diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2009-03-26 16:05:42 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2009-03-26 16:05:42 -0700 |
commit | 6671de344cd661453bbee3cfde5574a974332436 (patch) | |
tree | 826873ae0180eea53b8fcc6e41938b67c656ba3f /kernel/time | |
parent | 831576fe40f4175e0767623cffa4aeb28157943a (diff) | |
parent | 7c526e1fef8d604a9ec022d9145bba5dbfe40a11 (diff) | |
download | blackbird-op-linux-6671de344cd661453bbee3cfde5574a974332436.tar.gz blackbird-op-linux-6671de344cd661453bbee3cfde5574a974332436.zip |
Merge branch 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (26 commits)
posix timers: fix RLIMIT_CPU && fork()
time: ntp: fix bug in ntp_update_offset() & do_adjtimex(), fix
time: ntp: clean up second_overflow()
time: ntp: simplify ntp_tick_adj calculations
time: ntp: make 64-bit constants more robust
time: ntp: refactor do_adjtimex() some more
time: ntp: refactor do_adjtimex()
time: ntp: fix bug in ntp_update_offset() & do_adjtimex()
time: ntp: micro-optimize ntp_update_offset()
time: ntp: simplify ntp_update_offset_fll()
time: ntp: refactor and clean up ntp_update_offset()
time: ntp: refactor up ntp_update_frequency()
time: ntp: clean up ntp_update_frequency()
time: ntp: simplify the MAX_TICKADJ_SCALED definition
time: ntp: simplify the second_overflow() code flow
time: ntp: clean up kernel/time/ntp.c
x86: hpet: stop HPET_COUNTER when programming periodic mode
x86: hpet: provide separate functions to stop and start the counter
x86: hpet: print HPET registers during setup (if hpet=verbose is used)
time: apply NTP frequency/tick changes immediately
...
Diffstat (limited to 'kernel/time')
-rw-r--r-- | kernel/time/clockevents.c | 20 | ||||
-rw-r--r-- | kernel/time/ntp.c | 444 |
2 files changed, 285 insertions, 179 deletions
diff --git a/kernel/time/clockevents.c b/kernel/time/clockevents.c index ea2f48af83cf..d13be216a790 100644 --- a/kernel/time/clockevents.c +++ b/kernel/time/clockevents.c @@ -68,6 +68,17 @@ void clockevents_set_mode(struct clock_event_device *dev, if (dev->mode != mode) { dev->set_mode(mode, dev); dev->mode = mode; + + /* + * A nsec2cyc multiplicator of 0 is invalid and we'd crash + * on it, so fix it up and emit a warning: + */ + if (mode == CLOCK_EVT_MODE_ONESHOT) { + if (unlikely(!dev->mult)) { + dev->mult = 1; + WARN_ON(1); + } + } } } @@ -168,15 +179,6 @@ void clockevents_register_device(struct clock_event_device *dev) BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED); BUG_ON(!dev->cpumask); - /* - * A nsec2cyc multiplicator of 0 is invalid and we'd crash - * on it, so fix it up and emit a warning: - */ - if (unlikely(!dev->mult)) { - dev->mult = 1; - WARN_ON(1); - } - spin_lock(&clockevents_lock); list_add(&dev->list, &clockevent_devices); diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c index f5f793d92415..7fc64375ff43 100644 --- a/kernel/time/ntp.c +++ b/kernel/time/ntp.c @@ -1,71 +1,129 @@ /* - * linux/kernel/time/ntp.c - * * NTP state machine interfaces and logic. * * This code was mainly moved from kernel/timer.c and kernel/time.c * Please see those files for relevant copyright info and historical * changelogs. */ - -#include <linux/mm.h> -#include <linux/time.h> -#include <linux/timex.h> -#include <linux/jiffies.h> -#include <linux/hrtimer.h> #include <linux/capability.h> -#include <linux/math64.h> #include <linux/clocksource.h> #include <linux/workqueue.h> -#include <asm/timex.h> +#include <linux/hrtimer.h> +#include <linux/jiffies.h> +#include <linux/math64.h> +#include <linux/timex.h> +#include <linux/time.h> +#include <linux/mm.h> /* - * Timekeeping variables + * NTP timekeeping variables: */ -unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */ -unsigned long tick_nsec; /* ACTHZ period (nsec) */ -u64 tick_length; -static u64 tick_length_base; -static struct hrtimer leap_timer; +/* USER_HZ period (usecs): */ +unsigned long tick_usec = TICK_USEC; -#define MAX_TICKADJ 500 /* microsecs */ -#define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \ - NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) +/* ACTHZ period (nsecs): */ +unsigned long tick_nsec; + +u64 tick_length; +static u64 tick_length_base; + +static struct hrtimer leap_timer; + +#define MAX_TICKADJ 500LL /* usecs */ +#define MAX_TICKADJ_SCALED \ + (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) /* * phase-lock loop variables */ -/* TIME_ERROR prevents overwriting the CMOS clock */ -static int time_state = TIME_OK; /* clock synchronization status */ -int time_status = STA_UNSYNC; /* clock status bits */ -static long time_tai; /* TAI offset (s) */ -static s64 time_offset; /* time adjustment (ns) */ -static long time_constant = 2; /* pll time constant */ -long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ -long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ -static s64 time_freq; /* frequency offset (scaled ns/s)*/ -static long time_reftime; /* time at last adjustment (s) */ -long time_adjust; -static long ntp_tick_adj; +/* + * clock synchronization status + * + * (TIME_ERROR prevents overwriting the CMOS clock) + */ +static int time_state = TIME_OK; + +/* clock status bits: */ +int time_status = STA_UNSYNC; + +/* TAI offset (secs): */ +static long time_tai; + +/* time adjustment (nsecs): */ +static s64 time_offset; + +/* pll time constant: */ +static long time_constant = 2; + +/* maximum error (usecs): */ +long time_maxerror = NTP_PHASE_LIMIT; + +/* estimated error (usecs): */ +long time_esterror = NTP_PHASE_LIMIT; + +/* frequency offset (scaled nsecs/secs): */ +static s64 time_freq; + +/* time at last adjustment (secs): */ +static long time_reftime; + +long time_adjust; + +/* constant (boot-param configurable) NTP tick adjustment (upscaled) */ +static s64 ntp_tick_adj; + +/* + * NTP methods: + */ + +/* + * Update (tick_length, tick_length_base, tick_nsec), based + * on (tick_usec, ntp_tick_adj, time_freq): + */ static void ntp_update_frequency(void) { - u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) - << NTP_SCALE_SHIFT; - second_length += (s64)ntp_tick_adj << NTP_SCALE_SHIFT; - second_length += time_freq; + u64 second_length; + u64 new_base; + + second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) + << NTP_SCALE_SHIFT; + + second_length += ntp_tick_adj; + second_length += time_freq; - tick_length_base = second_length; + tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; + new_base = div_u64(second_length, NTP_INTERVAL_FREQ); - tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; - tick_length_base = div_u64(tick_length_base, NTP_INTERVAL_FREQ); + /* + * Don't wait for the next second_overflow, apply + * the change to the tick length immediately: + */ + tick_length += new_base - tick_length_base; + tick_length_base = new_base; +} + +static inline s64 ntp_update_offset_fll(s64 offset64, long secs) +{ + time_status &= ~STA_MODE; + + if (secs < MINSEC) + return 0; + + if (!(time_status & STA_FLL) && (secs <= MAXSEC)) + return 0; + + time_status |= STA_MODE; + + return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs); } static void ntp_update_offset(long offset) { - long mtemp; s64 freq_adj; + s64 offset64; + long secs; if (!(time_status & STA_PLL)) return; @@ -84,24 +142,23 @@ static void ntp_update_offset(long offset) * Select how the frequency is to be controlled * and in which mode (PLL or FLL). */ - if (time_status & STA_FREQHOLD || time_reftime == 0) - time_reftime = xtime.tv_sec; - mtemp = xtime.tv_sec - time_reftime; + secs = xtime.tv_sec - time_reftime; + if (unlikely(time_status & STA_FREQHOLD)) + secs = 0; + time_reftime = xtime.tv_sec; - freq_adj = (s64)offset * mtemp; - freq_adj <<= NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant); - time_status &= ~STA_MODE; - if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) { - freq_adj += div_s64((s64)offset << (NTP_SCALE_SHIFT - SHIFT_FLL), - mtemp); - time_status |= STA_MODE; - } - freq_adj += time_freq; - freq_adj = min(freq_adj, MAXFREQ_SCALED); - time_freq = max(freq_adj, -MAXFREQ_SCALED); + offset64 = offset; + freq_adj = (offset64 * secs) << + (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant)); - time_offset = div_s64((s64)offset << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); + freq_adj += ntp_update_offset_fll(offset64, secs); + + freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED); + + time_freq = max(freq_adj, -MAXFREQ_SCALED); + + time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); } /** @@ -111,15 +168,15 @@ static void ntp_update_offset(long offset) */ void ntp_clear(void) { - time_adjust = 0; /* stop active adjtime() */ - time_status |= STA_UNSYNC; - time_maxerror = NTP_PHASE_LIMIT; - time_esterror = NTP_PHASE_LIMIT; + time_adjust = 0; /* stop active adjtime() */ + time_status |= STA_UNSYNC; + time_maxerror = NTP_PHASE_LIMIT; + time_esterror = NTP_PHASE_LIMIT; ntp_update_frequency(); - tick_length = tick_length_base; - time_offset = 0; + tick_length = tick_length_base; + time_offset = 0; } /* @@ -140,8 +197,8 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) xtime.tv_sec--; wall_to_monotonic.tv_sec++; time_state = TIME_OOP; - printk(KERN_NOTICE "Clock: " - "inserting leap second 23:59:60 UTC\n"); + printk(KERN_NOTICE + "Clock: inserting leap second 23:59:60 UTC\n"); hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC); res = HRTIMER_RESTART; break; @@ -150,8 +207,8 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) time_tai--; wall_to_monotonic.tv_sec--; time_state = TIME_WAIT; - printk(KERN_NOTICE "Clock: " - "deleting leap second 23:59:59 UTC\n"); + printk(KERN_NOTICE + "Clock: deleting leap second 23:59:59 UTC\n"); break; case TIME_OOP: time_tai++; @@ -179,7 +236,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) */ void second_overflow(void) { - s64 time_adj; + s64 delta; /* Bump the maxerror field */ time_maxerror += MAXFREQ / NSEC_PER_USEC; @@ -192,24 +249,30 @@ void second_overflow(void) * Compute the phase adjustment for the next second. The offset is * reduced by a fixed factor times the time constant. */ - tick_length = tick_length_base; - time_adj = shift_right(time_offset, SHIFT_PLL + time_constant); - time_offset -= time_adj; - tick_length += time_adj; - - if (unlikely(time_adjust)) { - if (time_adjust > MAX_TICKADJ) { - time_adjust -= MAX_TICKADJ; - tick_length += MAX_TICKADJ_SCALED; - } else if (time_adjust < -MAX_TICKADJ) { - time_adjust += MAX_TICKADJ; - tick_length -= MAX_TICKADJ_SCALED; - } else { - tick_length += (s64)(time_adjust * NSEC_PER_USEC / - NTP_INTERVAL_FREQ) << NTP_SCALE_SHIFT; - time_adjust = 0; - } + tick_length = tick_length_base; + + delta = shift_right(time_offset, SHIFT_PLL + time_constant); + time_offset -= delta; + tick_length += delta; + + if (!time_adjust) + return; + + if (time_adjust > MAX_TICKADJ) { + time_adjust -= MAX_TICKADJ; + tick_length += MAX_TICKADJ_SCALED; + return; } + + if (time_adjust < -MAX_TICKADJ) { + time_adjust += MAX_TICKADJ; + tick_length -= MAX_TICKADJ_SCALED; + return; + } + + tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ) + << NTP_SCALE_SHIFT; + time_adjust = 0; } #ifdef CONFIG_GENERIC_CMOS_UPDATE @@ -233,12 +296,13 @@ static void sync_cmos_clock(struct work_struct *work) * This code is run on a timer. If the clock is set, that timer * may not expire at the correct time. Thus, we adjust... */ - if (!ntp_synced()) + if (!ntp_synced()) { /* * Not synced, exit, do not restart a timer (if one is * running, let it run out). */ return; + } getnstimeofday(&now); if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) @@ -270,7 +334,116 @@ static void notify_cmos_timer(void) static inline void notify_cmos_timer(void) { } #endif -/* adjtimex mainly allows reading (and writing, if superuser) of +/* + * Start the leap seconds timer: + */ +static inline void ntp_start_leap_timer(struct timespec *ts) +{ + long now = ts->tv_sec; + + if (time_status & STA_INS) { + time_state = TIME_INS; + now += 86400 - now % 86400; + hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS); + + return; + } + + if (time_status & STA_DEL) { + time_state = TIME_DEL; + now += 86400 - (now + 1) % 86400; + hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS); + } +} + +/* + * Propagate a new txc->status value into the NTP state: + */ +static inline void process_adj_status(struct timex *txc, struct timespec *ts) +{ + if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) { + time_state = TIME_OK; + time_status = STA_UNSYNC; + } + + /* + * If we turn on PLL adjustments then reset the + * reference time to current time. + */ + if (!(time_status & STA_PLL) && (txc->status & STA_PLL)) + time_reftime = xtime.tv_sec; + + /* only set allowed bits */ + time_status &= STA_RONLY; + time_status |= txc->status & ~STA_RONLY; + + switch (time_state) { + case TIME_OK: + ntp_start_leap_timer(ts); + break; + case TIME_INS: + case TIME_DEL: + time_state = TIME_OK; + ntp_start_leap_timer(ts); + case TIME_WAIT: + if (!(time_status & (STA_INS | STA_DEL))) + time_state = TIME_OK; + break; + case TIME_OOP: + hrtimer_restart(&leap_timer); + break; + } +} +/* + * Called with the xtime lock held, so we can access and modify + * all the global NTP state: + */ +static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts) +{ + if (txc->modes & ADJ_STATUS) + process_adj_status(txc, ts); + + if (txc->modes & ADJ_NANO) + time_status |= STA_NANO; + + if (txc->modes & ADJ_MICRO) + time_status &= ~STA_NANO; + + if (txc->modes & ADJ_FREQUENCY) { + time_freq = txc->freq * PPM_SCALE; + time_freq = min(time_freq, MAXFREQ_SCALED); + time_freq = max(time_freq, -MAXFREQ_SCALED); + } + + if (txc->modes & ADJ_MAXERROR) + time_maxerror = txc->maxerror; + + if (txc->modes & ADJ_ESTERROR) + time_esterror = txc->esterror; + + if (txc->modes & ADJ_TIMECONST) { + time_constant = txc->constant; + if (!(time_status & STA_NANO)) + time_constant += 4; + time_constant = min(time_constant, (long)MAXTC); + time_constant = max(time_constant, 0l); + } + + if (txc->modes & ADJ_TAI && txc->constant > 0) + time_tai = txc->constant; + + if (txc->modes & ADJ_OFFSET) + ntp_update_offset(txc->offset); + + if (txc->modes & ADJ_TICK) + tick_usec = txc->tick; + + if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) + ntp_update_frequency(); +} + +/* + * adjtimex mainly allows reading (and writing, if superuser) of * kernel time-keeping variables. used by xntpd. */ int do_adjtimex(struct timex *txc) @@ -291,11 +464,14 @@ int do_adjtimex(struct timex *txc) if (txc->modes && !capable(CAP_SYS_TIME)) return -EPERM; - /* if the quartz is off by more than 10% something is VERY wrong! */ + /* + * if the quartz is off by more than 10% then + * something is VERY wrong! + */ if (txc->modes & ADJ_TICK && (txc->tick < 900000/USER_HZ || txc->tick > 1100000/USER_HZ)) - return -EINVAL; + return -EINVAL; if (txc->modes & ADJ_STATUS && time_state != TIME_OK) hrtimer_cancel(&leap_timer); @@ -305,7 +481,6 @@ int do_adjtimex(struct timex *txc) write_seqlock_irq(&xtime_lock); - /* If there are input parameters, then process them */ if (txc->modes & ADJ_ADJTIME) { long save_adjust = time_adjust; @@ -315,98 +490,24 @@ int do_adjtimex(struct timex *txc) ntp_update_frequency(); } txc->offset = save_adjust; - goto adj_done; - } - if (txc->modes) { - long sec; - - if (txc->modes & ADJ_STATUS) { - if ((time_status & STA_PLL) && - !(txc->status & STA_PLL)) { - time_state = TIME_OK; - time_status = STA_UNSYNC; - } - /* only set allowed bits */ - time_status &= STA_RONLY; - time_status |= txc->status & ~STA_RONLY; - - switch (time_state) { - case TIME_OK: - start_timer: - sec = ts.tv_sec; - if (time_status & STA_INS) { - time_state = TIME_INS; - sec += 86400 - sec % 86400; - hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS); - } else if (time_status & STA_DEL) { - time_state = TIME_DEL; - sec += 86400 - (sec + 1) % 86400; - hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS); - } - break; - case TIME_INS: - case TIME_DEL: - time_state = TIME_OK; - goto start_timer; - break; - case TIME_WAIT: - if (!(time_status & (STA_INS | STA_DEL))) - time_state = TIME_OK; - break; - case TIME_OOP: - hrtimer_restart(&leap_timer); - break; - } - } - - if (txc->modes & ADJ_NANO) - time_status |= STA_NANO; - if (txc->modes & ADJ_MICRO) - time_status &= ~STA_NANO; - - if (txc->modes & ADJ_FREQUENCY) { - time_freq = (s64)txc->freq * PPM_SCALE; - time_freq = min(time_freq, MAXFREQ_SCALED); - time_freq = max(time_freq, -MAXFREQ_SCALED); - } - - if (txc->modes & ADJ_MAXERROR) - time_maxerror = txc->maxerror; - if (txc->modes & ADJ_ESTERROR) - time_esterror = txc->esterror; - - if (txc->modes & ADJ_TIMECONST) { - time_constant = txc->constant; - if (!(time_status & STA_NANO)) - time_constant += 4; - time_constant = min(time_constant, (long)MAXTC); - time_constant = max(time_constant, 0l); - } - - if (txc->modes & ADJ_TAI && txc->constant > 0) - time_tai = txc->constant; - - if (txc->modes & ADJ_OFFSET) - ntp_update_offset(txc->offset); - if (txc->modes & ADJ_TICK) - tick_usec = txc->tick; + } else { - if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) - ntp_update_frequency(); - } + /* If there are input parameters, then process them: */ + if (txc->modes) + process_adjtimex_modes(txc, &ts); - txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, + txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, NTP_SCALE_SHIFT); - if (!(time_status & STA_NANO)) - txc->offset /= NSEC_PER_USEC; + if (!(time_status & STA_NANO)) + txc->offset /= NSEC_PER_USEC; + } -adj_done: result = time_state; /* mostly `TIME_OK' */ if (time_status & (STA_UNSYNC|STA_CLOCKERR)) result = TIME_ERROR; txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) * - (s64)PPM_SCALE_INV, NTP_SCALE_SHIFT); + PPM_SCALE_INV, NTP_SCALE_SHIFT); txc->maxerror = time_maxerror; txc->esterror = time_esterror; txc->status = time_status; @@ -425,6 +526,7 @@ adj_done: txc->calcnt = 0; txc->errcnt = 0; txc->stbcnt = 0; + write_sequnlock_irq(&xtime_lock); txc->time.tv_sec = ts.tv_sec; @@ -440,6 +542,8 @@ adj_done: static int __init ntp_tick_adj_setup(char *str) { ntp_tick_adj = simple_strtol(str, NULL, 0); + ntp_tick_adj <<= NTP_SCALE_SHIFT; + return 1; } |