non RAM) regions. If driver +wants to export a RAM region, it has to do set_memory_uc() or set_memory_wc() +as step 0 above and also track the usage of those pages and use set_memory_wb() +before the page is freed to free pool. + + + Notes: -- in the above table mean "Not suggested usage for the API". Some of the --'s diff --git a/Documentation/x86/x86_64/boot-options.txt b/Documentation/x86/x86_64/boot-options.txt index f6d561a1a9b2..34c13040a718 100644 --- a/Documentation/x86/x86_64/boot-options.txt +++ b/Documentation/x86/x86_64/boot-options.txt @@ -79,17 +79,6 @@ Timing Report when timer interrupts are lost because some code turned off interrupts for too long. - nmi_watchdog=NUMBER[,panic] - NUMBER can be: - 0 don't use an NMI watchdog - 1 use the IO-APIC timer for the NMI watchdog - 2 use the local APIC for the NMI watchdog using a performance counter. Note - This will use one performance counter and the local APIC's performance - vector. - When panic is specified panic when an NMI watchdog timeout occurs. - This is useful when you use a panic=... timeout and need the box - quickly up again. - nohpet Don't use the HPET timer. diff --git a/Documentation/x86/x86_64/mm.txt b/Documentation/x86/x86_64/mm.txt index efce75097369..29b52b14d0b4 100644 --- a/Documentation/x86/x86_64/mm.txt +++ b/Documentation/x86/x86_64/mm.txt @@ -6,7 +6,7 @@ Virtual memory map with 4 level page tables: 0000000000000000 - 00007fffffffffff (=47 bits) user space, different per mm hole caused by [48:63] sign extension ffff800000000000 - ffff80ffffffffff (=40 bits) guard hole -ffff810000000000 - ffffc0ffffffffff (=46 bits) direct mapping of all phys. memory +ffff880000000000 - ffffc0ffffffffff (=57 TB) direct mapping of all phys. memory ffffc10000000000 - ffffc1ffffffffff (=40 bits) hole ffffc20000000000 - ffffe1ffffffffff (=45 bits) vmalloc/ioremap space ffffe20000000000 - ffffe2ffffffffff (=40 bits) virtual memory map (1TB) |