diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /include/asm-ia64/sn | |
download | blackbird-op-linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.gz blackbird-op-linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.zip |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'include/asm-ia64/sn')
-rw-r--r-- | include/asm-ia64/sn/addrs.h | 238 | ||||
-rw-r--r-- | include/asm-ia64/sn/arch.h | 52 | ||||
-rw-r--r-- | include/asm-ia64/sn/bte.h | 148 | ||||
-rw-r--r-- | include/asm-ia64/sn/clksupport.h | 28 | ||||
-rw-r--r-- | include/asm-ia64/sn/fetchop.h | 85 | ||||
-rw-r--r-- | include/asm-ia64/sn/geo.h | 124 | ||||
-rw-r--r-- | include/asm-ia64/sn/intr.h | 56 | ||||
-rw-r--r-- | include/asm-ia64/sn/io.h | 265 | ||||
-rw-r--r-- | include/asm-ia64/sn/klconfig.h | 272 | ||||
-rw-r--r-- | include/asm-ia64/sn/l1.h | 36 | ||||
-rw-r--r-- | include/asm-ia64/sn/leds.h | 33 | ||||
-rw-r--r-- | include/asm-ia64/sn/module.h | 127 | ||||
-rw-r--r-- | include/asm-ia64/sn/nodepda.h | 86 | ||||
-rw-r--r-- | include/asm-ia64/sn/pda.h | 80 | ||||
-rw-r--r-- | include/asm-ia64/sn/rw_mmr.h | 74 | ||||
-rw-r--r-- | include/asm-ia64/sn/shub_mmr.h | 441 | ||||
-rw-r--r-- | include/asm-ia64/sn/shubio.h | 3476 | ||||
-rw-r--r-- | include/asm-ia64/sn/simulator.h | 27 | ||||
-rw-r--r-- | include/asm-ia64/sn/sn2/sn_hwperf.h | 226 | ||||
-rw-r--r-- | include/asm-ia64/sn/sn_cpuid.h | 144 | ||||
-rw-r--r-- | include/asm-ia64/sn/sn_fru.h | 44 | ||||
-rw-r--r-- | include/asm-ia64/sn/sn_sal.h | 1015 | ||||
-rw-r--r-- | include/asm-ia64/sn/sndrv.h | 47 | ||||
-rw-r--r-- | include/asm-ia64/sn/types.h | 25 |
24 files changed, 7149 insertions, 0 deletions
diff --git a/include/asm-ia64/sn/addrs.h b/include/asm-ia64/sn/addrs.h new file mode 100644 index 000000000000..c916bd22767a --- /dev/null +++ b/include/asm-ia64/sn/addrs.h @@ -0,0 +1,238 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (c) 1992-1999,2001-2004 Silicon Graphics, Inc. All rights reserved. + */ + +#ifndef _ASM_IA64_SN_ADDRS_H +#define _ASM_IA64_SN_ADDRS_H + +#include <asm/percpu.h> +#include <asm/sn/types.h> +#include <asm/sn/arch.h> +#include <asm/sn/pda.h> + +/* + * Memory/SHUB Address Format: + * +-+---------+--+--------------+ + * |0| NASID |AS| NodeOffset | + * +-+---------+--+--------------+ + * + * NASID: (low NASID bit is 0) Memory and SHUB MMRs + * AS: 2-bit Address Space Identifier. Used only if low NASID bit is 0 + * 00: Local Resources and MMR space + * Top bit of NodeOffset + * 0: Local resources space + * node id: + * 0: IA64/NT compatibility space + * 2: Local MMR Space + * 4: Local memory, regardless of local node id + * 1: Global MMR space + * 01: GET space. + * 10: AMO space. + * 11: Cacheable memory space. + * + * NodeOffset: byte offset + * + * + * TIO address format: + * +-+----------+--+--------------+ + * |0| NASID |AS| Nodeoffset | + * +-+----------+--+--------------+ + * + * NASID: (low NASID bit is 1) TIO + * AS: 2-bit Chiplet Identifier + * 00: TIO LB (Indicates TIO MMR access.) + * 01: TIO ICE (indicates coretalk space access.) + * + * NodeOffset: top bit must be set. + * + * + * Note that in both of the above address formats, the low + * NASID bit indicates if the reference is to the SHUB or TIO MMRs. + */ + + +/* + * Define basic shift & mask constants for manipulating NASIDs and AS values. + */ +#define NASID_BITMASK (sn_hub_info->nasid_bitmask) +#define NASID_SHIFT (sn_hub_info->nasid_shift) +#define AS_SHIFT (sn_hub_info->as_shift) +#define AS_BITMASK 0x3UL + +#define NASID_MASK ((u64)NASID_BITMASK << NASID_SHIFT) +#define AS_MASK ((u64)AS_BITMASK << AS_SHIFT) +#define REGION_BITS 0xe000000000000000UL + + +/* + * AS values. These are the same on both SHUB1 & SHUB2. + */ +#define AS_GET_VAL 1UL +#define AS_AMO_VAL 2UL +#define AS_CAC_VAL 3UL +#define AS_GET_SPACE (AS_GET_VAL << AS_SHIFT) +#define AS_AMO_SPACE (AS_AMO_VAL << AS_SHIFT) +#define AS_CAC_SPACE (AS_CAC_VAL << AS_SHIFT) + + +/* + * Base addresses for various address ranges. + */ +#define CACHED 0xe000000000000000UL +#define UNCACHED 0xc000000000000000UL +#define UNCACHED_PHYS 0x8000000000000000UL + + +/* + * Virtual Mode Local & Global MMR space. + */ +#define SH1_LOCAL_MMR_OFFSET 0x8000000000UL +#define SH2_LOCAL_MMR_OFFSET 0x0200000000UL +#define LOCAL_MMR_OFFSET (is_shub2() ? SH2_LOCAL_MMR_OFFSET : SH1_LOCAL_MMR_OFFSET) +#define LOCAL_MMR_SPACE (UNCACHED | LOCAL_MMR_OFFSET) +#define LOCAL_PHYS_MMR_SPACE (UNCACHED_PHYS | LOCAL_MMR_OFFSET) + +#define SH1_GLOBAL_MMR_OFFSET 0x0800000000UL +#define SH2_GLOBAL_MMR_OFFSET 0x0300000000UL +#define GLOBAL_MMR_OFFSET (is_shub2() ? SH2_GLOBAL_MMR_OFFSET : SH1_GLOBAL_MMR_OFFSET) +#define GLOBAL_MMR_SPACE (UNCACHED | GLOBAL_MMR_OFFSET) + +/* + * Physical mode addresses + */ +#define GLOBAL_PHYS_MMR_SPACE (UNCACHED_PHYS | GLOBAL_MMR_OFFSET) + + +/* + * Clear region & AS bits. + */ +#define TO_PHYS_MASK (~(REGION_BITS | AS_MASK)) + + +/* + * Misc NASID manipulation. + */ +#define NASID_SPACE(n) ((u64)(n) << NASID_SHIFT) +#define REMOTE_ADDR(n,a) (NASID_SPACE(n) | (a)) +#define NODE_OFFSET(x) ((x) & (NODE_ADDRSPACE_SIZE - 1)) +#define NODE_ADDRSPACE_SIZE (1UL << AS_SHIFT) +#define NASID_GET(x) (int) (((u64) (x) >> NASID_SHIFT) & NASID_BITMASK) +#define LOCAL_MMR_ADDR(a) (LOCAL_MMR_SPACE | (a)) +#define GLOBAL_MMR_ADDR(n,a) (GLOBAL_MMR_SPACE | REMOTE_ADDR(n,a)) +#define GLOBAL_MMR_PHYS_ADDR(n,a) (GLOBAL_PHYS_MMR_SPACE | REMOTE_ADDR(n,a)) +#define GLOBAL_CAC_ADDR(n,a) (CAC_BASE | REMOTE_ADDR(n,a)) +#define CHANGE_NASID(n,x) ((void *)(((u64)(x) & ~NASID_MASK) | NASID_SPACE(n))) + + +/* non-II mmr's start at top of big window space (4G) */ +#define BWIN_TOP 0x0000000100000000UL + +/* + * general address defines + */ +#define CAC_BASE (CACHED | AS_CAC_SPACE) +#define AMO_BASE (UNCACHED | AS_AMO_SPACE) +#define GET_BASE (CACHED | AS_GET_SPACE) + +/* + * Convert Memory addresses between various addressing modes. + */ +#define TO_PHYS(x) (TO_PHYS_MASK & (x)) +#define TO_CAC(x) (CAC_BASE | TO_PHYS(x)) +#define TO_AMO(x) (AMO_BASE | TO_PHYS(x)) +#define TO_GET(x) (GET_BASE | TO_PHYS(x)) + + +/* + * Covert from processor physical address to II/TIO physical address: + * II - squeeze out the AS bits + * TIO- requires a chiplet id in bits 38-39. For DMA to memory, + * the chiplet id is zero. If we implement TIO-TIO dma, we might need + * to insert a chiplet id into this macro. However, it is our belief + * right now that this chiplet id will be ICE, which is also zero. + */ +#define PHYS_TO_TIODMA(x) ( (((u64)(x) & NASID_MASK) << 2) | NODE_OFFSET(x)) +#define PHYS_TO_DMA(x) ( (((u64)(x) & NASID_MASK) >> 2) | NODE_OFFSET(x)) + + +/* + * The following definitions pertain to the IO special address + * space. They define the location of the big and little windows + * of any given node. + */ +#define BWIN_SIZE_BITS 29 /* big window size: 512M */ +#define TIO_BWIN_SIZE_BITS 30 /* big window size: 1G */ +#define NODE_SWIN_BASE(n, w) ((w == 0) ? NODE_BWIN_BASE((n), SWIN0_BIGWIN) \ + : RAW_NODE_SWIN_BASE(n, w)) +#define NODE_IO_BASE(n) (GLOBAL_MMR_SPACE | NASID_SPACE(n)) +#define BWIN_SIZE (1UL << BWIN_SIZE_BITS) +#define NODE_BWIN_BASE0(n) (NODE_IO_BASE(n) + BWIN_SIZE) +#define NODE_BWIN_BASE(n, w) (NODE_BWIN_BASE0(n) + ((u64) (w) << BWIN_SIZE_BITS)) +#define RAW_NODE_SWIN_BASE(n, w) (NODE_IO_BASE(n) + ((u64) (w) << SWIN_SIZE_BITS)) +#define BWIN_WIDGET_MASK 0x7 +#define BWIN_WINDOWNUM(x) (((x) >> BWIN_SIZE_BITS) & BWIN_WIDGET_MASK) + +#define TIO_BWIN_WINDOW_SELECT_MASK 0x7 +#define TIO_BWIN_WINDOWNUM(x) (((x) >> TIO_BWIN_SIZE_BITS) & TIO_BWIN_WINDOW_SELECT_MASK) + + + +/* + * The following definitions pertain to the IO special address + * space. They define the location of the big and little windows + * of any given node. + */ + +#define SWIN_SIZE_BITS 24 +#define SWIN_WIDGET_MASK 0xF + +#define TIO_SWIN_SIZE_BITS 28 +#define TIO_SWIN_SIZE (1UL << TIO_SWIN_SIZE_BITS) +#define TIO_SWIN_WIDGET_MASK 0x3 + +/* + * Convert smallwindow address to xtalk address. + * + * 'addr' can be physical or virtual address, but will be converted + * to Xtalk address in the range 0 -> SWINZ_SIZEMASK + */ +#define SWIN_WIDGETNUM(x) (((x) >> SWIN_SIZE_BITS) & SWIN_WIDGET_MASK) +#define TIO_SWIN_WIDGETNUM(x) (((x) >> TIO_SWIN_SIZE_BITS) & TIO_SWIN_WIDGET_MASK) + + +/* + * The following macros produce the correct base virtual address for + * the hub registers. The REMOTE_HUB_* macro produce + * the address for the specified hub's registers. The intent is + * that the appropriate PI, MD, NI, or II register would be substituted + * for x. + * + * WARNING: + * When certain Hub chip workaround are defined, it's not sufficient + * to dereference the *_HUB_ADDR() macros. You should instead use + * HUB_L() and HUB_S() if you must deal with pointers to hub registers. + * Otherwise, the recommended approach is to use *_HUB_L() and *_HUB_S(). + * They're always safe. + */ +#define REMOTE_HUB_ADDR(n,x) \ + ((n & 1) ? \ + /* TIO: */ \ + ((volatile u64 *)(GLOBAL_MMR_ADDR(n,x))) \ + : /* SHUB: */ \ + (((x) & BWIN_TOP) ? ((volatile u64 *)(GLOBAL_MMR_ADDR(n,x)))\ + : ((volatile u64 *)(NODE_SWIN_BASE(n,1) + 0x800000 + (x))))) + + + +#define HUB_L(x) (*((volatile typeof(*x) *)x)) +#define HUB_S(x,d) (*((volatile typeof(*x) *)x) = (d)) + +#define REMOTE_HUB_L(n, a) HUB_L(REMOTE_HUB_ADDR((n), (a))) +#define REMOTE_HUB_S(n, a, d) HUB_S(REMOTE_HUB_ADDR((n), (a)), (d)) + + +#endif /* _ASM_IA64_SN_ADDRS_H */ diff --git a/include/asm-ia64/sn/arch.h b/include/asm-ia64/sn/arch.h new file mode 100644 index 000000000000..7c349f07916a --- /dev/null +++ b/include/asm-ia64/sn/arch.h @@ -0,0 +1,52 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * SGI specific setup. + * + * Copyright (C) 1995-1997,1999,2001-2004 Silicon Graphics, Inc. All rights reserved. + * Copyright (C) 1999 Ralf Baechle (ralf@gnu.org) + */ +#ifndef _ASM_IA64_SN_ARCH_H +#define _ASM_IA64_SN_ARCH_H + +#include <asm/types.h> +#include <asm/percpu.h> +#include <asm/sn/types.h> +#include <asm/sn/sn_cpuid.h> + +/* + * The following defines attributes of the HUB chip. These attributes are + * frequently referenced. They are kept in the per-cpu data areas of each cpu. + * They are kept together in a struct to minimize cache misses. + */ +struct sn_hub_info_s { + u8 shub2; + u8 nasid_shift; + u8 as_shift; + u8 shub_1_1_found; + u16 nasid_bitmask; +}; +DECLARE_PER_CPU(struct sn_hub_info_s, __sn_hub_info); +#define sn_hub_info (&__get_cpu_var(__sn_hub_info)) +#define is_shub2() (sn_hub_info->shub2) +#define is_shub1() (sn_hub_info->shub2 == 0) + +/* + * Use this macro to test if shub 1.1 wars should be enabled + */ +#define enable_shub_wars_1_1() (sn_hub_info->shub_1_1_found) + + +/* + * This is the maximum number of nodes that can be part of a kernel. + * Effectively, it's the maximum number of compact node ids (cnodeid_t). + * This is not necessarily the same as MAX_NASIDS. + */ +#define MAX_COMPACT_NODES 2048 +#define CPUS_PER_NODE 4 + +extern void sn_flush_all_caches(long addr, long bytes); + +#endif /* _ASM_IA64_SN_ARCH_H */ diff --git a/include/asm-ia64/sn/bte.h b/include/asm-ia64/sn/bte.h new file mode 100644 index 000000000000..0ec27f99c181 --- /dev/null +++ b/include/asm-ia64/sn/bte.h @@ -0,0 +1,148 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (c) 2000-2004 Silicon Graphics, Inc. All Rights Reserved. + */ + + +#ifndef _ASM_IA64_SN_BTE_H +#define _ASM_IA64_SN_BTE_H + +#include <linux/timer.h> +#include <linux/spinlock.h> +#include <linux/cache.h> +#include <asm/sn/types.h> + + +/* #define BTE_DEBUG */ +/* #define BTE_DEBUG_VERBOSE */ + +#ifdef BTE_DEBUG +# define BTE_PRINTK(x) printk x /* Terse */ +# ifdef BTE_DEBUG_VERBOSE +# define BTE_PRINTKV(x) printk x /* Verbose */ +# else +# define BTE_PRINTKV(x) +# endif /* BTE_DEBUG_VERBOSE */ +#else +# define BTE_PRINTK(x) +# define BTE_PRINTKV(x) +#endif /* BTE_DEBUG */ + + +/* BTE status register only supports 16 bits for length field */ +#define BTE_LEN_BITS (16) +#define BTE_LEN_MASK ((1 << BTE_LEN_BITS) - 1) +#define BTE_MAX_XFER ((1 << BTE_LEN_BITS) * L1_CACHE_BYTES) + + +/* Define hardware */ +#define BTES_PER_NODE 2 + + +/* Define hardware modes */ +#define BTE_NOTIFY (IBCT_NOTIFY) +#define BTE_NORMAL BTE_NOTIFY +#define BTE_ZERO_FILL (BTE_NOTIFY | IBCT_ZFIL_MODE) +/* Use a reserved bit to let the caller specify a wait for any BTE */ +#define BTE_WACQUIRE (0x4000) +/* Use the BTE on the node with the destination memory */ +#define BTE_USE_DEST (BTE_WACQUIRE << 1) +/* Use any available BTE interface on any node for the transfer */ +#define BTE_USE_ANY (BTE_USE_DEST << 1) +/* macro to force the IBCT0 value valid */ +#define BTE_VALID_MODE(x) ((x) & (IBCT_NOTIFY | IBCT_ZFIL_MODE)) + +#define BTE_ACTIVE (IBLS_BUSY | IBLS_ERROR) +#define BTE_WORD_AVAILABLE (IBLS_BUSY << 1) +#define BTE_WORD_BUSY (~BTE_WORD_AVAILABLE) + +/* + * Some macros to simplify reading. + * Start with macros to locate the BTE control registers. + */ +#define BTE_LNSTAT_LOAD(_bte) \ + HUB_L(_bte->bte_base_addr) +#define BTE_LNSTAT_STORE(_bte, _x) \ + HUB_S(_bte->bte_base_addr, (_x)) +#define BTE_SRC_STORE(_bte, _x) \ + HUB_S(_bte->bte_base_addr + (BTEOFF_SRC/8), (_x)) +#define BTE_DEST_STORE(_bte, _x) \ + HUB_S(_bte->bte_base_addr + (BTEOFF_DEST/8), (_x)) +#define BTE_CTRL_STORE(_bte, _x) \ + HUB_S(_bte->bte_base_addr + (BTEOFF_CTRL/8), (_x)) +#define BTE_NOTIF_STORE(_bte, _x) \ + HUB_S(_bte->bte_base_addr + (BTEOFF_NOTIFY/8), (_x)) + + +/* Possible results from bte_copy and bte_unaligned_copy */ +/* The following error codes map into the BTE hardware codes + * IIO_ICRB_ECODE_* (in shubio.h). The hardware uses + * an error code of 0 (IIO_ICRB_ECODE_DERR), but we want zero + * to mean BTE_SUCCESS, so add one (BTEFAIL_OFFSET) to the error + * codes to give the following error codes. + */ +#define BTEFAIL_OFFSET 1 + +typedef enum { + BTE_SUCCESS, /* 0 is success */ + BTEFAIL_DIR, /* Directory error due to IIO access*/ + BTEFAIL_POISON, /* poison error on IO access (write to poison page) */ + BTEFAIL_WERR, /* Write error (ie WINV to a Read only line) */ + BTEFAIL_ACCESS, /* access error (protection violation) */ + BTEFAIL_PWERR, /* Partial Write Error */ + BTEFAIL_PRERR, /* Partial Read Error */ + BTEFAIL_TOUT, /* CRB Time out */ + BTEFAIL_XTERR, /* Incoming xtalk pkt had error bit */ + BTEFAIL_NOTAVAIL, /* BTE not available */ +} bte_result_t; + + +/* + * Structure defining a bte. An instance of this + * structure is created in the nodepda for each + * bte on that node (as defined by BTES_PER_NODE) + * This structure contains everything necessary + * to work with a BTE. + */ +struct bteinfo_s { + volatile u64 notify ____cacheline_aligned; + u64 *bte_base_addr ____cacheline_aligned; + spinlock_t spinlock; + cnodeid_t bte_cnode; /* cnode */ + int bte_error_count; /* Number of errors encountered */ + int bte_num; /* 0 --> BTE0, 1 --> BTE1 */ + int cleanup_active; /* Interface is locked for cleanup */ + volatile bte_result_t bh_error; /* error while processing */ + volatile u64 *most_rcnt_na; +}; + + +/* + * Function prototypes (functions defined in bte.c, used elsewhere) + */ +extern bte_result_t bte_copy(u64, u64, u64, u64, void *); +extern bte_result_t bte_unaligned_copy(u64, u64, u64, u64); +extern void bte_error_handler(unsigned long); + +#define bte_zero(dest, len, mode, notification) \ + bte_copy(0, dest, len, ((mode) | BTE_ZERO_FILL), notification) + +/* + * The following is the prefered way of calling bte_unaligned_copy + * If the copy is fully cache line aligned, then bte_copy is + * used instead. Since bte_copy is inlined, this saves a call + * stack. NOTE: bte_copy is called synchronously and does block + * until the transfer is complete. In order to get the asynch + * version of bte_copy, you must perform this check yourself. + */ +#define BTE_UNALIGNED_COPY(src, dest, len, mode) \ + (((len & L1_CACHE_MASK) || (src & L1_CACHE_MASK) || \ + (dest & L1_CACHE_MASK)) ? \ + bte_unaligned_copy(src, dest, len, mode) : \ + bte_copy(src, dest, len, mode, NULL)) + + +#endif /* _ASM_IA64_SN_BTE_H */ diff --git a/include/asm-ia64/sn/clksupport.h b/include/asm-ia64/sn/clksupport.h new file mode 100644 index 000000000000..d340c365a824 --- /dev/null +++ b/include/asm-ia64/sn/clksupport.h @@ -0,0 +1,28 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 2000-2004 Silicon Graphics, Inc. All rights reserved. + */ + +/* + * This file contains definitions for accessing a platform supported high resolution + * clock. The clock is monitonically increasing and can be accessed from any node + * in the system. The clock is synchronized across nodes - all nodes see the + * same value. + * + * RTC_COUNTER_ADDR - contains the address of the counter + * + */ + +#ifndef _ASM_IA64_SN_CLKSUPPORT_H +#define _ASM_IA64_SN_CLKSUPPORT_H + +extern unsigned long sn_rtc_cycles_per_second; + +#define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC)) + +#define rtc_time() (*RTC_COUNTER_ADDR) + +#endif /* _ASM_IA64_SN_CLKSUPPORT_H */ diff --git a/include/asm-ia64/sn/fetchop.h b/include/asm-ia64/sn/fetchop.h new file mode 100644 index 000000000000..5f4ad8f4b5d2 --- /dev/null +++ b/include/asm-ia64/sn/fetchop.h @@ -0,0 +1,85 @@ +/* + * + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (c) 2001-2004 Silicon Graphics, Inc. All rights reserved. + */ + +#ifndef _ASM_IA64_SN_FETCHOP_H +#define _ASM_IA64_SN_FETCHOP_H + +#include <linux/config.h> + +#define FETCHOP_BASENAME "sgi_fetchop" +#define FETCHOP_FULLNAME "/dev/sgi_fetchop" + + + +#define FETCHOP_VAR_SIZE 64 /* 64 byte per fetchop variable */ + +#define FETCHOP_LOAD 0 +#define FETCHOP_INCREMENT 8 +#define FETCHOP_DECREMENT 16 +#define FETCHOP_CLEAR 24 + +#define FETCHOP_STORE 0 +#define FETCHOP_AND 24 +#define FETCHOP_OR 32 + +#define FETCHOP_CLEAR_CACHE 56 + +#define FETCHOP_LOAD_OP(addr, op) ( \ + *(volatile long *)((char*) (addr) + (op))) + +#define FETCHOP_STORE_OP(addr, op, x) ( \ + *(volatile long *)((char*) (addr) + (op)) = (long) (x)) + +#ifdef __KERNEL__ + +/* + * Convert a region 6 (kaddr) address to the address of the fetchop variable + */ +#define FETCHOP_KADDR_TO_MSPEC_ADDR(kaddr) TO_MSPEC(kaddr) + + +/* + * Each Atomic Memory Operation (AMO formerly known as fetchop) + * variable is 64 bytes long. The first 8 bytes are used. The + * remaining 56 bytes are unaddressable due to the operation taking + * that portion of the address. + * + * NOTE: The AMO_t _MUST_ be placed in either the first or second half + * of the cache line. The cache line _MUST NOT_ be used for anything + * other than additional AMO_t entries. This is because there are two + * addresses which reference the same physical cache line. One will + * be a cached entry with the memory type bits all set. This address + * may be loaded into processor cache. The AMO_t will be referenced + * uncached via the memory special memory type. If any portion of the + * cached cache-line is modified, when that line is flushed, it will + * overwrite the uncached value in physical memory and lead to + * inconsistency. + */ +typedef struct { + u64 variable; + u64 unused[7]; +} AMO_t; + + +/* + * The following APIs are externalized to the kernel to allocate/free pages of + * fetchop variables. + * fetchop_kalloc_page - Allocate/initialize 1 fetchop page on the + * specified cnode. + * fetchop_kfree_page - Free a previously allocated fetchop page + */ + +unsigned long fetchop_kalloc_page(int nid); +void fetchop_kfree_page(unsigned long maddr); + + +#endif /* __KERNEL__ */ + +#endif /* _ASM_IA64_SN_FETCHOP_H */ + diff --git a/include/asm-ia64/sn/geo.h b/include/asm-ia64/sn/geo.h new file mode 100644 index 000000000000..f566343d25f8 --- /dev/null +++ b/include/asm-ia64/sn/geo.h @@ -0,0 +1,124 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 1992 - 1997, 2000-2004 Silicon Graphics, Inc. All rights reserved. + */ + +#ifndef _ASM_IA64_SN_GEO_H +#define _ASM_IA64_SN_GEO_H + +/* The geoid_t implementation below is based loosely on the pcfg_t + implementation in sys/SN/promcfg.h. */ + +/* Type declaractions */ + +/* Size of a geoid_t structure (must be before decl. of geoid_u) */ +#define GEOID_SIZE 8 /* Would 16 be better? The size can + be different on different platforms. */ + +#define MAX_SLABS 0xe /* slabs per module */ + +typedef unsigned char geo_type_t; + +/* Fields common to all substructures */ +typedef struct geo_any_s { + moduleid_t module; /* The module (box) this h/w lives in */ + geo_type_t type; /* What type of h/w is named by this geoid_t */ + slabid_t slab; /* The logical assembly within the module */ +} geo_any_t; + +/* Additional fields for particular types of hardware */ +typedef struct geo_node_s { + geo_any_t any; /* No additional fields needed */ +} geo_node_t; + +typedef struct geo_rtr_s { + geo_any_t any; /* No additional fields needed */ +} geo_rtr_t; + +typedef struct geo_iocntl_s { + geo_any_t any; /* No additional fields needed */ +} geo_iocntl_t; + +typedef struct geo_pcicard_s { + geo_iocntl_t any; + char bus; /* Bus/widget number */ + char slot; /* PCI slot number */ +} geo_pcicard_t; + +/* Subcomponents of a node */ +typedef struct geo_cpu_s { + geo_node_t node; + char slice; /* Which CPU on the node */ +} geo_cpu_t; + +typedef struct geo_mem_s { + geo_node_t node; + char membus; /* The memory bus on the node */ + char memslot; /* The memory slot on the bus */ +} geo_mem_t; + + +typedef union geoid_u { + geo_any_t any; + geo_node_t node; + geo_iocntl_t iocntl; + geo_pcicard_t pcicard; + geo_rtr_t rtr; + geo_cpu_t cpu; + geo_mem_t mem; + char padsize[GEOID_SIZE]; +} geoid_t; + + +/* Preprocessor macros */ + +#define GEO_MAX_LEN 48 /* max. formatted length, plus some pad: + module/001c07/slab/5/node/memory/2/slot/4 */ + +/* Values for geo_type_t */ +#define GEO_TYPE_INVALID 0 +#define GEO_TYPE_MODULE 1 +#define GEO_TYPE_NODE 2 +#define GEO_TYPE_RTR 3 +#define GEO_TYPE_IOCNTL 4 +#define GEO_TYPE_IOCARD 5 +#define GEO_TYPE_CPU 6 +#define GEO_TYPE_MEM 7 +#define GEO_TYPE_MAX (GEO_TYPE_MEM+1) + +/* Parameter for hwcfg_format_geoid_compt() */ +#define GEO_COMPT_MODULE 1 +#define GEO_COMPT_SLAB 2 +#define GEO_COMPT_IOBUS 3 +#define GEO_COMPT_IOSLOT 4 +#define GEO_COMPT_CPU 5 +#define GEO_COMPT_MEMBUS 6 +#define GEO_COMPT_MEMSLOT 7 + +#define GEO_INVALID_STR "<invalid>" + +#define INVALID_NASID ((nasid_t)-1) +#define INVALID_CNODEID ((cnodeid_t)-1) +#define INVALID_PNODEID ((pnodeid_t)-1) +#define INVALID_SLAB (slabid_t)-1 +#define INVALID_MODULE ((moduleid_t)-1) +#define INVALID_PARTID ((partid_t)-1) + +static inline slabid_t geo_slab(geoid_t g) +{ + return (g.any.type == GEO_TYPE_INVALID) ? + INVALID_SLAB : g.any.slab; +} + +static inline moduleid_t geo_module(geoid_t g) +{ + return (g.any.type == GEO_TYPE_INVALID) ? + INVALID_MODULE : g.any.module; +} + +extern geoid_t cnodeid_get_geoid(cnodeid_t cnode); + +#endif /* _ASM_IA64_SN_GEO_H */ diff --git a/include/asm-ia64/sn/intr.h b/include/asm-ia64/sn/intr.h new file mode 100644 index 000000000000..e51471fb0867 --- /dev/null +++ b/include/asm-ia64/sn/intr.h @@ -0,0 +1,56 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 1992 - 1997, 2000-2004 Silicon Graphics, Inc. All rights reserved. + */ + +#ifndef _ASM_IA64_SN_INTR_H +#define _ASM_IA64_SN_INTR_H + +#define SGI_UART_VECTOR (0xe9) +#define SGI_PCIBR_ERROR (0x33) + +/* Reserved IRQs : Note, not to exceed IA64_SN2_FIRST_DEVICE_VECTOR */ +#define SGI_XPC_ACTIVATE (0x30) +#define SGI_II_ERROR (0x31) +#define SGI_XBOW_ERROR (0x32) +#define SGI_PCIBR_ERROR (0x33) +#define SGI_ACPI_SCI_INT (0x34) +#define SGI_TIOCA_ERROR (0x35) +#define SGI_TIO_ERROR (0x36) +#define SGI_TIOCX_ERROR (0x37) +#define SGI_MMTIMER_VECTOR (0x38) +#define SGI_XPC_NOTIFY (0xe7) + +#define IA64_SN2_FIRST_DEVICE_VECTOR (0x3c) +#define IA64_SN2_LAST_DEVICE_VECTOR (0xe6) + +#define SN2_IRQ_RESERVED (0x1) +#define SN2_IRQ_CONNECTED (0x2) +#define SN2_IRQ_SHARED (0x4) + +// The SN PROM irq struct +struct sn_irq_info { + struct sn_irq_info *irq_next; /* sharing irq list */ + short irq_nasid; /* Nasid IRQ is assigned to */ + int irq_slice; /* slice IRQ is assigned to */ + int irq_cpuid; /* kernel logical cpuid */ + int irq_irq; /* the IRQ number */ + int irq_int_bit; /* Bridge interrupt pin */ + uint64_t irq_xtalkaddr; /* xtalkaddr IRQ is sent to */ + int irq_bridge_type;/* pciio asic type (pciio.h) */ + void *irq_bridge; /* bridge generating irq */ + void *irq_pciioinfo; /* associated pciio_info_t */ + int irq_last_intr; /* For Shub lb lost intr WAR */ + int irq_cookie; /* unique cookie */ + int irq_flags; /* flags */ + int irq_share_cnt; /* num devices sharing IRQ */ +}; + +extern void sn_send_IPI_phys(int, long, int, int); + +#define CPU_VECTOR_TO_IRQ(cpuid,vector) (vector) + +#endif /* _ASM_IA64_SN_INTR_H */ diff --git a/include/asm-ia64/sn/io.h b/include/asm-ia64/sn/io.h new file mode 100644 index 000000000000..42209733f6b1 --- /dev/null +++ b/include/asm-ia64/sn/io.h @@ -0,0 +1,265 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 2000-2004 Silicon Graphics, Inc. All rights reserved. + */ + +#ifndef _ASM_SN_IO_H +#define _ASM_SN_IO_H +#include <linux/compiler.h> +#include <asm/intrinsics.h> + +extern void * sn_io_addr(unsigned long port) __attribute_const__; /* Forward definition */ +extern void __sn_mmiowb(void); /* Forward definition */ + +extern int numionodes; + +#define __sn_mf_a() ia64_mfa() + +extern void sn_dma_flush(unsigned long); + +#define __sn_inb ___sn_inb +#define __sn_inw ___sn_inw +#define __sn_inl ___sn_inl +#define __sn_outb ___sn_outb +#define __sn_outw ___sn_outw +#define __sn_outl ___sn_outl +#define __sn_readb ___sn_readb +#define __sn_readw ___sn_readw +#define __sn_readl ___sn_readl +#define __sn_readq ___sn_readq +#define __sn_readb_relaxed ___sn_readb_relaxed +#define __sn_readw_relaxed ___sn_readw_relaxed +#define __sn_readl_relaxed ___sn_readl_relaxed +#define __sn_readq_relaxed ___sn_readq_relaxed + +/* + * The following routines are SN Platform specific, called when + * a reference is made to inX/outX set macros. SN Platform + * inX set of macros ensures that Posted DMA writes on the + * Bridge is flushed. + * + * The routines should be self explainatory. + */ + +static inline unsigned int +___sn_inb (unsigned long port) +{ + volatile unsigned char *addr; + unsigned char ret = -1; + + if ((addr = sn_io_addr(port))) { + ret = *addr; + __sn_mf_a(); + sn_dma_flush((unsigned long)addr); + } + return ret; +} + +static inline unsigned int +___sn_inw (unsigned long port) +{ + volatile unsigned short *addr; + unsigned short ret = -1; + + if ((addr = sn_io_addr(port))) { + ret = *addr; + __sn_mf_a(); + sn_dma_flush((unsigned long)addr); + } + return ret; +} + +static inline unsigned int +___sn_inl (unsigned long port) +{ + volatile unsigned int *addr; + unsigned int ret = -1; + + if ((addr = sn_io_addr(port))) { + ret = *addr; + __sn_mf_a(); + sn_dma_flush((unsigned long)addr); + } + return ret; +} + +static inline void +___sn_outb (unsigned char val, unsigned long port) +{ + volatile unsigned char *addr; + + if ((addr = sn_io_addr(port))) { + *addr = val; + __sn_mmiowb(); + } +} + +static inline void +___sn_outw (unsigned short val, unsigned long port) +{ + volatile unsigned short *addr; + + if ((addr = sn_io_addr(port))) { + *addr = val; + __sn_mmiowb(); + } +} + +static inline void +___sn_outl (unsigned int val, unsigned long port) +{ + volatile unsigned int *addr; + + if ((addr = sn_io_addr(port))) { + *addr = val; + __sn_mmiowb(); + } +} + +/* + * The following routines are SN Platform specific, called when + * a reference is made to readX/writeX set macros. SN Platform + * readX set of macros ensures that Posted DMA writes on the + * Bridge is flushed. + * + * The routines should be self explainatory. + */ + +static inline unsigned char +___sn_readb (const volatile void __iomem *addr) +{ + unsigned char val; + + val = *(volatile unsigned char __force *)addr; + __sn_mf_a(); + sn_dma_flush((unsigned long)addr); + return val; +} + +static inline unsigned short +___sn_readw (const volatile void __iomem *addr) +{ + unsigned short val; + + val = *(volatile unsigned short __force *)addr; + __sn_mf_a(); + sn_dma_flush((unsigned long)addr); + return val; +} + +static inline unsigned int +___sn_readl (const volatile void __iomem *addr) +{ + unsigned int val; + + val = *(volatile unsigned int __force *)addr; + __sn_mf_a(); + sn_dma_flush((unsigned long)addr); + return val; +} + +static inline unsigned long +___sn_readq (const volatile void __iomem *addr) +{ + unsigned long val; + + val = *(volatile unsigned long __force *)addr; + __sn_mf_a(); + sn_dma_flush((unsigned long)addr); + return val; +} + +/* + * For generic and SN2 kernels, we have a set of fast access + * PIO macros. These macros are provided on SN Platform + * because the normal inX and readX macros perform an + * additional task of flushing Post DMA request on the Bridge. + * + * These routines should be self explainatory. + */ + +static inline unsigned int +sn_inb_fast (unsigned long port) +{ + volatile unsigned char *addr = (unsigned char *)port; + unsigned char ret; + + ret = *addr; + __sn_mf_a(); + return ret; +} + +static inline unsigned int +sn_inw_fast (unsigned long port) +{ + volatile unsigned short *addr = (unsigned short *)port; + unsigned short ret; + + ret = *addr; + __sn_mf_a(); + return ret; +} + +static inline unsigned int +sn_inl_fast (unsigned long port) +{ + volatile unsigned int *addr = (unsigned int *)port; + unsigned int ret; + + ret = *addr; + __sn_mf_a(); + return ret; +} + +static inline unsigned char +___sn_readb_relaxed (const volatile void __iomem *addr) +{ + return *(volatile unsigned char __force *)addr; +} + +static inline unsigned short +___sn_readw_relaxed (const volatile void __iomem *addr) +{ + return *(volatile unsigned short __force *)addr; +} + +static inline unsigned int +___sn_readl_relaxed (const volatile void __iomem *addr) +{ + return *(volatile unsigned int __force *) addr; +} + +static inline unsigned long +___sn_readq_relaxed (const volatile void __iomem *addr) +{ + return *(volatile unsigned long __force *) addr; +} + +struct pci_dev; + +static inline int +sn_pci_set_vchan(struct pci_dev *pci_dev, unsigned long *addr, int vchan) +{ + + if (vchan > 1) { + return -1; + } + + if (!(*addr >> 32)) /* Using a mask here would be cleaner */ + return 0; /* but this generates better code */ + + if (vchan == 1) { + /* Set Bit 57 */ + *addr |= (1UL << 57); + } else { + /* Clear Bit 57 */ + *addr &= ~(1UL << 57); + } + + return 0; +} + +#endif /* _ASM_SN_IO_H */ diff --git a/include/asm-ia64/sn/klconfig.h b/include/asm-ia64/sn/klconfig.h new file mode 100644 index 000000000000..9f920c70a62a --- /dev/null +++ b/include/asm-ia64/sn/klconfig.h @@ -0,0 +1,272 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Derived from IRIX <sys/SN/klconfig.h>. + * + * Copyright (C) 1992-1997,1999,2001-2004 Silicon Graphics, Inc. All Rights Reserved. + * Copyright (C) 1999 by Ralf Baechle + */ +#ifndef _ASM_IA64_SN_KLCONFIG_H +#define _ASM_IA64_SN_KLCONFIG_H + +/* + * The KLCONFIG structures store info about the various BOARDs found + * during Hardware Discovery. In addition, it stores info about the + * components found on the BOARDs. + */ + +typedef s32 klconf_off_t; + + +/* Functions/macros needed to use this structure */ + +typedef struct kl_config_hdr { + char pad[20]; + klconf_off_t ch_board_info; /* the link list of boards */ + char pad0[88]; +} kl_config_hdr_t; + + +#define NODE_OFFSET_TO_LBOARD(nasid,off) (lboard_t*)(GLOBAL_CAC_ADDR((nasid), (off))) + +/* + * The KLCONFIG area is organized as a LINKED LIST of BOARDs. A BOARD + * can be either 'LOCAL' or 'REMOTE'. LOCAL means it is attached to + * the LOCAL/current NODE. REMOTE means it is attached to a different + * node.(TBD - Need a way to treat ROUTER boards.) + * + * There are 2 different structures to represent these boards - + * lboard - Local board, rboard - remote board. These 2 structures + * can be arbitrarily mixed in the LINKED LIST of BOARDs. (Refer + * Figure below). The first byte of the rboard or lboard structure + * is used to find out its type - no unions are used. + * If it is a lboard, then the config info of this board will be found + * on the local node. (LOCAL NODE BASE + offset value gives pointer to + * the structure. + * If it is a rboard, the local structure contains the node number + * and the offset of the beginning of the LINKED LIST on the remote node. + * The details of the hardware on a remote node can be built locally, + * if required, by reading the LINKED LIST on the remote node and + * ignoring all the rboards on that node. + * + * The local node uses the REMOTE NODE NUMBER + OFFSET to point to the + * First board info on the remote node. The remote node list is + * traversed as the local list, using the REMOTE BASE ADDRESS and not + * the local base address and ignoring all rboard values. + * + * + KLCONFIG + + +------------+ +------------+ +------------+ +------------+ + | lboard | +-->| lboard | +-->| rboard | +-->| lboard | + +------------+ | +------------+ | +------------+ | +------------+ + | board info | | | board info | | |errinfo,bptr| | | board info | + +------------+ | +------------+ | +------------+ | +------------+ + | offset |--+ | offset |--+ | offset |--+ |offset=NULL | + +------------+ +------------+ +------------+ +------------+ + + + +------------+ + | board info | + +------------+ +--------------------------------+ + | compt 1 |------>| type, rev, diaginfo, size ... | (CPU) + +------------+ +--------------------------------+ + | compt 2 |--+ + +------------+ | +--------------------------------+ + | ... | +--->| type, rev, diaginfo, size ... | (MEM_BANK) + +------------+ +--------------------------------+ + | errinfo |--+ + +------------+ | +--------------------------------+ + +--->|r/l brd errinfo,compt err flags | + +--------------------------------+ + + * + * Each BOARD consists of COMPONENTs and the BOARD structure has + * pointers (offsets) to its COMPONENT structure. + * The COMPONENT structure has version info, size and speed info, revision, + * error info and the NIC info. This structure can accommodate any + * BOARD with arbitrary COMPONENT composition. + * + * The ERRORINFO part of each BOARD has error information + * that describes errors about the BOARD itself. It also has flags to + * indicate the COMPONENT(s) on the board that have errors. The error + * information specific to the COMPONENT is present in the respective + * COMPONENT structure. + * + * The ERRORINFO structure is also treated like a COMPONENT, ie. the + * BOARD has pointers(offset) to the ERRORINFO structure. The rboard + * structure also has a pointer to the ERRORINFO structure. This is + * the place to store ERRORINFO about a REMOTE NODE, if the HUB on + * that NODE is not working or if the REMOTE MEMORY is BAD. In cases where + * only the CPU of the REMOTE NODE is disabled, the ERRORINFO pointer can + * be a NODE NUMBER, REMOTE OFFSET combination, pointing to error info + * which is present on the REMOTE NODE.(TBD) + * REMOTE ERRINFO can be stored on any of the nearest nodes + * or on all the nearest nodes.(TBD) + * Like BOARD structures, REMOTE ERRINFO structures can be built locally + * using the rboard errinfo pointer. + * + * In order to get useful information from this Data organization, a set of + * interface routines are provided (TBD). The important thing to remember while + * manipulating the structures, is that, the NODE number information should + * be used. If the NODE is non-zero (remote) then each offset should + * be added to the REMOTE BASE ADDR else it should be added to the LOCAL BASE ADDR. + * This includes offsets for BOARDS, COMPONENTS and ERRORINFO. + * + * Note that these structures do not provide much info about connectivity. + * That info will be part of HWGRAPH, which is an extension of the cfg_t + * data structure. (ref IP27prom/cfg.h) It has to be extended to include + * the IO part of the Network(TBD). + * + * The data structures below define the above concepts. + */ + + +/* + * BOARD classes + */ + +#define KLCLASS_MASK 0xf0 +#define KLCLASS_NONE 0x00 +#define KLCLASS_NODE 0x10 /* CPU, Memory and HUB board */ +#define KLCLASS_CPU KLCLASS_NODE +#define KLCLASS_IO 0x20 /* BaseIO, 4 ch SCSI, ethernet, FDDI + and the non-graphics widget boards */ +#define KLCLASS_ROUTER 0x30 /* Router board */ +#define KLCLASS_MIDPLANE 0x40 /* We need to treat this as a board + so that we can record error info */ +#define KLCLASS_IOBRICK 0x70 /* IP35 iobrick */ +#define KLCLASS_MAX 8 /* Bump this if a new CLASS is added */ + +#define KLCLASS(_x) ((_x) & KLCLASS_MASK) + + +/* + * board types + */ + +#define KLTYPE_MASK 0x0f +#define KLTYPE(_x) ((_x) & KLTYPE_MASK) + +#define KLTYPE_SNIA (KLCLASS_CPU | 0x1) +#define KLTYPE_TIO (KLCLASS_CPU | 0x2) + +#define KLTYPE_ROUTER (KLCLASS_ROUTER | 0x1) +#define KLTYPE_META_ROUTER (KLCLASS_ROUTER | 0x3) +#define KLTYPE_REPEATER_ROUTER (KLCLASS_ROUTER | 0x4) + +#define KLTYPE_IOBRICK_XBOW (KLCLASS_MIDPLANE | 0x2) + +#define KLTYPE_IOBRICK (KLCLASS_IOBRICK | 0x0) +#define KLTYPE_NBRICK (KLCLASS_IOBRICK | 0x4) +#define KLTYPE_PXBRICK (KLCLASS_IOBRICK | 0x6) +#define KLTYPE_IXBRICK (KLCLASS_IOBRICK | 0x7) +#define KLTYPE_CGBRICK (KLCLASS_IOBRICK | 0x8) +#define KLTYPE_OPUSBRICK (KLCLASS_IOBRICK | 0x9) +#define KLTYPE_SABRICK (KLCLASS_IOBRICK | 0xa) +#define KLTYPE_IABRICK (KLCLASS_IOBRICK | 0xb) +#define KLTYPE_PABRICK (KLCLASS_IOBRICK | 0xc) +#define KLTYPE_GABRICK (KLCLASS_IOBRICK | 0xd) + + +/* + * board structures + */ + +#define MAX_COMPTS_PER_BRD 24 + +typedef struct lboard_s { + klconf_off_t brd_next_any; /* Next BOARD */ + unsigned char struct_type; /* type of structure, local or remote */ + unsigned char brd_type; /* type+class */ + unsigned char brd_sversion; /* version of this structure */ + unsigned char brd_brevision; /* board revision */ + unsigned char brd_promver; /* board prom version, if any */ + unsigned char brd_flags; /* Enabled, Disabled etc */ + unsigned char brd_slot; /* slot number */ + unsigned short brd_debugsw; /* Debug switches */ + geoid_t brd_geoid; /* geo id */ + partid_t brd_partition; /* Partition number */ + unsigned short brd_diagval; /* diagnostic value */ + unsigned short brd_diagparm; /* diagnostic parameter */ + unsigned char brd_inventory; /* inventory history */ + unsigned char brd_numcompts; /* Number of components */ + nic_t brd_nic; /* Number in CAN */ + nasid_t brd_nasid; /* passed parameter */ + klconf_off_t brd_compts[MAX_COMPTS_PER_BRD]; /* pointers to COMPONENTS */ + klconf_off_t brd_errinfo; /* Board's error information */ + struct lboard_s *brd_parent; /* Logical parent for this brd */ + char pad0[4]; + unsigned char brd_confidence; /* confidence that the board is bad */ + nasid_t brd_owner; /* who owns this board */ + unsigned char brd_nic_flags; /* To handle 8 more NICs */ + char pad1[24]; /* future expansion */ + char brd_name[32]; + nasid_t brd_next_same_host; /* host of next brd w/same nasid */ + klconf_off_t brd_next_same; /* Next BOARD with same nasid */ +} lboard_t; + +#define KLCF_NUM_COMPS(_brd) ((_brd)->brd_numcompts) +#define NODE_OFFSET_TO_KLINFO(n,off) ((klinfo_t*) TO_NODE_CAC(n,off)) +#define KLCF_NEXT(_brd) \ + ((_brd)->brd_next_same ? \ + (NODE_OFFSET_TO_LBOARD((_brd)->brd_next_same_host, (_brd)->brd_next_same)): NULL) +#define KLCF_NEXT_ANY(_brd) \ + ((_brd)->brd_next_any ? \ + (NODE_OFFSET_TO_LBOARD(NASID_GET(_brd), (_brd)->brd_next_any)): NULL) +#define KLCF_COMP(_brd, _ndx) \ + ((((_brd)->brd_compts[(_ndx)]) == 0) ? 0 : \ + (NODE_OFFSET_TO_KLINFO(NASID_GET(_brd), (_brd)->brd_compts[(_ndx)]))) + + +/* + * Generic info structure. This stores common info about a + * component. + */ + +typedef struct klinfo_s { /* Generic info */ + unsigned char struct_type; /* type of this structure */ + unsigned char struct_version; /* version of this structure */ + unsigned char flags; /* Enabled, disabled etc */ + unsigned char revision; /* component revision */ + unsigned short diagval; /* result of diagnostics */ + unsigned short diagparm; /* diagnostic parameter */ + unsigned char inventory; /* previous inventory status */ + unsigned short partid; /* widget part number */ + nic_t nic; /* MUst be aligned properly */ + unsigned char physid; /* physical id of component */ + unsigned int virtid; /* virtual id as seen by system */ + unsigned char widid; /* Widget id - if applicable */ + nasid_t nasid; /* node number - from parent */ + char pad1; /* pad out structure. */ + char pad2; /* pad out structure. */ + void *data; + klconf_off_t errinfo; /* component specific errors */ + unsigned short pad3; /* pci fields have moved over to */ + unsigned short pad4; /* klbri_t */ +} klinfo_t ; + + +static inline lboard_t *find_lboard_any(lboard_t * start, unsigned char brd_type) +{ + /* Search all boards stored on this node. */ + + while (start) { + if (start->brd_type == brd_type) + return start; + start = KLCF_NEXT_ANY(start); + } + /* Didn't find it. */ + return (lboard_t *) NULL; +} + + +/* external declarations of Linux kernel functions. */ + +extern lboard_t *root_lboard[]; +extern klinfo_t *find_component(lboard_t *brd, klinfo_t *kli, unsigned char type); +extern klinfo_t *find_first_component(lboard_t *brd, unsigned char type); + +#endif /* _ASM_IA64_SN_KLCONFIG_H */ diff --git a/include/asm-ia64/sn/l1.h b/include/asm-ia64/sn/l1.h new file mode 100644 index 000000000000..d5dbd55e44b5 --- /dev/null +++ b/include/asm-ia64/sn/l1.h @@ -0,0 +1,36 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 1992-1997,2000-2004 Silicon Graphics, Inc. All Rights Reserved. + */ + +#ifndef _ASM_IA64_SN_L1_H +#define _ASM_IA64_SN_L1_H + +/* brick type response codes */ +#define L1_BRICKTYPE_PX 0x23 /* # */ +#define L1_BRICKTYPE_PE 0x25 /* % */ +#define L1_BRICKTYPE_N_p0 0x26 /* & */ +#define L1_BRICKTYPE_IP45 0x34 /* 4 */ +#define L1_BRICKTYPE_IP41 0x35 /* 5 */ +#define L1_BRICKTYPE_TWISTER 0x36 /* 6 */ /* IP53 & ROUTER */ +#define L1_BRICKTYPE_IX 0x3d /* = */ +#define L1_BRICKTYPE_IP34 0x61 /* a */ +#define L1_BRICKTYPE_GA 0x62 /* b */ +#define L1_BRICKTYPE_C 0x63 /* c */ +#define L1_BRICKTYPE_OPUS_TIO 0x66 /* f */ +#define L1_BRICKTYPE_I 0x69 /* i */ +#define L1_BRICKTYPE_N 0x6e /* n */ +#define L1_BRICKTYPE_OPUS 0x6f /* o */ +#define L1_BRICKTYPE_P 0x70 /* p */ +#define L1_BRICKTYPE_R 0x72 /* r */ +#define L1_BRICKTYPE_CHI_CG 0x76 /* v */ +#define L1_BRICKTYPE_X 0x78 /* x */ +#define L1_BRICKTYPE_X2 0x79 /* y */ +#define L1_BRICKTYPE_SA 0x5e /* ^ */ /* TIO bringup brick */ +#define L1_BRICKTYPE_PA 0x6a /* j */ +#define L1_BRICKTYPE_IA 0x6b /* k */ + +#endif /* _ASM_IA64_SN_L1_H */ diff --git a/include/asm-ia64/sn/leds.h b/include/asm-ia64/sn/leds.h new file mode 100644 index 000000000000..66cf8c4d92c9 --- /dev/null +++ b/include/asm-ia64/sn/leds.h @@ -0,0 +1,33 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * Copyright (C) 2000-2004 Silicon Graphics, Inc. All rights reserved. + */ +#ifndef _ASM_IA64_SN_LEDS_H +#define _ASM_IA64_SN_LEDS_H + +#include <asm/sn/addrs.h> +#include <asm/sn/pda.h> +#include <asm/sn/shub_mmr.h> + +#define LED0 (LOCAL_MMR_ADDR(SH_REAL_JUNK_BUS_LED0)) +#define LED_CPU_SHIFT 16 + +#define LED_CPU_HEARTBEAT 0x01 +#define LED_CPU_ACTIVITY 0x02 +#define LED_ALWAYS_SET 0x00 + +/* + * Basic macros for flashing the LEDS on an SGI SN. + */ + +static __inline__ void +set_led_bits(u8 value, u8 mask) +{ + pda->led_state = (pda->led_state & ~mask) | (value & mask); + *pda->led_address = (short) pda->led_state; +} + +#endif /* _ASM_IA64_SN_LEDS_H */ + diff --git a/include/asm-ia64/sn/module.h b/include/asm-ia64/sn/module.h new file mode 100644 index 000000000000..734e980ece2f --- /dev/null +++ b/include/asm-ia64/sn/module.h @@ -0,0 +1,127 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 1992 - 1997, 2000-2004 Silicon Graphics, Inc. All rights reserved. + */ +#ifndef _ASM_IA64_SN_MODULE_H +#define _ASM_IA64_SN_MODULE_H + +/* parameter for format_module_id() */ +#define MODULE_FORMAT_BRIEF 1 +#define MODULE_FORMAT_LONG 2 +#define MODULE_FORMAT_LCD 3 + +/* + * Module id format + * + * 31-16 Rack ID (encoded class, group, number - 16-bit unsigned int) + * 15-8 Brick type (8-bit ascii character) + * 7-0 Bay (brick position in rack (0-63) - 8-bit unsigned int) + * + */ + +/* + * Macros for getting the brick type + */ +#define MODULE_BTYPE_MASK 0xff00 +#define MODULE_BTYPE_SHFT 8 +#define MODULE_GET_BTYPE(_m) (((_m) & MODULE_BTYPE_MASK) >> MODULE_BTYPE_SHFT) +#define MODULE_BT_TO_CHAR(_b) ((char)(_b)) +#define MODULE_GET_BTCHAR(_m) (MODULE_BT_TO_CHAR(MODULE_GET_BTYPE(_m))) + +/* + * Macros for getting the rack ID. + */ +#define MODULE_RACK_MASK 0xffff0000 +#define MODULE_RACK_SHFT 16 +#define MODULE_GET_RACK(_m) (((_m) & MODULE_RACK_MASK) >> MODULE_RACK_SHFT) + +/* + * Macros for getting the brick position + */ +#define MODULE_BPOS_MASK 0x00ff +#define MODULE_BPOS_SHFT 0 +#define MODULE_GET_BPOS(_m) (((_m) & MODULE_BPOS_MASK) >> MODULE_BPOS_SHFT) + +/* + * Macros for encoding and decoding rack IDs + * A rack number consists of three parts: + * class (0==CPU/mixed, 1==I/O), group, number + * + * Rack number is stored just as it is displayed on the screen: + * a 3-decimal-digit number. + */ +#define RACK_CLASS_DVDR 100 +#define RACK_GROUP_DVDR 10 +#define RACK_NUM_DVDR 1 + +#define RACK_CREATE_RACKID(_c, _g, _n) ((_c) * RACK_CLASS_DVDR + \ + (_g) * RACK_GROUP_DVDR + (_n) * RACK_NUM_DVDR) + +#define RACK_GET_CLASS(_r) ((_r) / RACK_CLASS_DVDR) +#define RACK_GET_GROUP(_r) (((_r) - RACK_GET_CLASS(_r) * \ + RACK_CLASS_DVDR) / RACK_GROUP_DVDR) +#define RACK_GET_NUM(_r) (((_r) - RACK_GET_CLASS(_r) * \ + RACK_CLASS_DVDR - RACK_GET_GROUP(_r) * \ + RACK_GROUP_DVDR) / RACK_NUM_DVDR) + +/* + * Macros for encoding and decoding rack IDs + * A rack number consists of three parts: + * class 1 bit, 0==CPU/mixed, 1==I/O + * group 2 bits for CPU/mixed, 3 bits for I/O + * number 3 bits for CPU/mixed, 2 bits for I/O (1 based) + */ +#define RACK_GROUP_BITS(_r) (RACK_GET_CLASS(_r) ? 3 : 2) +#define RACK_NUM_BITS(_r) (RACK_GET_CLASS(_r) ? 2 : 3) + +#define RACK_CLASS_MASK(_r) 0x20 +#define RACK_CLASS_SHFT(_r) 5 +#define RACK_ADD_CLASS(_r, _c) \ + ((_r) |= (_c) << RACK_CLASS_SHFT(_r) & RACK_CLASS_MASK(_r)) + +#define RACK_GROUP_SHFT(_r) RACK_NUM_BITS(_r) +#define RACK_GROUP_MASK(_r) \ + ( (((unsigned)1<<RACK_GROUP_BITS(_r)) - 1) << RACK_GROUP_SHFT(_r) ) +#define RACK_ADD_GROUP(_r, _g) \ + ((_r) |= (_g) << RACK_GROUP_SHFT(_r) & RACK_GROUP_MASK(_r)) + +#define RACK_NUM_SHFT(_r) 0 +#define RACK_NUM_MASK(_r) \ + ( (((unsigned)1<<RACK_NUM_BITS(_r)) - 1) << RACK_NUM_SHFT(_r) ) +#define RACK_ADD_NUM(_r, _n) \ + ((_r) |= ((_n) - 1) << RACK_NUM_SHFT(_r) & RACK_NUM_MASK(_r)) + + +/* + * Brick type definitions + */ +#define MAX_BRICK_TYPES 256 /* brick type is stored as uchar */ + +extern char brick_types[]; + +#define MODULE_CBRICK 0 +#define MODULE_RBRICK 1 +#define MODULE_IBRICK 2 +#define MODULE_KBRICK 3 +#define MODULE_XBRICK 4 +#define MODULE_DBRICK 5 +#define MODULE_PBRICK 6 +#define MODULE_NBRICK 7 +#define MODULE_PEBRICK 8 +#define MODULE_PXBRICK 9 +#define MODULE_IXBRICK 10 +#define MODULE_CGBRICK 11 +#define MODULE_OPUSBRICK 12 +#define MODULE_SABRICK 13 /* TIO BringUp Brick */ +#define MODULE_IABRICK 14 +#define MODULE_PABRICK 15 +#define MODULE_GABRICK 16 +#define MODULE_OPUS_TIO 17 /* OPUS TIO Riser */ + +extern char brick_types[]; +extern void format_module_id(char *, moduleid_t, int); + +#endif /* _ASM_IA64_SN_MODULE_H */ diff --git a/include/asm-ia64/sn/nodepda.h b/include/asm-ia64/sn/nodepda.h new file mode 100644 index 000000000000..2fbde33656e6 --- /dev/null +++ b/include/asm-ia64/sn/nodepda.h @@ -0,0 +1,86 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 1992 - 1997, 2000-2004 Silicon Graphics, Inc. All rights reserved. + */ +#ifndef _ASM_IA64_SN_NODEPDA_H +#define _ASM_IA64_SN_NODEPDA_H + + +#include <asm/semaphore.h> +#include <asm/irq.h> +#include <asm/sn/arch.h> +#include <asm/sn/intr.h> +#include <asm/sn/pda.h> +#include <asm/sn/bte.h> + +/* + * NUMA Node-Specific Data structures are defined in this file. + * In particular, this is the location of the node PDA. + * A pointer to the right node PDA is saved in each CPU PDA. + */ + +/* + * Node-specific data structure. + * + * One of these structures is allocated on each node of a NUMA system. + * + * This structure provides a convenient way of keeping together + * all per-node data structures. + */ +struct phys_cpuid { + short nasid; + char subnode; + char slice; +}; + +struct nodepda_s { + void *pdinfo; /* Platform-dependent per-node info */ + spinlock_t bist_lock; + + /* + * The BTEs on this node are shared by the local cpus + */ + struct bteinfo_s bte_if[BTES_PER_NODE]; /* Virtual Interface */ + struct timer_list bte_recovery_timer; + spinlock_t bte_recovery_lock; + + /* + * Array of pointers to the nodepdas for each node. + */ + struct nodepda_s *pernode_pdaindr[MAX_COMPACT_NODES]; + + /* + * Array of physical cpu identifiers. Indexed by cpuid. + */ + struct phys_cpuid phys_cpuid[NR_CPUS]; +}; + +typedef struct nodepda_s nodepda_t; + +/* + * Access Functions for node PDA. + * Since there is one nodepda for each node, we need a convenient mechanism + * to access these nodepdas without cluttering code with #ifdefs. + * The next set of definitions provides this. + * Routines are expected to use + * + * nodepda -> to access node PDA for the node on which code is running + * subnodepda -> to access subnode PDA for the subnode on which code is running + * + * NODEPDA(cnode) -> to access node PDA for cnodeid + * SUBNODEPDA(cnode,sn) -> to access subnode PDA for cnodeid/subnode + */ + +#define nodepda pda->p_nodepda /* Ptr to this node's PDA */ +#define NODEPDA(cnode) (nodepda->pernode_pdaindr[cnode]) + +/* + * Check if given a compact node id the corresponding node has all the + * cpus disabled. + */ +#define is_headless_node(cnode) (nr_cpus_node(cnode) == 0) + +#endif /* _ASM_IA64_SN_NODEPDA_H */ diff --git a/include/asm-ia64/sn/pda.h b/include/asm-ia64/sn/pda.h new file mode 100644 index 000000000000..e940d3647c80 --- /dev/null +++ b/include/asm-ia64/sn/pda.h @@ -0,0 +1,80 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 1992 - 1997, 2000-2004 Silicon Graphics, Inc. All rights reserved. + */ +#ifndef _ASM_IA64_SN_PDA_H +#define _ASM_IA64_SN_PDA_H + +#include <linux/cache.h> +#include <asm/percpu.h> +#include <asm/system.h> +#include <asm/sn/bte.h> + + +/* + * CPU-specific data structure. + * + * One of these structures is allocated for each cpu of a NUMA system. + * + * This structure provides a convenient way of keeping together + * all SN per-cpu data structures. + */ + +typedef struct pda_s { + + /* Having a pointer in the begining of PDA tends to increase + * the chance of having this pointer in cache. (Yes something + * else gets pushed out). Doing this reduces the number of memory + * access to all nodepda variables to be one + */ + struct nodepda_s *p_nodepda; /* Pointer to Per node PDA */ + struct subnodepda_s *p_subnodepda; /* Pointer to CPU subnode PDA */ + + /* + * Support for SN LEDs + */ + volatile short *led_address; + u8 led_state; + u8 hb_state; /* supports blinking heartbeat leds */ + unsigned int hb_count; + + unsigned int idle_flag; + + volatile unsigned long *bedrock_rev_id; + volatile unsigned long *pio_write_status_addr; + unsigned long pio_write_status_val; + volatile unsigned long *pio_shub_war_cam_addr; + + unsigned long sn_soft_irr[4]; + unsigned long sn_in_service_ivecs[4]; + short cnodeid_to_nasid_table[MAX_NUMNODES]; + int sn_lb_int_war_ticks; + int sn_last_irq; + int sn_first_irq; +} pda_t; + + +#define CACHE_ALIGN(x) (((x) + SMP_CACHE_BYTES-1) & ~(SMP_CACHE_BYTES-1)) + +/* + * PDA + * Per-cpu private data area for each cpu. The PDA is located immediately after + * the IA64 cpu_data area. A full page is allocated for the cp_data area for each + * cpu but only a small amout of the page is actually used. We put the SNIA PDA + * in the same page as the cpu_data area. Note that there is a check in the setup + * code to verify that we don't overflow the page. + * + * Seems like we should should cache-line align the pda so that any changes in the + * size of the cpu_data area don't change cache layout. Should we align to 32, 64, 128 + * or 512 boundary. Each has merits. For now, pick 128 but should be revisited later. + */ +DECLARE_PER_CPU(struct pda_s, pda_percpu); + +#define pda (&__ia64_per_cpu_var(pda_percpu)) + +#define pdacpu(cpu) (&per_cpu(pda_percpu, cpu)) + +#endif /* _ASM_IA64_SN_PDA_H */ diff --git a/include/asm-ia64/sn/rw_mmr.h b/include/asm-ia64/sn/rw_mmr.h new file mode 100644 index 000000000000..f40fd1a5510d --- /dev/null +++ b/include/asm-ia64/sn/rw_mmr.h @@ -0,0 +1,74 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 2002-2004 Silicon Graphics, Inc. All Rights Reserved. + */ +#ifndef _ASM_IA64_SN_RW_MMR_H +#define _ASM_IA64_SN_RW_MMR_H + + +/* + * This file contains macros used to access MMR registers via + * uncached physical addresses. + * pio_phys_read_mmr - read an MMR + * pio_phys_write_mmr - write an MMR + * pio_atomic_phys_write_mmrs - atomically write 1 or 2 MMRs with psr.ic=0 + * Second MMR will be skipped if address is NULL + * + * Addresses passed to these routines should be uncached physical addresses + * ie., 0x80000.... + */ + + +extern inline long +pio_phys_read_mmr(volatile long *mmr) +{ + long val; + asm volatile + ("mov r2=psr;;" + "rsm psr.i | psr.dt;;" + "srlz.i;;" + "ld8.acq %0=[%1];;" + "mov psr.l=r2;;" + "srlz.i;;" + : "=r"(val) + : "r"(mmr) + : "r2"); + return val; +} + + + +extern inline void +pio_phys_write_mmr(volatile long *mmr, long val) +{ + asm volatile + ("mov r2=psr;;" + "rsm psr.i | psr.dt;;" + "srlz.i;;" + "st8.rel [%0]=%1;;" + "mov psr.l=r2;;" + "srlz.i;;" + :: "r"(mmr), "r"(val) + : "r2", "memory"); +} + +extern inline void +pio_atomic_phys_write_mmrs(volatile long *mmr1, long val1, volatile long *mmr2, long val2) +{ + asm volatile + ("mov r2=psr;;" + "rsm psr.i | psr.dt | psr.ic;;" + "cmp.ne p9,p0=%2,r0;" + "srlz.i;;" + "st8.rel [%0]=%1;" + "(p9) st8.rel [%2]=%3;;" + "mov psr.l=r2;;" + "srlz.i;;" + :: "r"(mmr1), "r"(val1), "r"(mmr2), "r"(val2) + : "p9", "r2", "memory"); +} + +#endif /* _ASM_IA64_SN_RW_MMR_H */ diff --git a/include/asm-ia64/sn/shub_mmr.h b/include/asm-ia64/sn/shub_mmr.h new file mode 100644 index 000000000000..5c2fcf13d5ce --- /dev/null +++ b/include/asm-ia64/sn/shub_mmr.h @@ -0,0 +1,441 @@ +/* + * + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (c) 2001-2004 Silicon Graphics, Inc. All rights reserved. + */ + +#ifndef _ASM_IA64_SN_SHUB_MMR_H +#define _ASM_IA64_SN_SHUB_MMR_H + +/* ==================================================================== */ +/* Register "SH_IPI_INT" */ +/* SHub Inter-Processor Interrupt Registers */ +/* ==================================================================== */ +#define SH1_IPI_INT 0x0000000110000380 +#define SH2_IPI_INT 0x0000000010000380 + +/* SH_IPI_INT_TYPE */ +/* Description: Type of Interrupt: 0=INT, 2=PMI, 4=NMI, 5=INIT */ +#define SH_IPI_INT_TYPE_SHFT 0 +#define SH_IPI_INT_TYPE_MASK 0x0000000000000007 + +/* SH_IPI_INT_AGT */ +/* Description: Agent, must be 0 for SHub */ +#define SH_IPI_INT_AGT_SHFT 3 +#define SH_IPI_INT_AGT_MASK 0x0000000000000008 + +/* SH_IPI_INT_PID */ +/* Description: Processor ID, same setting as on targeted McKinley */ +#define SH_IPI_INT_PID_SHFT 4 +#define SH_IPI_INT_PID_MASK 0x00000000000ffff0 + +/* SH_IPI_INT_BASE */ +/* Description: Optional interrupt vector area, 2MB aligned */ +#define SH_IPI_INT_BASE_SHFT 21 +#define SH_IPI_INT_BASE_MASK 0x0003ffffffe00000 + +/* SH_IPI_INT_IDX */ +/* Description: Targeted McKinley interrupt vector */ +#define SH_IPI_INT_IDX_SHFT 52 +#define SH_IPI_INT_IDX_MASK 0x0ff0000000000000 + +/* SH_IPI_INT_SEND */ +/* Description: Send Interrupt Message to PI, This generates a puls */ +#define SH_IPI_INT_SEND_SHFT 63 +#define SH_IPI_INT_SEND_MASK 0x8000000000000000 + +/* ==================================================================== */ +/* Register "SH_EVENT_OCCURRED" */ +/* SHub Interrupt Event Occurred */ +/* ==================================================================== */ +#define SH1_EVENT_OCCURRED 0x0000000110010000 +#define SH1_EVENT_OCCURRED_ALIAS 0x0000000110010008 +#define SH2_EVENT_OCCURRED 0x0000000010010000 +#define SH2_EVENT_OCCURRED_ALIAS 0x0000000010010008 + +/* ==================================================================== */ +/* Register "SH_PI_CAM_CONTROL" */ +/* CRB CAM MMR Access Control */ +/* ==================================================================== */ +#define SH1_PI_CAM_CONTROL 0x0000000120050300 + +/* ==================================================================== */ +/* Register "SH_SHUB_ID" */ +/* SHub ID Number */ +/* ==================================================================== */ +#define SH1_SHUB_ID 0x0000000110060580 +#define SH1_SHUB_ID_REVISION_SHFT 28 +#define SH1_SHUB_ID_REVISION_MASK 0x00000000f0000000 + +/* ==================================================================== */ +/* Register "SH_RTC" */ +/* Real-time Clock */ +/* ==================================================================== */ +#define SH1_RTC 0x00000001101c0000 +#define SH2_RTC 0x00000002101c0000 +#define SH_RTC_MASK 0x007fffffffffffff + +/* ==================================================================== */ +/* Register "SH_PIO_WRITE_STATUS_0|1" */ +/* PIO Write Status for CPU 0 & 1 */ +/* ==================================================================== */ +#define SH1_PIO_WRITE_STATUS_0 0x0000000120070200 +#define SH1_PIO_WRITE_STATUS_1 0x0000000120070280 +#define SH2_PIO_WRITE_STATUS_0 0x0000000020070200 +#define SH2_PIO_WRITE_STATUS_1 0x0000000020070280 +#define SH2_PIO_WRITE_STATUS_2 0x0000000020070300 +#define SH2_PIO_WRITE_STATUS_3 0x0000000020070380 + +/* SH_PIO_WRITE_STATUS_0_WRITE_DEADLOCK */ +/* Description: Deadlock response detected */ +#define SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_SHFT 1 +#define SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK 0x0000000000000002 + +/* SH_PIO_WRITE_STATUS_0_PENDING_WRITE_COUNT */ +/* Description: Count of currently pending PIO writes */ +#define SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_SHFT 56 +#define SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK 0x3f00000000000000 + +/* ==================================================================== */ +/* Register "SH_PIO_WRITE_STATUS_0_ALIAS" */ +/* ==================================================================== */ +#define SH1_PIO_WRITE_STATUS_0_ALIAS 0x0000000120070208 +#define SH2_PIO_WRITE_STATUS_0_ALIAS 0x0000000020070208 + +/* ==================================================================== */ +/* Register "SH_EVENT_OCCURRED" */ +/* SHub Interrupt Event Occurred */ +/* ==================================================================== */ +/* SH_EVENT_OCCURRED_UART_INT */ +/* Description: Pending Junk Bus UART Interrupt */ +#define SH_EVENT_OCCURRED_UART_INT_SHFT 20 +#define SH_EVENT_OCCURRED_UART_INT_MASK 0x0000000000100000 + +/* SH_EVENT_OCCURRED_IPI_INT */ +/* Description: Pending IPI Interrupt */ +#define SH_EVENT_OCCURRED_IPI_INT_SHFT 28 +#define SH_EVENT_OCCURRED_IPI_INT_MASK 0x0000000010000000 + +/* SH_EVENT_OCCURRED_II_INT0 */ +/* Description: Pending II 0 Interrupt */ +#define SH_EVENT_OCCURRED_II_INT0_SHFT 29 +#define SH_EVENT_OCCURRED_II_INT0_MASK 0x0000000020000000 + +/* SH_EVENT_OCCURRED_II_INT1 */ +/* Description: Pending II 1 Interrupt */ +#define SH_EVENT_OCCURRED_II_INT1_SHFT 30 +#define SH_EVENT_OCCURRED_II_INT1_MASK 0x0000000040000000 + +/* ==================================================================== */ +/* LEDS */ +/* ==================================================================== */ +#define SH1_REAL_JUNK_BUS_LED0 0x7fed00000UL +#define SH1_REAL_JUNK_BUS_LED1 0x7fed10000UL +#define SH1_REAL_JUNK_BUS_LED2 0x7fed20000UL +#define SH1_REAL_JUNK_BUS_LED3 0x7fed30000UL + +#define SH2_REAL_JUNK_BUS_LED0 0xf0000000UL +#define SH2_REAL_JUNK_BUS_LED1 0xf0010000UL +#define SH2_REAL_JUNK_BUS_LED2 0xf0020000UL +#define SH2_REAL_JUNK_BUS_LED3 0xf0030000UL + +/* ==================================================================== */ +/* Register "SH1_PTC_0" */ +/* Puge Translation Cache Message Configuration Information */ +/* ==================================================================== */ +#define SH1_PTC_0 0x00000001101a0000 + +/* SH1_PTC_0_A */ +/* Description: Type */ +#define SH1_PTC_0_A_SHFT 0 + +/* SH1_PTC_0_PS */ +/* Description: Page Size */ +#define SH1_PTC_0_PS_SHFT 2 + +/* SH1_PTC_0_RID */ +/* Description: Region ID */ +#define SH1_PTC_0_RID_SHFT 8 + +/* SH1_PTC_0_START */ +/* Description: Start */ +#define SH1_PTC_0_START_SHFT 63 + +/* ==================================================================== */ +/* Register "SH1_PTC_1" */ +/* Puge Translation Cache Message Configuration Information */ +/* ==================================================================== */ +#define SH1_PTC_1 0x00000001101a0080 + +/* SH1_PTC_1_START */ +/* Description: PTC_1 Start */ +#define SH1_PTC_1_START_SHFT 63 + + +/* ==================================================================== */ +/* Register "SH2_PTC" */ +/* Puge Translation Cache Message Configuration Information */ +/* ==================================================================== */ +#define SH2_PTC 0x0000000170000000 + +/* SH2_PTC_A */ +/* Description: Type */ +#define SH2_PTC_A_SHFT 0 + +/* SH2_PTC_PS */ +/* Description: Page Size */ +#define SH2_PTC_PS_SHFT 2 + +/* SH2_PTC_RID */ +/* Description: Region ID */ +#define SH2_PTC_RID_SHFT 4 + +/* SH2_PTC_START */ +/* Description: Start */ +#define SH2_PTC_START_SHFT 63 + +/* SH2_PTC_ADDR_RID */ +/* Description: Region ID */ +#define SH2_PTC_ADDR_SHFT 4 +#define SH2_PTC_ADDR_MASK 0x1ffffffffffff000 + +/* ==================================================================== */ +/* Register "SH_RTC1_INT_CONFIG" */ +/* SHub RTC 1 Interrupt Config Registers */ +/* ==================================================================== */ + +#define SH1_RTC1_INT_CONFIG 0x0000000110001480 +#define SH2_RTC1_INT_CONFIG 0x0000000010001480 +#define SH_RTC1_INT_CONFIG_MASK 0x0ff3ffffffefffff +#define SH_RTC1_INT_CONFIG_INIT 0x0000000000000000 + +/* SH_RTC1_INT_CONFIG_TYPE */ +/* Description: Type of Interrupt: 0=INT, 2=PMI, 4=NMI, 5=INIT */ +#define SH_RTC1_INT_CONFIG_TYPE_SHFT 0 +#define SH_RTC1_INT_CONFIG_TYPE_MASK 0x0000000000000007 + +/* SH_RTC1_INT_CONFIG_AGT */ +/* Description: Agent, must be 0 for SHub */ +#define SH_RTC1_INT_CONFIG_AGT_SHFT 3 +#define SH_RTC1_INT_CONFIG_AGT_MASK 0x0000000000000008 + +/* SH_RTC1_INT_CONFIG_PID */ +/* Description: Processor ID, same setting as on targeted McKinley */ +#define SH_RTC1_INT_CONFIG_PID_SHFT 4 +#define SH_RTC1_INT_CONFIG_PID_MASK 0x00000000000ffff0 + +/* SH_RTC1_INT_CONFIG_BASE */ +/* Description: Optional interrupt vector area, 2MB aligned */ +#define SH_RTC1_INT_CONFIG_BASE_SHFT 21 +#define SH_RTC1_INT_CONFIG_BASE_MASK 0x0003ffffffe00000 + +/* SH_RTC1_INT_CONFIG_IDX */ +/* Description: Targeted McKinley interrupt vector */ +#define SH_RTC1_INT_CONFIG_IDX_SHFT 52 +#define SH_RTC1_INT_CONFIG_IDX_MASK 0x0ff0000000000000 + +/* ==================================================================== */ +/* Register "SH_RTC1_INT_ENABLE" */ +/* SHub RTC 1 Interrupt Enable Registers */ +/* ==================================================================== */ + +#define SH1_RTC1_INT_ENABLE 0x0000000110001500 +#define SH2_RTC1_INT_ENABLE 0x0000000010001500 +#define SH_RTC1_INT_ENABLE_MASK 0x0000000000000001 +#define SH_RTC1_INT_ENABLE_INIT 0x0000000000000000 + +/* SH_RTC1_INT_ENABLE_RTC1_ENABLE */ +/* Description: Enable RTC 1 Interrupt */ +#define SH_RTC1_INT_ENABLE_RTC1_ENABLE_SHFT 0 +#define SH_RTC1_INT_ENABLE_RTC1_ENABLE_MASK 0x0000000000000001 + +/* ==================================================================== */ +/* Register "SH_RTC2_INT_CONFIG" */ +/* SHub RTC 2 Interrupt Config Registers */ +/* ==================================================================== */ + +#define SH1_RTC2_INT_CONFIG 0x0000000110001580 +#define SH2_RTC2_INT_CONFIG 0x0000000010001580 +#define SH_RTC2_INT_CONFIG_MASK 0x0ff3ffffffefffff +#define SH_RTC2_INT_CONFIG_INIT 0x0000000000000000 + +/* SH_RTC2_INT_CONFIG_TYPE */ +/* Description: Type of Interrupt: 0=INT, 2=PMI, 4=NMI, 5=INIT */ +#define SH_RTC2_INT_CONFIG_TYPE_SHFT 0 +#define SH_RTC2_INT_CONFIG_TYPE_MASK 0x0000000000000007 + +/* SH_RTC2_INT_CONFIG_AGT */ +/* Description: Agent, must be 0 for SHub */ +#define SH_RTC2_INT_CONFIG_AGT_SHFT 3 +#define SH_RTC2_INT_CONFIG_AGT_MASK 0x0000000000000008 + +/* SH_RTC2_INT_CONFIG_PID */ +/* Description: Processor ID, same setting as on targeted McKinley */ +#define SH_RTC2_INT_CONFIG_PID_SHFT 4 +#define SH_RTC2_INT_CONFIG_PID_MASK 0x00000000000ffff0 + +/* SH_RTC2_INT_CONFIG_BASE */ +/* Description: Optional interrupt vector area, 2MB aligned */ +#define SH_RTC2_INT_CONFIG_BASE_SHFT 21 +#define SH_RTC2_INT_CONFIG_BASE_MASK 0x0003ffffffe00000 + +/* SH_RTC2_INT_CONFIG_IDX */ +/* Description: Targeted McKinley interrupt vector */ +#define SH_RTC2_INT_CONFIG_IDX_SHFT 52 +#define SH_RTC2_INT_CONFIG_IDX_MASK 0x0ff0000000000000 + +/* ==================================================================== */ +/* Register "SH_RTC2_INT_ENABLE" */ +/* SHub RTC 2 Interrupt Enable Registers */ +/* ==================================================================== */ + +#define SH1_RTC2_INT_ENABLE 0x0000000110001600 +#define SH2_RTC2_INT_ENABLE 0x0000000010001600 +#define SH_RTC2_INT_ENABLE_MASK 0x0000000000000001 +#define SH_RTC2_INT_ENABLE_INIT 0x0000000000000000 + +/* SH_RTC2_INT_ENABLE_RTC2_ENABLE */ +/* Description: Enable RTC 2 Interrupt */ +#define SH_RTC2_INT_ENABLE_RTC2_ENABLE_SHFT 0 +#define SH_RTC2_INT_ENABLE_RTC2_ENABLE_MASK 0x0000000000000001 + +/* ==================================================================== */ +/* Register "SH_RTC3_INT_CONFIG" */ +/* SHub RTC 3 Interrupt Config Registers */ +/* ==================================================================== */ + +#define SH1_RTC3_INT_CONFIG 0x0000000110001680 +#define SH2_RTC3_INT_CONFIG 0x0000000010001680 +#define SH_RTC3_INT_CONFIG_MASK 0x0ff3ffffffefffff +#define SH_RTC3_INT_CONFIG_INIT 0x0000000000000000 + +/* SH_RTC3_INT_CONFIG_TYPE */ +/* Description: Type of Interrupt: 0=INT, 2=PMI, 4=NMI, 5=INIT */ +#define SH_RTC3_INT_CONFIG_TYPE_SHFT 0 +#define SH_RTC3_INT_CONFIG_TYPE_MASK 0x0000000000000007 + +/* SH_RTC3_INT_CONFIG_AGT */ +/* Description: Agent, must be 0 for SHub */ +#define SH_RTC3_INT_CONFIG_AGT_SHFT 3 +#define SH_RTC3_INT_CONFIG_AGT_MASK 0x0000000000000008 + +/* SH_RTC3_INT_CONFIG_PID */ +/* Description: Processor ID, same setting as on targeted McKinley */ +#define SH_RTC3_INT_CONFIG_PID_SHFT 4 +#define SH_RTC3_INT_CONFIG_PID_MASK 0x00000000000ffff0 + +/* SH_RTC3_INT_CONFIG_BASE */ +/* Description: Optional interrupt vector area, 2MB aligned */ +#define SH_RTC3_INT_CONFIG_BASE_SHFT 21 +#define SH_RTC3_INT_CONFIG_BASE_MASK 0x0003ffffffe00000 + +/* SH_RTC3_INT_CONFIG_IDX */ +/* Description: Targeted McKinley interrupt vector */ +#define SH_RTC3_INT_CONFIG_IDX_SHFT 52 +#define SH_RTC3_INT_CONFIG_IDX_MASK 0x0ff0000000000000 + +/* ==================================================================== */ +/* Register "SH_RTC3_INT_ENABLE" */ +/* SHub RTC 3 Interrupt Enable Registers */ +/* ==================================================================== */ + +#define SH1_RTC3_INT_ENABLE 0x0000000110001700 +#define SH2_RTC3_INT_ENABLE 0x0000000010001700 +#define SH_RTC3_INT_ENABLE_MASK 0x0000000000000001 +#define SH_RTC3_INT_ENABLE_INIT 0x0000000000000000 + +/* SH_RTC3_INT_ENABLE_RTC3_ENABLE */ +/* Description: Enable RTC 3 Interrupt */ +#define SH_RTC3_INT_ENABLE_RTC3_ENABLE_SHFT 0 +#define SH_RTC3_INT_ENABLE_RTC3_ENABLE_MASK 0x0000000000000001 + +/* SH_EVENT_OCCURRED_RTC1_INT */ +/* Description: Pending RTC 1 Interrupt */ +#define SH_EVENT_OCCURRED_RTC1_INT_SHFT 24 +#define SH_EVENT_OCCURRED_RTC1_INT_MASK 0x0000000001000000 + +/* SH_EVENT_OCCURRED_RTC2_INT */ +/* Description: Pending RTC 2 Interrupt */ +#define SH_EVENT_OCCURRED_RTC2_INT_SHFT 25 +#define SH_EVENT_OCCURRED_RTC2_INT_MASK 0x0000000002000000 + +/* SH_EVENT_OCCURRED_RTC3_INT */ +/* Description: Pending RTC 3 Interrupt */ +#define SH_EVENT_OCCURRED_RTC3_INT_SHFT 26 +#define SH_EVENT_OCCURRED_RTC3_INT_MASK 0x0000000004000000 + +/* ==================================================================== */ +/* Register "SH_INT_CMPB" */ +/* RTC Compare Value for Processor B */ +/* ==================================================================== */ + +#define SH1_INT_CMPB 0x00000001101b0080 +#define SH2_INT_CMPB 0x00000000101b0080 +#define SH_INT_CMPB_MASK 0x007fffffffffffff +#define SH_INT_CMPB_INIT 0x0000000000000000 + +/* SH_INT_CMPB_REAL_TIME_CMPB */ +/* Description: Real Time Clock Compare */ +#define SH_INT_CMPB_REAL_TIME_CMPB_SHFT 0 +#define SH_INT_CMPB_REAL_TIME_CMPB_MASK 0x007fffffffffffff + +/* ==================================================================== */ +/* Register "SH_INT_CMPC" */ +/* RTC Compare Value for Processor C */ +/* ==================================================================== */ + +#define SH1_INT_CMPC 0x00000001101b0100 +#define SH2_INT_CMPC 0x00000000101b0100 +#define SH_INT_CMPC_MASK 0x007fffffffffffff +#define SH_INT_CMPC_INIT 0x0000000000000000 + +/* SH_INT_CMPC_REAL_TIME_CMPC */ +/* Description: Real Time Clock Compare */ +#define SH_INT_CMPC_REAL_TIME_CMPC_SHFT 0 +#define SH_INT_CMPC_REAL_TIME_CMPC_MASK 0x007fffffffffffff + +/* ==================================================================== */ +/* Register "SH_INT_CMPD" */ +/* RTC Compare Value for Processor D */ +/* ==================================================================== */ + +#define SH1_INT_CMPD 0x00000001101b0180 +#define SH2_INT_CMPD 0x00000000101b0180 +#define SH_INT_CMPD_MASK 0x007fffffffffffff +#define SH_INT_CMPD_INIT 0x0000000000000000 + +/* SH_INT_CMPD_REAL_TIME_CMPD */ +/* Description: Real Time Clock Compare */ +#define SH_INT_CMPD_REAL_TIME_CMPD_SHFT 0 +#define SH_INT_CMPD_REAL_TIME_CMPD_MASK 0x007fffffffffffff + + +/* ==================================================================== */ +/* Some MMRs are functionally identical (or close enough) on both SHUB1 */ +/* and SHUB2 that it makes sense to define a geberic name for the MMR. */ +/* It is acceptible to use (for example) SH_IPI_INT to reference the */ +/* the IPI MMR. The value of SH_IPI_INT is determined at runtime based */ +/* on the type of the SHUB. Do not use these #defines in performance */ +/* critical code or loops - there is a small performance penalty. */ +/* ==================================================================== */ +#define shubmmr(a,b) (is_shub2() ? a##2_##b : a##1_##b) + +#define SH_REAL_JUNK_BUS_LED0 shubmmr(SH, REAL_JUNK_BUS_LED0) +#define SH_IPI_INT shubmmr(SH, IPI_INT) +#define SH_EVENT_OCCURRED shubmmr(SH, EVENT_OCCURRED) +#define SH_EVENT_OCCURRED_ALIAS shubmmr(SH, EVENT_OCCURRED_ALIAS) +#define SH_RTC shubmmr(SH, RTC) +#define SH_RTC1_INT_CONFIG shubmmr(SH, RTC1_INT_CONFIG) +#define SH_RTC1_INT_ENABLE shubmmr(SH, RTC1_INT_ENABLE) +#define SH_RTC2_INT_CONFIG shubmmr(SH, RTC2_INT_CONFIG) +#define SH_RTC2_INT_ENABLE shubmmr(SH, RTC2_INT_ENABLE) +#define SH_RTC3_INT_CONFIG shubmmr(SH, RTC3_INT_CONFIG) +#define SH_RTC3_INT_ENABLE shubmmr(SH, RTC3_INT_ENABLE) +#define SH_INT_CMPB shubmmr(SH, INT_CMPB) +#define SH_INT_CMPC shubmmr(SH, INT_CMPC) +#define SH_INT_CMPD shubmmr(SH, INT_CMPD) + +#endif /* _ASM_IA64_SN_SHUB_MMR_H */ diff --git a/include/asm-ia64/sn/shubio.h b/include/asm-ia64/sn/shubio.h new file mode 100644 index 000000000000..fbd880e6bb96 --- /dev/null +++ b/include/asm-ia64/sn/shubio.h @@ -0,0 +1,3476 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 1992 - 1997, 2000-2004 Silicon Graphics, Inc. All rights reserved. + */ + +#ifndef _ASM_IA64_SN_SHUBIO_H +#define _ASM_IA64_SN_SHUBIO_H + +#define HUB_WIDGET_ID_MAX 0xf +#define IIO_NUM_ITTES 7 +#define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1) + +#define IIO_WID 0x00400000 /* Crosstalk Widget Identification */ + /* This register is also accessible from + * Crosstalk at address 0x0. */ +#define IIO_WSTAT 0x00400008 /* Crosstalk Widget Status */ +#define IIO_WCR 0x00400020 /* Crosstalk Widget Control Register */ +#define IIO_ILAPR 0x00400100 /* IO Local Access Protection Register */ +#define IIO_ILAPO 0x00400108 /* IO Local Access Protection Override */ +#define IIO_IOWA 0x00400110 /* IO Outbound Widget Access */ +#define IIO_IIWA 0x00400118 /* IO Inbound Widget Access */ +#define IIO_IIDEM 0x00400120 /* IO Inbound Device Error Mask */ +#define IIO_ILCSR 0x00400128 /* IO LLP Control and Status Register */ +#define IIO_ILLR 0x00400130 /* IO LLP Log Register */ +#define IIO_IIDSR 0x00400138 /* IO Interrupt Destination */ + +#define IIO_IGFX0 0x00400140 /* IO Graphics Node-Widget Map 0 */ +#define IIO_IGFX1 0x00400148 /* IO Graphics Node-Widget Map 1 */ + +#define IIO_ISCR0 0x00400150 /* IO Scratch Register 0 */ +#define IIO_ISCR1 0x00400158 /* IO Scratch Register 1 */ + +#define IIO_ITTE1 0x00400160 /* IO Translation Table Entry 1 */ +#define IIO_ITTE2 0x00400168 /* IO Translation Table Entry 2 */ +#define IIO_ITTE3 0x00400170 /* IO Translation Table Entry 3 */ +#define IIO_ITTE4 0x00400178 /* IO Translation Table Entry 4 */ +#define IIO_ITTE5 0x00400180 /* IO Translation Table Entry 5 */ +#define IIO_ITTE6 0x00400188 /* IO Translation Table Entry 6 */ +#define IIO_ITTE7 0x00400190 /* IO Translation Table Entry 7 */ + +#define IIO_IPRB0 0x00400198 /* IO PRB Entry 0 */ +#define IIO_IPRB8 0x004001A0 /* IO PRB Entry 8 */ +#define IIO_IPRB9 0x004001A8 /* IO PRB Entry 9 */ +#define IIO_IPRBA 0x004001B0 /* IO PRB Entry A */ +#define IIO_IPRBB 0x004001B8 /* IO PRB Entry B */ +#define IIO_IPRBC 0x004001C0 /* IO PRB Entry C */ +#define IIO_IPRBD 0x004001C8 /* IO PRB Entry D */ +#define IIO_IPRBE 0x004001D0 /* IO PRB Entry E */ +#define IIO_IPRBF 0x004001D8 /* IO PRB Entry F */ + +#define IIO_IXCC 0x004001E0 /* IO Crosstalk Credit Count Timeout */ +#define IIO_IMEM 0x004001E8 /* IO Miscellaneous Error Mask */ +#define IIO_IXTT 0x004001F0 /* IO Crosstalk Timeout Threshold */ +#define IIO_IECLR 0x004001F8 /* IO Error Clear Register */ +#define IIO_IBCR 0x00400200 /* IO BTE Control Register */ + +#define IIO_IXSM 0x00400208 /* IO Crosstalk Spurious Message */ +#define IIO_IXSS 0x00400210 /* IO Crosstalk Spurious Sideband */ + +#define IIO_ILCT 0x00400218 /* IO LLP Channel Test */ + +#define IIO_IIEPH1 0x00400220 /* IO Incoming Error Packet Header, Part 1 */ +#define IIO_IIEPH2 0x00400228 /* IO Incoming Error Packet Header, Part 2 */ + + +#define IIO_ISLAPR 0x00400230 /* IO SXB Local Access Protection Regster */ +#define IIO_ISLAPO 0x00400238 /* IO SXB Local Access Protection Override */ + +#define IIO_IWI 0x00400240 /* IO Wrapper Interrupt Register */ +#define IIO_IWEL 0x00400248 /* IO Wrapper Error Log Register */ +#define IIO_IWC 0x00400250 /* IO Wrapper Control Register */ +#define IIO_IWS 0x00400258 /* IO Wrapper Status Register */ +#define IIO_IWEIM 0x00400260 /* IO Wrapper Error Interrupt Masking Register */ + +#define IIO_IPCA 0x00400300 /* IO PRB Counter Adjust */ + +#define IIO_IPRTE0_A 0x00400308 /* IO PIO Read Address Table Entry 0, Part A */ +#define IIO_IPRTE1_A 0x00400310 /* IO PIO Read Address Table Entry 1, Part A */ +#define IIO_IPRTE2_A 0x00400318 /* IO PIO Read Address Table Entry 2, Part A */ +#define IIO_IPRTE3_A 0x00400320 /* IO PIO Read Address Table Entry 3, Part A */ +#define IIO_IPRTE4_A 0x00400328 /* IO PIO Read Address Table Entry 4, Part A */ +#define IIO_IPRTE5_A 0x00400330 /* IO PIO Read Address Table Entry 5, Part A */ +#define IIO_IPRTE6_A 0x00400338 /* IO PIO Read Address Table Entry 6, Part A */ +#define IIO_IPRTE7_A 0x00400340 /* IO PIO Read Address Table Entry 7, Part A */ + +#define IIO_IPRTE0_B 0x00400348 /* IO PIO Read Address Table Entry 0, Part B */ +#define IIO_IPRTE1_B 0x00400350 /* IO PIO Read Address Table Entry 1, Part B */ +#define IIO_IPRTE2_B 0x00400358 /* IO PIO Read Address Table Entry 2, Part B */ +#define IIO_IPRTE3_B 0x00400360 /* IO PIO Read Address Table Entry 3, Part B */ +#define IIO_IPRTE4_B 0x00400368 /* IO PIO Read Address Table Entry 4, Part B */ +#define IIO_IPRTE5_B 0x00400370 /* IO PIO Read Address Table Entry 5, Part B */ +#define IIO_IPRTE6_B 0x00400378 /* IO PIO Read Address Table Entry 6, Part B */ +#define IIO_IPRTE7_B 0x00400380 /* IO PIO Read Address Table Entry 7, Part B */ + +#define IIO_IPDR 0x00400388 /* IO PIO Deallocation Register */ +#define IIO_ICDR 0x00400390 /* IO CRB Entry Deallocation Register */ +#define IIO_IFDR 0x00400398 /* IO IOQ FIFO Depth Register */ +#define IIO_IIAP 0x004003A0 /* IO IIQ Arbitration Parameters */ +#define IIO_ICMR 0x004003A8 /* IO CRB Management Register */ +#define IIO_ICCR 0x004003B0 /* IO CRB Control Register */ +#define IIO_ICTO 0x004003B8 /* IO CRB Timeout */ +#define IIO_ICTP 0x004003C0 /* IO CRB Timeout Prescalar */ + +#define IIO_ICRB0_A 0x00400400 /* IO CRB Entry 0_A */ +#define IIO_ICRB0_B 0x00400408 /* IO CRB Entry 0_B */ +#define IIO_ICRB0_C 0x00400410 /* IO CRB Entry 0_C */ +#define IIO_ICRB0_D 0x00400418 /* IO CRB Entry 0_D */ +#define IIO_ICRB0_E 0x00400420 /* IO CRB Entry 0_E */ + +#define IIO_ICRB1_A 0x00400430 /* IO CRB Entry 1_A */ +#define IIO_ICRB1_B 0x00400438 /* IO CRB Entry 1_B */ +#define IIO_ICRB1_C 0x00400440 /* IO CRB Entry 1_C */ +#define IIO_ICRB1_D 0x00400448 /* IO CRB Entry 1_D */ +#define IIO_ICRB1_E 0x00400450 /* IO CRB Entry 1_E */ + +#define IIO_ICRB2_A 0x00400460 /* IO CRB Entry 2_A */ +#define IIO_ICRB2_B 0x00400468 /* IO CRB Entry 2_B */ +#define IIO_ICRB2_C 0x00400470 /* IO CRB Entry 2_C */ +#define IIO_ICRB2_D 0x00400478 /* IO CRB Entry 2_D */ +#define IIO_ICRB2_E 0x00400480 /* IO CRB Entry 2_E */ + +#define IIO_ICRB3_A 0x00400490 /* IO CRB Entry 3_A */ +#define IIO_ICRB3_B 0x00400498 /* IO CRB Entry 3_B */ +#define IIO_ICRB3_C 0x004004a0 /* IO CRB Entry 3_C */ +#define IIO_ICRB3_D 0x004004a8 /* IO CRB Entry 3_D */ +#define IIO_ICRB3_E 0x004004b0 /* IO CRB Entry 3_E */ + +#define IIO_ICRB4_A 0x004004c0 /* IO CRB Entry 4_A */ +#define IIO_ICRB4_B 0x004004c8 /* IO CRB Entry 4_B */ +#define IIO_ICRB4_C 0x004004d0 /* IO CRB Entry 4_C */ +#define IIO_ICRB4_D 0x004004d8 /* IO CRB Entry 4_D */ +#define IIO_ICRB4_E 0x004004e0 /* IO CRB Entry 4_E */ + +#define IIO_ICRB5_A 0x004004f0 /* IO CRB Entry 5_A */ +#define IIO_ICRB5_B 0x004004f8 /* IO CRB Entry 5_B */ +#define IIO_ICRB5_C 0x00400500 /* IO CRB Entry 5_C */ +#define IIO_ICRB5_D 0x00400508 /* IO CRB Entry 5_D */ +#define IIO_ICRB5_E 0x00400510 /* IO CRB Entry 5_E */ + +#define IIO_ICRB6_A 0x00400520 /* IO CRB Entry 6_A */ +#define IIO_ICRB6_B 0x00400528 /* IO CRB Entry 6_B */ +#define IIO_ICRB6_C 0x00400530 /* IO CRB Entry 6_C */ +#define IIO_ICRB6_D 0x00400538 /* IO CRB Entry 6_D */ +#define IIO_ICRB6_E 0x00400540 /* IO CRB Entry 6_E */ + +#define IIO_ICRB7_A 0x00400550 /* IO CRB Entry 7_A */ +#define IIO_ICRB7_B 0x00400558 /* IO CRB Entry 7_B */ +#define IIO_ICRB7_C 0x00400560 /* IO CRB Entry 7_C */ +#define IIO_ICRB7_D 0x00400568 /* IO CRB Entry 7_D */ +#define IIO_ICRB7_E 0x00400570 /* IO CRB Entry 7_E */ + +#define IIO_ICRB8_A 0x00400580 /* IO CRB Entry 8_A */ +#define IIO_ICRB8_B 0x00400588 /* IO CRB Entry 8_B */ +#define IIO_ICRB8_C 0x00400590 /* IO CRB Entry 8_C */ +#define IIO_ICRB8_D 0x00400598 /* IO CRB Entry 8_D */ +#define IIO_ICRB8_E 0x004005a0 /* IO CRB Entry 8_E */ + +#define IIO_ICRB9_A 0x004005b0 /* IO CRB Entry 9_A */ +#define IIO_ICRB9_B 0x004005b8 /* IO CRB Entry 9_B */ +#define IIO_ICRB9_C 0x004005c0 /* IO CRB Entry 9_C */ +#define IIO_ICRB9_D 0x004005c8 /* IO CRB Entry 9_D */ +#define IIO_ICRB9_E 0x004005d0 /* IO CRB Entry 9_E */ + +#define IIO_ICRBA_A 0x004005e0 /* IO CRB Entry A_A */ +#define IIO_ICRBA_B 0x004005e8 /* IO CRB Entry A_B */ +#define IIO_ICRBA_C 0x004005f0 /* IO CRB Entry A_C */ +#define IIO_ICRBA_D 0x004005f8 /* IO CRB Entry A_D */ +#define IIO_ICRBA_E 0x00400600 /* IO CRB Entry A_E */ + +#define IIO_ICRBB_A 0x00400610 /* IO CRB Entry B_A */ +#define IIO_ICRBB_B 0x00400618 /* IO CRB Entry B_B */ +#define IIO_ICRBB_C 0x00400620 /* IO CRB Entry B_C */ +#define IIO_ICRBB_D 0x00400628 /* IO CRB Entry B_D */ +#define IIO_ICRBB_E 0x00400630 /* IO CRB Entry B_E */ + +#define IIO_ICRBC_A 0x00400640 /* IO CRB Entry C_A */ +#define IIO_ICRBC_B 0x00400648 /* IO CRB Entry C_B */ +#define IIO_ICRBC_C 0x00400650 /* IO CRB Entry C_C */ +#define IIO_ICRBC_D 0x00400658 /* IO CRB Entry C_D */ +#define IIO_ICRBC_E 0x00400660 /* IO CRB Entry C_E */ + +#define IIO_ICRBD_A 0x00400670 /* IO CRB Entry D_A */ +#define IIO_ICRBD_B 0x00400678 /* IO CRB Entry D_B */ +#define IIO_ICRBD_C 0x00400680 /* IO CRB Entry D_C */ +#define IIO_ICRBD_D 0x00400688 /* IO CRB Entry D_D */ +#define IIO_ICRBD_E 0x00400690 /* IO CRB Entry D_E */ + +#define IIO_ICRBE_A 0x004006a0 /* IO CRB Entry E_A */ +#define IIO_ICRBE_B 0x004006a8 /* IO CRB Entry E_B */ +#define IIO_ICRBE_C 0x004006b0 /* IO CRB Entry E_C */ +#define IIO_ICRBE_D 0x004006b8 /* IO CRB Entry E_D */ +#define IIO_ICRBE_E 0x004006c0 /* IO CRB Entry E_E */ + +#define IIO_ICSML 0x00400700 /* IO CRB Spurious Message Low */ +#define IIO_ICSMM 0x00400708 /* IO CRB Spurious Message Middle */ +#define IIO_ICSMH 0x00400710 /* IO CRB Spurious Message High */ + +#define IIO_IDBSS 0x00400718 /* IO Debug Submenu Select */ + +#define IIO_IBLS0 0x00410000 /* IO BTE Length Status 0 */ +#define IIO_IBSA0 0x00410008 /* IO BTE Source Address 0 */ +#define IIO_IBDA0 0x00410010 /* IO BTE Destination Address 0 */ +#define IIO_IBCT0 0x00410018 /* IO BTE Control Terminate 0 */ +#define IIO_IBNA0 0x00410020 /* IO BTE Notification Address 0 */ +#define IIO_IBIA0 0x00410028 /* IO BTE Interrupt Address 0 */ +#define IIO_IBLS1 0x00420000 /* IO BTE Length Status 1 */ +#define IIO_IBSA1 0x00420008 /* IO BTE Source Address 1 */ +#define IIO_IBDA1 0x00420010 /* IO BTE Destination Address 1 */ +#define IIO_IBCT1 0x00420018 /* IO BTE Control Terminate 1 */ +#define IIO_IBNA1 0x00420020 /* IO BTE Notification Address 1 */ +#define IIO_IBIA1 0x00420028 /* IO BTE Interrupt Address 1 */ + +#define IIO_IPCR 0x00430000 /* IO Performance Control */ +#define IIO_IPPR 0x00430008 /* IO Performance Profiling */ + + +/************************************************************************ + * * + * Description: This register echoes some information from the * + * LB_REV_ID register. It is available through Crosstalk as described * + * above. The REV_NUM and MFG_NUM fields receive their values from * + * the REVISION and MANUFACTURER fields in the LB_REV_ID register. * + * The PART_NUM field's value is the Crosstalk device ID number that * + * Steve Miller assigned to the SHub chip. * + * * + ************************************************************************/ + +typedef union ii_wid_u { + uint64_t ii_wid_regval; + struct { + uint64_t w_rsvd_1 : 1; + uint64_t w_mfg_num : 11; + uint64_t w_part_num : 16; + uint64_t w_rev_num : 4; + uint64_t w_rsvd : 32; + } ii_wid_fld_s; +} ii_wid_u_t; + + +/************************************************************************ + * * + * The fields in this register are set upon detection of an error * + * and cleared by various mechanisms, as explained in the * + * description. * + * * + ************************************************************************/ + +typedef union ii_wstat_u { + uint64_t ii_wstat_regval; + struct { + uint64_t w_pending : 4; + uint64_t w_xt_crd_to : 1; + uint64_t w_xt_tail_to : 1; + uint64_t w_rsvd_3 : 3; + uint64_t w_tx_mx_rty : 1; + uint64_t w_rsvd_2 : 6; + uint64_t w_llp_tx_cnt : 8; + uint64_t w_rsvd_1 : 8; + uint64_t w_crazy : 1; + uint64_t w_rsvd : 31; + } ii_wstat_fld_s; +} ii_wstat_u_t; + + +/************************************************************************ + * * + * Description: This is a read-write enabled register. It controls * + * various aspects of the Crosstalk flow control. * + * * + ************************************************************************/ + +typedef union ii_wcr_u { + uint64_t ii_wcr_regval; + struct { + uint64_t w_wid : 4; + uint64_t w_tag : 1; + uint64_t w_rsvd_1 : 8; + uint64_t w_dst_crd : 3; + uint64_t w_f_bad_pkt : 1; + uint64_t w_dir_con : 1; + uint64_t w_e_thresh : 5; + uint64_t w_rsvd : 41; + } ii_wcr_fld_s; +} ii_wcr_u_t; + + +/************************************************************************ + * * + * Description: This register's value is a bit vector that guards * + * access to local registers within the II as well as to external * + * Crosstalk widgets. Each bit in the register corresponds to a * + * particular region in the system; a region consists of one, two or * + * four nodes (depending on the value of the REGION_SIZE field in the * + * LB_REV_ID register, which is documented in Section 8.3.1.1). The * + * protection provided by this register applies to PIO read * + * operations as well as PIO write operations. The II will perform a * + * PIO read or write request only if the bit for the requestor's * + * region is set; otherwise, the II will not perform the requested * + * operation and will return an error response. When a PIO read or * + * write request targets an external Crosstalk widget, then not only * + * must the bit for the requestor's region be set in the ILAPR, but * + * also the target widget's bit in the IOWA register must be set in * + * order for the II to perform the requested operation; otherwise, * + * the II will return an error response. Hence, the protection * + * provided by the IOWA register supplements the protection provided * + * by the ILAPR for requests that target external Crosstalk widgets. * + * This register itself can be accessed only by the nodes whose * + * region ID bits are enabled in this same register. It can also be * + * accessed through the IAlias space by the local processors. * + * The reset value of this register allows access by all nodes. * + * * + ************************************************************************/ + +typedef union ii_ilapr_u { + uint64_t ii_ilapr_regval; + struct { + uint64_t i_region : 64; + } ii_ilapr_fld_s; +} ii_ilapr_u_t; + + + + +/************************************************************************ + * * + * Description: A write to this register of the 64-bit value * + * "SGIrules" in ASCII, will cause the bit in the ILAPR register * + * corresponding to the region of the requestor to be set (allow * + * access). A write of any other value will be ignored. Access * + * protection for this register is "SGIrules". * + * This register can also be accessed through the IAlias space. * + * However, this access will not change the access permissions in the * + * ILAPR. * + * * + ************************************************************************/ + +typedef union ii_ilapo_u { + uint64_t ii_ilapo_regval; + struct { + uint64_t i_io_ovrride : 64; + } ii_ilapo_fld_s; +} ii_ilapo_u_t; + + + +/************************************************************************ + * * + * This register qualifies all the PIO and Graphics writes launched * + * from the SHUB towards a widget. * + * * + ************************************************************************/ + +typedef union ii_iowa_u { + uint64_t ii_iowa_regval; + struct { + uint64_t i_w0_oac : 1; + uint64_t i_rsvd_1 : 7; + uint64_t i_wx_oac : 8; + uint64_t i_rsvd : 48; + } ii_iowa_fld_s; +} ii_iowa_u_t; + + +/************************************************************************ + * * + * Description: This register qualifies all the requests launched * + * from a widget towards the Shub. This register is intended to be * + * used by software in case of misbehaving widgets. * + * * + * * + ************************************************************************/ + +typedef union ii_iiwa_u { + uint64_t ii_iiwa_regval; + struct { + uint64_t i_w0_iac : 1; + uint64_t i_rsvd_1 : 7; + uint64_t i_wx_iac : 8; + uint64_t i_rsvd : 48; + } ii_iiwa_fld_s; +} ii_iiwa_u_t; + + + +/************************************************************************ + * * + * Description: This register qualifies all the operations launched * + * from a widget towards the SHub. It allows individual access * + * control for up to 8 devices per widget. A device refers to * + * individual DMA master hosted by a widget. * + * The bits in each field of this register are cleared by the Shub * + * upon detection of an error which requires the device to be * + * disabled. These fields assume that 0=TNUM=7 (i.e., Bridge-centric * + * Crosstalk). Whether or not a device has access rights to this * + * Shub is determined by an AND of the device enable bit in the * + * appropriate field of this register and the corresponding bit in * + * the Wx_IAC field (for the widget which this device belongs to). * + * The bits in this field are set by writing a 1 to them. Incoming * + * replies from Crosstalk are not subject to this access control * + * mechanism. * + * * + ************************************************************************/ + +typedef union ii_iidem_u { + uint64_t ii_iidem_regval; + struct { + uint64_t i_w8_dxs : 8; + uint64_t i_w9_dxs : 8; + uint64_t i_wa_dxs : 8; + uint64_t i_wb_dxs : 8; + uint64_t i_wc_dxs : 8; + uint64_t i_wd_dxs : 8; + uint64_t i_we_dxs : 8; + uint64_t i_wf_dxs : 8; + } ii_iidem_fld_s; +} ii_iidem_u_t; + + +/************************************************************************ + * * + * This register contains the various programmable fields necessary * + * for controlling and observing the LLP signals. * + * * + ************************************************************************/ + +typedef union ii_ilcsr_u { + uint64_t ii_ilcsr_regval; + struct { + uint64_t i_nullto : 6; + uint64_t i_rsvd_4 : 2; + uint64_t i_wrmrst : 1; + uint64_t i_rsvd_3 : 1; + uint64_t i_llp_en : 1; + uint64_t i_bm8 : 1; + uint64_t i_llp_stat : 2; + uint64_t i_remote_power : 1; + uint64_t i_rsvd_2 : 1; + uint64_t i_maxrtry : 10; + uint64_t i_d_avail_sel : 2; + uint64_t i_rsvd_1 : 4; + uint64_t i_maxbrst : 10; + uint64_t i_rsvd : 22; + + } ii_ilcsr_fld_s; +} ii_ilcsr_u_t; + + +/************************************************************************ + * * + * This is simply a status registers that monitors the LLP error * + * rate. * + * * + ************************************************************************/ + +typedef union ii_illr_u { + uint64_t ii_illr_regval; + struct { + uint64_t i_sn_cnt : 16; + uint64_t i_cb_cnt : 16; + uint64_t i_rsvd : 32; + } ii_illr_fld_s; +} ii_illr_u_t; + + +/************************************************************************ + * * + * Description: All II-detected non-BTE error interrupts are * + * specified via this register. * + * NOTE: The PI interrupt register address is hardcoded in the II. If * + * PI_ID==0, then the II sends an interrupt request (Duplonet PWRI * + * packet) to address offset 0x0180_0090 within the local register * + * address space of PI0 on the node specified by the NODE field. If * + * PI_ID==1, then the II sends the interrupt request to address * + * offset 0x01A0_0090 within the local register address space of PI1 * + * on the node specified by the NODE field. * + * * + ************************************************************************/ + +typedef union ii_iidsr_u { + uint64_t ii_iidsr_regval; + struct { + uint64_t i_level : 8; + uint64_t i_pi_id : 1; + uint64_t i_node : 11; + uint64_t i_rsvd_3 : 4; + uint64_t i_enable : 1; + uint64_t i_rsvd_2 : 3; + uint64_t i_int_sent : 2; + uint64_t i_rsvd_1 : 2; + uint64_t i_pi0_forward_int : 1; + uint64_t i_pi1_forward_int : 1; + uint64_t i_rsvd : 30; + } ii_iidsr_fld_s; +} ii_iidsr_u_t; + + + +/************************************************************************ + * * + * There are two instances of this register. This register is used * + * for matching up the incoming responses from the graphics widget to * + * the processor that initiated the graphics operation. The * + * write-responses are converted to graphics credits and returned to * + * the processor so that the processor interface can manage the flow * + * control. * + * * + ************************************************************************/ + +typedef union ii_igfx0_u { + uint64_t ii_igfx0_regval; + struct { + uint64_t i_w_num : 4; + uint64_t i_pi_id : 1; + uint64_t i_n_num : 12; + uint64_t i_p_num : 1; + uint64_t i_rsvd : 46; + } ii_igfx0_fld_s; +} ii_igfx0_u_t; + + +/************************************************************************ + * * + * There are two instances of this register. This register is used * + * for matching up the incoming responses from the graphics widget to * + * the processor that initiated the graphics operation. The * + * write-responses are converted to graphics credits and returned to * + * the processor so that the processor interface can manage the flow * + * control. * + * * + ************************************************************************/ + +typedef union ii_igfx1_u { + uint64_t ii_igfx1_regval; + struct { + uint64_t i_w_num : 4; + uint64_t i_pi_id : 1; + uint64_t i_n_num : 12; + uint64_t i_p_num : 1; + uint64_t i_rsvd : 46; + } ii_igfx1_fld_s; +} ii_igfx1_u_t; + + +/************************************************************************ + * * + * There are two instances of this registers. These registers are * + * used as scratch registers for software use. * + * * + ************************************************************************/ + +typedef union ii_iscr0_u { + uint64_t ii_iscr0_regval; + struct { + uint64_t i_scratch : 64; + } ii_iscr0_fld_s; +} ii_iscr0_u_t; + + + +/************************************************************************ + * * + * There are two instances of this registers. These registers are * + * used as scratch registers for software use. * + * * + ************************************************************************/ + +typedef union ii_iscr1_u { + uint64_t ii_iscr1_regval; + struct { + uint64_t i_scratch : 64; + } ii_iscr1_fld_s; +} ii_iscr1_u_t; + + +/************************************************************************ + * * + * Description: There are seven instances of translation table entry * + * registers. Each register maps a Shub Big Window to a 48-bit * + * address on Crosstalk. * + * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * + * number) are used to select one of these 7 registers. The Widget * + * number field is then derived from the W_NUM field for synthesizing * + * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * + * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * + * are padded with zeros. Although the maximum Crosstalk space * + * addressable by the SHub is thus the lower 16 GBytes per widget * + * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * + * space can be accessed. * + * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * + * Window number) are used to select one of these 7 registers. The * + * Widget number field is then derived from the W_NUM field for * + * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * + * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * + * field is used as Crosstalk[47], and remainder of the Crosstalk * + * address bits (Crosstalk[46:34]) are always zero. While the maximum * + * Crosstalk space addressable by the Shub is thus the lower * + * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * + * of this space can be accessed. * + * * + ************************************************************************/ + +typedef union ii_itte1_u { + uint64_t ii_itte1_regval; + struct { + uint64_t i_offset : 5; + uint64_t i_rsvd_1 : 3; + uint64_t i_w_num : 4; + uint64_t i_iosp : 1; + uint64_t i_rsvd : 51; + } ii_itte1_fld_s; +} ii_itte1_u_t; + + +/************************************************************************ + * * + * Description: There are seven instances of translation table entry * + * registers. Each register maps a Shub Big Window to a 48-bit * + * address on Crosstalk. * + * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * + * number) are used to select one of these 7 registers. The Widget * + * number field is then derived from the W_NUM field for synthesizing * + * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * + * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * + * are padded with zeros. Although the maximum Crosstalk space * + * addressable by the Shub is thus the lower 16 GBytes per widget * + * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * + * space can be accessed. * + * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * + * Window number) are used to select one of these 7 registers. The * + * Widget number field is then derived from the W_NUM field for * + * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * + * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * + * field is used as Crosstalk[47], and remainder of the Crosstalk * + * address bits (Crosstalk[46:34]) are always zero. While the maximum * + * Crosstalk space addressable by the Shub is thus the lower * + * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * + * of this space can be accessed. * + * * + ************************************************************************/ + +typedef union ii_itte2_u { + uint64_t ii_itte2_regval; + struct { + uint64_t i_offset : 5; + uint64_t i_rsvd_1 : 3; + uint64_t i_w_num : 4; + uint64_t i_iosp : 1; + uint64_t i_rsvd : 51; + } ii_itte2_fld_s; +} ii_itte2_u_t; + + +/************************************************************************ + * * + * Description: There are seven instances of translation table entry * + * registers. Each register maps a Shub Big Window to a 48-bit * + * address on Crosstalk. * + * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * + * number) are used to select one of these 7 registers. The Widget * + * number field is then derived from the W_NUM field for synthesizing * + * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * + * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * + * are padded with zeros. Although the maximum Crosstalk space * + * addressable by the Shub is thus the lower 16 GBytes per widget * + * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * + * space can be accessed. * + * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * + * Window number) are used to select one of these 7 registers. The * + * Widget number field is then derived from the W_NUM field for * + * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * + * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * + * field is used as Crosstalk[47], and remainder of the Crosstalk * + * address bits (Crosstalk[46:34]) are always zero. While the maximum * + * Crosstalk space addressable by the SHub is thus the lower * + * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * + * of this space can be accessed. * + * * + ************************************************************************/ + +typedef union ii_itte3_u { + uint64_t ii_itte3_regval; + struct { + uint64_t i_offset : 5; + uint64_t i_rsvd_1 : 3; + uint64_t i_w_num : 4; + uint64_t i_iosp : 1; + uint64_t i_rsvd : 51; + } ii_itte3_fld_s; +} ii_itte3_u_t; + + +/************************************************************************ + * * + * Description: There are seven instances of translation table entry * + * registers. Each register maps a SHub Big Window to a 48-bit * + * address on Crosstalk. * + * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * + * number) are used to select one of these 7 registers. The Widget * + * number field is then derived from the W_NUM field for synthesizing * + * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * + * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * + * are padded with zeros. Although the maximum Crosstalk space * + * addressable by the SHub is thus the lower 16 GBytes per widget * + * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * + * space can be accessed. * + * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * + * Window number) are used to select one of these 7 registers. The * + * Widget number field is then derived from the W_NUM field for * + * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * + * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * + * field is used as Crosstalk[47], and remainder of the Crosstalk * + * address bits (Crosstalk[46:34]) are always zero. While the maximum * + * Crosstalk space addressable by the SHub is thus the lower * + * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * + * of this space can be accessed. * + * * + ************************************************************************/ + +typedef union ii_itte4_u { + uint64_t ii_itte4_regval; + struct { + uint64_t i_offset : 5; + uint64_t i_rsvd_1 : 3; + uint64_t i_w_num : 4; + uint64_t i_iosp : 1; + uint64_t i_rsvd : 51; + } ii_itte4_fld_s; +} ii_itte4_u_t; + + +/************************************************************************ + * * + * Description: There are seven instances of translation table entry * + * registers. Each register maps a SHub Big Window to a 48-bit * + * address on Crosstalk. * + * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * + * number) are used to select one of these 7 registers. The Widget * + * number field is then derived from the W_NUM field for synthesizing * + * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * + * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * + * are padded with zeros. Although the maximum Crosstalk space * + * addressable by the Shub is thus the lower 16 GBytes per widget * + * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * + * space can be accessed. * + * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * + * Window number) are used to select one of these 7 registers. The * + * Widget number field is then derived from the W_NUM field for * + * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * + * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * + * field is used as Crosstalk[47], and remainder of the Crosstalk * + * address bits (Crosstalk[46:34]) are always zero. While the maximum * + * Crosstalk space addressable by the Shub is thus the lower * + * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * + * of this space can be accessed. * + * * + ************************************************************************/ + +typedef union ii_itte5_u { + uint64_t ii_itte5_regval; + struct { + uint64_t i_offset : 5; + uint64_t i_rsvd_1 : 3; + uint64_t i_w_num : 4; + uint64_t i_iosp : 1; + uint64_t i_rsvd : 51; + } ii_itte5_fld_s; +} ii_itte5_u_t; + + +/************************************************************************ + * * + * Description: There are seven instances of translation table entry * + * registers. Each register maps a Shub Big Window to a 48-bit * + * address on Crosstalk. * + * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * + * number) are used to select one of these 7 registers. The Widget * + * number field is then derived from the W_NUM field for synthesizing * + * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * + * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * + * are padded with zeros. Although the maximum Crosstalk space * + * addressable by the Shub is thus the lower 16 GBytes per widget * + * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * + * space can be accessed. * + * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * + * Window number) are used to select one of these 7 registers. The * + * Widget number field is then derived from the W_NUM field for * + * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * + * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * + * field is used as Crosstalk[47], and remainder of the Crosstalk * + * address bits (Crosstalk[46:34]) are always zero. While the maximum * + * Crosstalk space addressable by the Shub is thus the lower * + * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * + * of this space can be accessed. * + * * + ************************************************************************/ + +typedef union ii_itte6_u { + uint64_t ii_itte6_regval; + struct { + uint64_t i_offset : 5; + uint64_t i_rsvd_1 : 3; + uint64_t i_w_num : 4; + uint64_t i_iosp : 1; + uint64_t i_rsvd : 51; + } ii_itte6_fld_s; +} ii_itte6_u_t; + + +/************************************************************************ + * * + * Description: There are seven instances of translation table entry * + * registers. Each register maps a Shub Big Window to a 48-bit * + * address on Crosstalk. * + * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * + * number) are used to select one of these 7 registers. The Widget * + * number field is then derived from the W_NUM field for synthesizing * + * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * + * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * + * are padded with zeros. Although the maximum Crosstalk space * + * addressable by the Shub is thus the lower 16 GBytes per widget * + * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * + * space can be accessed. * + * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * + * Window number) are used to select one of these 7 registers. The * + * Widget number field is then derived from the W_NUM field for * + * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * + * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * + * field is used as Crosstalk[47], and remainder of the Crosstalk * + * address bits (Crosstalk[46:34]) are always zero. While the maximum * + * Crosstalk space addressable by the SHub is thus the lower * + * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * + * of this space can be accessed. * + * * + ************************************************************************/ + +typedef union ii_itte7_u { + uint64_t ii_itte7_regval; + struct { + uint64_t i_offset : 5; + uint64_t i_rsvd_1 : 3; + uint64_t i_w_num : 4; + uint64_t i_iosp : 1; + uint64_t i_rsvd : 51; + } ii_itte7_fld_s; +} ii_itte7_u_t; + + +/************************************************************************ + * * + * Description: There are 9 instances of this register, one per * + * actual widget in this implementation of SHub and Crossbow. * + * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * + * refers to Crossbow's internal space. * + * This register contains the state elements per widget that are * + * necessary to manage the PIO flow control on Crosstalk and on the * + * Router Network. See the PIO Flow Control chapter for a complete * + * description of this register * + * The SPUR_WR bit requires some explanation. When this register is * + * written, the new value of the C field is captured in an internal * + * register so the hardware can remember what the programmer wrote * + * into the credit counter. The SPUR_WR bit sets whenever the C field * + * increments above this stored value, which indicates that there * + * have been more responses received than requests sent. The SPUR_WR * + * bit cannot be cleared until a value is written to the IPRBx * + * register; the write will correct the C field and capture its new * + * value in the internal register. Even if IECLR[E_PRB_x] is set, the * + * SPUR_WR bit will persist if IPRBx hasn't yet been written. * + * . * + * * + ************************************************************************/ + +typedef union ii_iprb0_u { + uint64_t ii_iprb0_regval; + struct { + uint64_t i_c : 8; + uint64_t i_na : 14; + uint64_t i_rsvd_2 : 2; + uint64_t i_nb : 14; + uint64_t i_rsvd_1 : 2; + uint64_t i_m : 2; + uint64_t i_f : 1; + uint64_t i_of_cnt : 5; + uint64_t i_error : 1; + uint64_t i_rd_to : 1; + uint64_t i_spur_wr : 1; + uint64_t i_spur_rd : 1; + uint64_t i_rsvd : 11; + uint64_t i_mult_err : 1; + } ii_iprb0_fld_s; +} ii_iprb0_u_t; + + +/************************************************************************ + * * + * Description: There are 9 instances of this register, one per * + * actual widget in this implementation of SHub and Crossbow. * + * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * + * refers to Crossbow's internal space. * + * This register contains the state elements per widget that are * + * necessary to manage the PIO flow control on Crosstalk and on the * + * Router Network. See the PIO Flow Control chapter for a complete * + * description of this register * + * The SPUR_WR bit requires some explanation. When this register is * + * written, the new value of the C field is captured in an internal * + * register so the hardware can remember what the programmer wrote * + * into the credit counter. The SPUR_WR bit sets whenever the C field * + * increments above this stored value, which indicates that there * + * have been more responses received than requests sent. The SPUR_WR * + * bit cannot be cleared until a value is written to the IPRBx * + * register; the write will correct the C field and capture its new * + * value in the internal register. Even if IECLR[E_PRB_x] is set, the * + * SPUR_WR bit will persist if IPRBx hasn't yet been written. * + * . * + * * + ************************************************************************/ + +typedef union ii_iprb8_u { + uint64_t ii_iprb8_regval; + struct { + uint64_t i_c : 8; + uint64_t i_na : 14; + uint64_t i_rsvd_2 : 2; + uint64_t i_nb : 14; + uint64_t i_rsvd_1 : 2; + uint64_t i_m : 2; + uint64_t i_f : 1; + uint64_t i_of_cnt : 5; + uint64_t i_error : 1; + uint64_t i_rd_to : 1; + uint64_t i_spur_wr : 1; + uint64_t i_spur_rd : 1; + uint64_t i_rsvd : 11; + uint64_t i_mult_err : 1; + } ii_iprb8_fld_s; +} ii_iprb8_u_t; + + +/************************************************************************ + * * + * Description: There are 9 instances of this register, one per * + * actual widget in this implementation of SHub and Crossbow. * + * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * + * refers to Crossbow's internal space. * + * This register contains the state elements per widget that are * + * necessary to manage the PIO flow control on Crosstalk and on the * + * Router Network. See the PIO Flow Control chapter for a complete * + * description of this register * + * The SPUR_WR bit requires some explanation. When this register is * + * written, the new value of the C field is captured in an internal * + * register so the hardware can remember what the programmer wrote * + * into the credit counter. The SPUR_WR bit sets whenever the C field * + * increments above this stored value, which indicates that there * + * have been more responses received than requests sent. The SPUR_WR * + * bit cannot be cleared until a value is written to the IPRBx * + * register; the write will correct the C field and capture its new * + * value in the internal register. Even if IECLR[E_PRB_x] is set, the * + * SPUR_WR bit will persist if IPRBx hasn't yet been written. * + * . * + * * + ************************************************************************/ + +typedef union ii_iprb9_u { + uint64_t ii_iprb9_regval; + struct { + uint64_t i_c : 8; + uint64_t i_na : 14; + uint64_t i_rsvd_2 : 2; + uint64_t i_nb : 14; + uint64_t i_rsvd_1 : 2; + uint64_t i_m : 2; + uint64_t i_f : 1; + uint64_t i_of_cnt : 5; + uint64_t i_error : 1; + uint64_t i_rd_to : 1; + uint64_t i_spur_wr : 1; + uint64_t i_spur_rd : 1; + uint64_t i_rsvd : 11; + uint64_t i_mult_err : 1; + } ii_iprb9_fld_s; +} ii_iprb9_u_t; + + +/************************************************************************ + * * + * Description: There are 9 instances of this register, one per * + * actual widget in this implementation of SHub and Crossbow. * + * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * + * refers to Crossbow's internal space. * + * This register contains the state elements per widget that are * + * necessary to manage the PIO flow control on Crosstalk and on the * + * Router Network. See the PIO Flow Control chapter for a complete * + * description of this register * + * The SPUR_WR bit requires some explanation. When this register is * + * written, the new value of the C field is captured in an internal * + * register so the hardware can remember what the programmer wrote * + * into the credit counter. The SPUR_WR bit sets whenever the C field * + * increments above this stored value, which indicates that there * + * have been more responses received than requests sent. The SPUR_WR * + * bit cannot be cleared until a value is written to the IPRBx * + * register; the write will correct the C field and capture its new * + * value in the internal register. Even if IECLR[E_PRB_x] is set, the * + * SPUR_WR bit will persist if IPRBx hasn't yet been written. * + * * + * * + ************************************************************************/ + +typedef union ii_iprba_u { + uint64_t ii_iprba_regval; + struct { + uint64_t i_c : 8; + uint64_t i_na : 14; + uint64_t i_rsvd_2 : 2; + uint64_t i_nb : 14; + uint64_t i_rsvd_1 : 2; + uint64_t i_m : 2; + uint64_t i_f : 1; + uint64_t i_of_cnt : 5; + uint64_t i_error : 1; + uint64_t i_rd_to : 1; + uint64_t i_spur_wr : 1; + uint64_t i_spur_rd : 1; + uint64_t i_rsvd : 11; + uint64_t i_mult_err : 1; + } ii_iprba_fld_s; +} ii_iprba_u_t; + + +/************************************************************************ + * * + * Description: There are 9 instances of this register, one per * + * actual widget in this implementation of SHub and Crossbow. * + * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * + * refers to Crossbow's internal space. * + * This register contains the state elements per widget that are * + * necessary to manage the PIO flow control on Crosstalk and on the * + * Router Network. See the PIO Flow Control chapter for a complete * + * description of this register * + * The SPUR_WR bit requires some explanation. When this register is * + * written, the new value of the C field is captured in an internal * + * register so the hardware can remember what the programmer wrote * + * into the credit counter. The SPUR_WR bit sets whenever the C field * + * increments above this stored value, which indicates that there * + * have been more responses received than requests sent. The SPUR_WR * + * bit cannot be cleared until a value is written to the IPRBx * + * register; the write will correct the C field and capture its new * + * value in the internal register. Even if IECLR[E_PRB_x] is set, the * + * SPUR_WR bit will persist if IPRBx hasn't yet been written. * + * . * + * * + ************************************************************************/ + +typedef union ii_iprbb_u { + uint64_t ii_iprbb_regval; + struct { + uint64_t i_c : 8; + uint64_t i_na : 14; + uint64_t i_rsvd_2 : 2; + uint64_t i_nb : 14; + uint64_t i_rsvd_1 : 2; + uint64_t i_m : 2; + uint64_t i_f : 1; + uint64_t i_of_cnt : 5; + uint64_t i_error : 1; + uint64_t i_rd_to : 1; + uint64_t i_spur_wr : 1; + uint64_t i_spur_rd : 1; + uint64_t i_rsvd : 11; + uint64_t i_mult_err : 1; + } ii_iprbb_fld_s; +} ii_iprbb_u_t; + + +/************************************************************************ + * * + * Description: There are 9 instances of this register, one per * + * actual widget in this implementation of SHub and Crossbow. * + * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * + * refers to Crossbow's internal space. * + * This register contains the state elements per widget that are * + * necessary to manage the PIO flow control on Crosstalk and on the * + * Router Network. See the PIO Flow Control chapter for a complete * + * description of this register * + * The SPUR_WR bit requires some explanation. When this register is * + * written, the new value of the C field is captured in an internal * + * register so the hardware can remember what the programmer wrote * + * into the credit counter. The SPUR_WR bit sets whenever the C field * + * increments above this stored value, which indicates that there * + * have been more responses received than requests sent. The SPUR_WR * + * bit cannot be cleared until a value is written to the IPRBx * + * register; the write will correct the C field and capture its new * + * value in the internal register. Even if IECLR[E_PRB_x] is set, the * + * SPUR_WR bit will persist if IPRBx hasn't yet been written. * + * . * + * * + ************************************************************************/ + +typedef union ii_iprbc_u { + uint64_t ii_iprbc_regval; + struct { + uint64_t i_c : 8; + uint64_t i_na : 14; + uint64_t i_rsvd_2 : 2; + uint64_t i_nb : 14; + uint64_t i_rsvd_1 : 2; + uint64_t i_m : 2; + uint64_t i_f : 1; + uint64_t i_of_cnt : 5; + uint64_t i_error : 1; + uint64_t i_rd_to : 1; + uint64_t i_spur_wr : 1; + uint64_t i_spur_rd : 1; + uint64_t i_rsvd : 11; + uint64_t i_mult_err : 1; + } ii_iprbc_fld_s; +} ii_iprbc_u_t; + + +/************************************************************************ + * * + * Description: There are 9 instances of this register, one per * + * actual widget in this implementation of SHub and Crossbow. * + * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * + * refers to Crossbow's internal space. * + * This register contains the state elements per widget that are * + * necessary to manage the PIO flow control on Crosstalk and on the * + * Router Network. See the PIO Flow Control chapter for a complete * + * description of this register * + * The SPUR_WR bit requires some explanation. When this register is * + * written, the new value of the C field is captured in an internal * + * register so the hardware can remember what the programmer wrote * + * into the credit counter. The SPUR_WR bit sets whenever the C field * + * increments above this stored value, which indicates that there * + * have been more responses received than requests sent. The SPUR_WR * + * bit cannot be cleared until a value is written to the IPRBx * + * register; the write will correct the C field and capture its new * + * value in the internal register. Even if IECLR[E_PRB_x] is set, the * + * SPUR_WR bit will persist if IPRBx hasn't yet been written. * + * . * + * * + ************************************************************************/ + +typedef union ii_iprbd_u { + uint64_t ii_iprbd_regval; + struct { + uint64_t i_c : 8; + uint64_t i_na : 14; + uint64_t i_rsvd_2 : 2; + uint64_t i_nb : 14; + uint64_t i_rsvd_1 : 2; + uint64_t i_m : 2; + uint64_t i_f : 1; + uint64_t i_of_cnt : 5; + uint64_t i_error : 1; + uint64_t i_rd_to : 1; + uint64_t i_spur_wr : 1; + uint64_t i_spur_rd : 1; + uint64_t i_rsvd : 11; + uint64_t i_mult_err : 1; + } ii_iprbd_fld_s; +} ii_iprbd_u_t; + + +/************************************************************************ + * * + * Description: There are 9 instances of this register, one per * + * actual widget in this implementation of SHub and Crossbow. * + * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * + * refers to Crossbow's internal space. * + * This register contains the state elements per widget that are * + * necessary to manage the PIO flow control on Crosstalk and on the * + * Router Network. See the PIO Flow Control chapter for a complete * + * description of this register * + * The SPUR_WR bit requires some explanation. When this register is * + * written, the new value of the C field is captured in an internal * + * register so the hardware can remember what the programmer wrote * + * into the credit counter. The SPUR_WR bit sets whenever the C field * + * increments above this stored value, which indicates that there * + * have been more responses received than requests sent. The SPUR_WR * + * bit cannot be cleared until a value is written to the IPRBx * + * register; the write will correct the C field and capture its new * + * value in the internal register. Even if IECLR[E_PRB_x] is set, the * + * SPUR_WR bit will persist if IPRBx hasn't yet been written. * + * . * + * * + ************************************************************************/ + +typedef union ii_iprbe_u { + uint64_t ii_iprbe_regval; + struct { + uint64_t i_c : 8; + uint64_t i_na : 14; + uint64_t i_rsvd_2 : 2; + uint64_t i_nb : 14; + uint64_t i_rsvd_1 : 2; + uint64_t i_m : 2; + uint64_t i_f : 1; + uint64_t i_of_cnt : 5; + uint64_t i_error : 1; + uint64_t i_rd_to : 1; + uint64_t i_spur_wr : 1; + uint64_t i_spur_rd : 1; + uint64_t i_rsvd : 11; + uint64_t i_mult_err : 1; + } ii_iprbe_fld_s; +} ii_iprbe_u_t; + + +/************************************************************************ + * * + * Description: There are 9 instances of this register, one per * + * actual widget in this implementation of Shub and Crossbow. * + * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * + * refers to Crossbow's internal space. * + * This register contains the state elements per widget that are * + * necessary to manage the PIO flow control on Crosstalk and on the * + * Router Network. See the PIO Flow Control chapter for a complete * + * description of this register * + * The SPUR_WR bit requires some explanation. When this register is * + * written, the new value of the C field is captured in an internal * + * register so the hardware can remember what the programmer wrote * + * into the credit counter. The SPUR_WR bit sets whenever the C field * + * increments above this stored value, which indicates that there * + * have been more responses received than requests sent. The SPUR_WR * + * bit cannot be cleared until a value is written to the IPRBx * + * register; the write will correct the C field and capture its new * + * value in the internal register. Even if IECLR[E_PRB_x] is set, the * + * SPUR_WR bit will persist if IPRBx hasn't yet been written. * + * . * + * * + ************************************************************************/ + +typedef union ii_iprbf_u { + uint64_t ii_iprbf_regval; + struct { + uint64_t i_c : 8; + uint64_t i_na : 14; + uint64_t i_rsvd_2 : 2; + uint64_t i_nb : 14; + uint64_t i_rsvd_1 : 2; + uint64_t i_m : 2; + uint64_t i_f : 1; + uint64_t i_of_cnt : 5; + uint64_t i_error : 1; + uint64_t i_rd_to : 1; + uint64_t i_spur_wr : 1; + uint64_t i_spur_rd : 1; + uint64_t i_rsvd : 11; + uint64_t i_mult_err : 1; + } ii_iprbe_fld_s; +} ii_iprbf_u_t; + + +/************************************************************************ + * * + * This register specifies the timeout value to use for monitoring * + * Crosstalk credits which are used outbound to Crosstalk. An * + * internal counter called the Crosstalk Credit Timeout Counter * + * increments every 128 II clocks. The counter starts counting * + * anytime the credit count drops below a threshold, and resets to * + * zero (stops counting) anytime the credit count is at or above the * + * threshold. The threshold is 1 credit in direct connect mode and 2 * + * in Crossbow connect mode. When the internal Crosstalk Credit * + * Timeout Counter reaches the value programmed in this register, a * + * Crosstalk Credit Timeout has occurred. The internal counter is not * + * readable from software, and stops counting at its maximum value, * + * so it cannot cause more than one interrupt. * + * * + ************************************************************************/ + +typedef union ii_ixcc_u { + uint64_t ii_ixcc_regval; + struct { + uint64_t i_time_out : 26; + uint64_t i_rsvd : 38; + } ii_ixcc_fld_s; +} ii_ixcc_u_t; + + +/************************************************************************ + * * + * Description: This register qualifies all the PIO and DMA * + * operations launched from widget 0 towards the SHub. In * + * addition, it also qualifies accesses by the BTE streams. * + * The bits in each field of this register are cleared by the SHub * + * upon detection of an error which requires widget 0 or the BTE * + * streams to be terminated. Whether or not widget x has access * + * rights to this SHub is determined by an AND of the device * + * enable bit in the appropriate field of this register and bit 0 in * + * the Wx_IAC field. The bits in this field are set by writing a 1 to * + * them. Incoming replies from Crosstalk are not subject to this * + * access control mechanism. * + * * + ************************************************************************/ + +typedef union ii_imem_u { + uint64_t ii_imem_regval; + struct { + uint64_t i_w0_esd : 1; + uint64_t i_rsvd_3 : 3; + uint64_t i_b0_esd : 1; + uint64_t i_rsvd_2 : 3; + uint64_t i_b1_esd : 1; + uint64_t i_rsvd_1 : 3; + uint64_t i_clr_precise : 1; + uint64_t i_rsvd : 51; + } ii_imem_fld_s; +} ii_imem_u_t; + + + +/************************************************************************ + * * + * Description: This register specifies the timeout value to use for * + * monitoring Crosstalk tail flits coming into the Shub in the * + * TAIL_TO field. An internal counter associated with this register * + * is incremented every 128 II internal clocks (7 bits). The counter * + * starts counting anytime a header micropacket is received and stops * + * counting (and resets to zero) any time a micropacket with a Tail * + * bit is received. Once the counter reaches the threshold value * + * programmed in this register, it generates an interrupt to the * + * processor that is programmed into the IIDSR. The counter saturates * + * (does not roll over) at its maximum value, so it cannot cause * + * another interrupt until after it is cleared. * + * The register also contains the Read Response Timeout values. The * + * Prescalar is 23 bits, and counts II clocks. An internal counter * + * increments on every II clock and when it reaches the value in the * + * Prescalar field, all IPRTE registers with their valid bits set * + * have their Read Response timers bumped. Whenever any of them match * + * the value in the RRSP_TO field, a Read Response Timeout has * + * occurred, and error handling occurs as described in the Error * + * Handling section of this document. * + * * + ************************************************************************/ + +typedef union ii_ixtt_u { + uint64_t ii_ixtt_regval; + struct { + uint64_t i_tail_to : 26; + uint64_t i_rsvd_1 : 6; + uint64_t i_rrsp_ps : 23; + uint64_t i_rrsp_to : 5; + uint64_t i_rsvd : 4; + } ii_ixtt_fld_s; +} ii_ixtt_u_t; + + +/************************************************************************ + * * + * Writing a 1 to the fields of this register clears the appropriate * + * error bits in other areas of SHub. Note that when the * + * E_PRB_x bits are used to clear error bits in PRB registers, * + * SPUR_RD and SPUR_WR may persist, because they require additional * + * action to clear them. See the IPRBx and IXSS Register * + * specifications. * + * * + ************************************************************************/ + +typedef union ii_ieclr_u { + uint64_t ii_ieclr_regval; + struct { + uint64_t i_e_prb_0 : 1; + uint64_t i_rsvd : 7; + uint64_t i_e_prb_8 : 1; + uint64_t i_e_prb_9 : 1; + uint64_t i_e_prb_a : 1; + uint64_t i_e_prb_b : 1; + uint64_t i_e_prb_c : 1; + uint64_t i_e_prb_d : 1; + uint64_t i_e_prb_e : 1; + uint64_t i_e_prb_f : 1; + uint64_t i_e_crazy : 1; + uint64_t i_e_bte_0 : 1; + uint64_t i_e_bte_1 : 1; + uint64_t i_reserved_1 : 10; + uint64_t i_spur_rd_hdr : 1; + uint64_t i_cam_intr_to : 1; + uint64_t i_cam_overflow : 1; + uint64_t i_cam_read_miss : 1; + uint64_t i_ioq_rep_underflow : 1; + uint64_t i_ioq_req_underflow : 1; + uint64_t i_ioq_rep_overflow : 1; + uint64_t i_ioq_req_overflow : 1; + uint64_t i_iiq_rep_overflow : 1; + uint64_t i_iiq_req_overflow : 1; + uint64_t i_ii_xn_rep_cred_overflow : 1; + uint64_t i_ii_xn_req_cred_overflow : 1; + uint64_t i_ii_xn_invalid_cmd : 1; + uint64_t i_xn_ii_invalid_cmd : 1; + uint64_t i_reserved_2 : 21; + } ii_ieclr_fld_s; +} ii_ieclr_u_t; + + +/************************************************************************ + * * + * This register controls both BTEs. SOFT_RESET is intended for * + * recovery after an error. COUNT controls the total number of CRBs * + * that both BTEs (combined) can use, which affects total BTE * + * bandwidth. * + * * + ************************************************************************/ + +typedef union ii_ibcr_u { + uint64_t ii_ibcr_regval; + struct { + uint64_t i_count : 4; + uint64_t i_rsvd_1 : 4; + uint64_t i_soft_reset : 1; + uint64_t i_rsvd : 55; + } ii_ibcr_fld_s; +} ii_ibcr_u_t; + + +/************************************************************************ + * * + * This register contains the header of a spurious read response * + * received from Crosstalk. A spurious read response is defined as a * + * read response received by II from a widget for which (1) the SIDN * + * has a value between 1 and 7, inclusive (II never sends requests to * + * these widgets (2) there is no valid IPRTE register which * + * corresponds to the TNUM, or (3) the widget indicated in SIDN is * + * not the same as the widget recorded in the IPRTE register * + * referenced by the TNUM. If this condition is true, and if the * + * IXSS[VALID] bit is clear, then the header of the spurious read * + * response is capture in IXSM and IXSS, and IXSS[VALID] is set. The * + * errant header is thereby captured, and no further spurious read * + * respones are captured until IXSS[VALID] is cleared by setting the * + * appropriate bit in IECLR.Everytime a spurious read response is * + * detected, the SPUR_RD bit of the PRB corresponding to the incoming * + * message's SIDN field is set. This always happens, regarless of * + * whether a header is captured. The programmer should check * + * IXSM[SIDN] to determine which widget sent the spurious response, * + * because there may be more than one SPUR_RD bit set in the PRB * + * registers. The widget indicated by IXSM[SIDN] was the first * + * spurious read response to be received since the last time * + * IXSS[VALID] was clear. The SPUR_RD bit of the corresponding PRB * + * will be set. Any SPUR_RD bits in any other PRB registers indicate * + * spurious messages from other widets which were detected after the * + * header was captured.. * + * * + ************************************************************************/ + +typedef union ii_ixsm_u { + uint64_t ii_ixsm_regval; + struct { + uint64_t i_byte_en : 32; + uint64_t i_reserved : 1; + uint64_t i_tag : 3; + uint64_t i_alt_pactyp : 4; + uint64_t i_bo : 1; + uint64_t i_error : 1; + uint64_t i_vbpm : 1; + uint64_t i_gbr : 1; + uint64_t i_ds : 2; + uint64_t i_ct : 1; + uint64_t i_tnum : 5; + uint64_t i_pactyp : 4; + uint64_t i_sidn : 4; + uint64_t i_didn : 4; + } ii_ixsm_fld_s; +} ii_ixsm_u_t; + + +/************************************************************************ + * * + * This register contains the sideband bits of a spurious read * + * response received from Crosstalk. * + * * + ************************************************************************/ + +typedef union ii_ixss_u { + uint64_t ii_ixss_regval; + struct { + uint64_t i_sideband : 8; + uint64_t i_rsvd : 55; + uint64_t i_valid : 1; + } ii_ixss_fld_s; +} ii_ixss_u_t; + + +/************************************************************************ + * * + * This register enables software to access the II LLP's test port. * + * Refer to the LLP 2.5 documentation for an explanation of the test * + * port. Software can write to this register to program the values * + * for the control fields (TestErrCapture, TestClear, TestFlit, * + * TestMask and TestSeed). Similarly, software can read from this * + * register to obtain the values of the test port's status outputs * + * (TestCBerr, TestValid and TestData). * + * * + ************************************************************************/ + +typedef union ii_ilct_u { + uint64_t ii_ilct_regval; + struct { + uint64_t i_test_seed : 20; + uint64_t i_test_mask : 8; + uint64_t i_test_data : 20; + uint64_t i_test_valid : 1; + uint64_t i_test_cberr : 1; + uint64_t i_test_flit : 3; + uint64_t i_test_clear : 1; + uint64_t i_test_err_capture : 1; + uint64_t i_rsvd : 9; + } ii_ilct_fld_s; +} ii_ilct_u_t; + + +/************************************************************************ + * * + * If the II detects an illegal incoming Duplonet packet (request or * + * reply) when VALID==0 in the IIEPH1 register, then it saves the * + * contents of the packet's header flit in the IIEPH1 and IIEPH2 * + * registers, sets the VALID bit in IIEPH1, clears the OVERRUN bit, * + * and assigns a value to the ERR_TYPE field which indicates the * + * specific nature of the error. The II recognizes four different * + * types of errors: short request packets (ERR_TYPE==2), short reply * + * packets (ERR_TYPE==3), long request packets (ERR_TYPE==4) and long * + * reply packets (ERR_TYPE==5). The encodings for these types of * + * errors were chosen to be consistent with the same types of errors * + * indicated by the ERR_TYPE field in the LB_ERROR_HDR1 register (in * + * the LB unit). If the II detects an illegal incoming Duplonet * + * packet when VALID==1 in the IIEPH1 register, then it merely sets * + * the OVERRUN bit to indicate that a subsequent error has happened, * + * and does nothing further. * + * * + ************************************************************************/ + +typedef union ii_iieph1_u { + uint64_t ii_iieph1_regval; + struct { + uint64_t i_command : 7; + uint64_t i_rsvd_5 : 1; + uint64_t i_suppl : 14; + uint64_t i_rsvd_4 : 1; + uint64_t i_source : 14; + uint64_t i_rsvd_3 : 1; + uint64_t i_err_type : 4; + uint64_t i_rsvd_2 : 4; + uint64_t i_overrun : 1; + uint64_t i_rsvd_1 : 3; + uint64_t i_valid : 1; + uint64_t i_rsvd : 13; + } ii_iieph1_fld_s; +} ii_iieph1_u_t; + + +/************************************************************************ + * * + * This register holds the Address field from the header flit of an * + * incoming erroneous Duplonet packet, along with the tail bit which * + * accompanied this header flit. This register is essentially an * + * extension of IIEPH1. Two registers were necessary because the 64 * + * bits available in only a single register were insufficient to * + * capture the entire header flit of an erroneous packet. * + * * + ************************************************************************/ + +typedef union ii_iieph2_u { + uint64_t ii_iieph2_regval; + struct { + uint64_t i_rsvd_0 : 3; + uint64_t i_address : 47; + uint64_t i_rsvd_1 : 10; + uint64_t i_tail : 1; + uint64_t i_rsvd : 3; + } ii_iieph2_fld_s; +} ii_iieph2_u_t; + + +/******************************/ + + + +/************************************************************************ + * * + * This register's value is a bit vector that guards access from SXBs * + * to local registers within the II as well as to external Crosstalk * + * widgets * + * * + ************************************************************************/ + +typedef union ii_islapr_u { + uint64_t ii_islapr_regval; + struct { + uint64_t i_region : 64; + } ii_islapr_fld_s; +} ii_islapr_u_t; + + +/************************************************************************ + * * + * A write to this register of the 56-bit value "Pup+Bun" will cause * + * the bit in the ISLAPR register corresponding to the region of the * + * requestor to be set (access allowed). ( + * * + ************************************************************************/ + +typedef union ii_islapo_u { + uint64_t ii_islapo_regval; + struct { + uint64_t i_io_sbx_ovrride : 56; + uint64_t i_rsvd : 8; + } ii_islapo_fld_s; +} ii_islapo_u_t; + +/************************************************************************ + * * + * Determines how long the wrapper will wait aftr an interrupt is * + * initially issued from the II before it times out the outstanding * + * interrupt and drops it from the interrupt queue. * + * * + ************************************************************************/ + +typedef union ii_iwi_u { + uint64_t ii_iwi_regval; + struct { + uint64_t i_prescale : 24; + uint64_t i_rsvd : 8; + uint64_t i_timeout : 8; + uint64_t i_rsvd1 : 8; + uint64_t i_intrpt_retry_period : 8; + uint64_t i_rsvd2 : 8; + } ii_iwi_fld_s; +} ii_iwi_u_t; + +/************************************************************************ + * * + * Log errors which have occurred in the II wrapper. The errors are * + * cleared by writing to the IECLR register. * + * * + ************************************************************************/ + +typedef union ii_iwel_u { + uint64_t ii_iwel_regval; + struct { + uint64_t i_intr_timed_out : 1; + uint64_t i_rsvd : 7; + uint64_t i_cam_overflow : 1; + uint64_t i_cam_read_miss : 1; + uint64_t i_rsvd1 : 2; + uint64_t i_ioq_rep_underflow : 1; + uint64_t i_ioq_req_underflow : 1; + uint64_t i_ioq_rep_overflow : 1; + uint64_t i_ioq_req_overflow : 1; + uint64_t i_iiq_rep_overflow : 1; + uint64_t i_iiq_req_overflow : 1; + uint64_t i_rsvd2 : 6; + uint64_t i_ii_xn_rep_cred_over_under: 1; + uint64_t i_ii_xn_req_cred_over_under: 1; + uint64_t i_rsvd3 : 6; + uint64_t i_ii_xn_invalid_cmd : 1; + uint64_t i_xn_ii_invalid_cmd : 1; + uint64_t i_rsvd4 : 30; + } ii_iwel_fld_s; +} ii_iwel_u_t; + +/************************************************************************ + * * + * Controls the II wrapper. * + * * + ************************************************************************/ + +typedef union ii_iwc_u { + uint64_t ii_iwc_regval; + struct { + uint64_t i_dma_byte_swap : 1; + uint64_t i_rsvd : 3; + uint64_t i_cam_read_lines_reset : 1; + uint64_t i_rsvd1 : 3; + uint64_t i_ii_xn_cred_over_under_log: 1; + uint64_t i_rsvd2 : 19; + uint64_t i_xn_rep_iq_depth : 5; + uint64_t i_rsvd3 : 3; + uint64_t i_xn_req_iq_depth : 5; + uint64_t i_rsvd4 : 3; + uint64_t i_iiq_depth : 6; + uint64_t i_rsvd5 : 12; + uint64_t i_force_rep_cred : 1; + uint64_t i_force_req_cred : 1; + } ii_iwc_fld_s; +} ii_iwc_u_t; + +/************************************************************************ + * * + * Status in the II wrapper. * + * * + ************************************************************************/ + +typedef union ii_iws_u { + uint64_t ii_iws_regval; + struct { + uint64_t i_xn_rep_iq_credits : 5; + uint64_t i_rsvd : 3; + uint64_t i_xn_req_iq_credits : 5; + uint64_t i_rsvd1 : 51; + } ii_iws_fld_s; +} ii_iws_u_t; + +/************************************************************************ + * * + * Masks errors in the IWEL register. * + * * + ************************************************************************/ + +typedef union ii_iweim_u { + uint64_t ii_iweim_regval; + struct { + uint64_t i_intr_timed_out : 1; + uint64_t i_rsvd : 7; + uint64_t i_cam_overflow : 1; + uint64_t i_cam_read_miss : 1; + uint64_t i_rsvd1 : 2; + uint64_t i_ioq_rep_underflow : 1; + uint64_t i_ioq_req_underflow : 1; + uint64_t i_ioq_rep_overflow : 1; + uint64_t i_ioq_req_overflow : 1; + uint64_t i_iiq_rep_overflow : 1; + uint64_t i_iiq_req_overflow : 1; + uint64_t i_rsvd2 : 6; + uint64_t i_ii_xn_rep_cred_overflow : 1; + uint64_t i_ii_xn_req_cred_overflow : 1; + uint64_t i_rsvd3 : 6; + uint64_t i_ii_xn_invalid_cmd : 1; + uint64_t i_xn_ii_invalid_cmd : 1; + uint64_t i_rsvd4 : 30; + } ii_iweim_fld_s; +} ii_iweim_u_t; + + +/************************************************************************ + * * + * A write to this register causes a particular field in the * + * corresponding widget's PRB entry to be adjusted up or down by 1. * + * This counter should be used when recovering from error and reset * + * conditions. Note that software would be capable of causing * + * inadvertent overflow or underflow of these counters. * + * * + ************************************************************************/ + +typedef union ii_ipca_u { + uint64_t ii_ipca_regval; + struct { + uint64_t i_wid : 4; + uint64_t i_adjust : 1; + uint64_t i_rsvd_1 : 3; + uint64_t i_field : 2; + uint64_t i_rsvd : 54; + } ii_ipca_fld_s; +} ii_ipca_u_t; + + +/************************************************************************ + * * + * There are 8 instances of this register. This register contains * + * the information that the II has to remember once it has launched a * + * PIO Read operation. The contents are used to form the correct * + * Router Network packet and direct the Crosstalk reply to the * + * appropriate processor. * + * * + ************************************************************************/ + + +typedef union ii_iprte0a_u { + uint64_t ii_iprte0a_regval; + struct { + uint64_t i_rsvd_1 : 54; + uint64_t i_widget : 4; + uint64_t i_to_cnt : 5; + uint64_t i_vld : 1; + } ii_iprte0a_fld_s; +} ii_iprte0a_u_t; + + +/************************************************************************ + * * + * There are 8 instances of this register. This register contains * + * the information that the II has to remember once it has launched a * + * PIO Read operation. The contents are used to form the correct * + * Router Network packet and direct the Crosstalk reply to the * + * appropriate processor. * + * * + ************************************************************************/ + +typedef union ii_iprte1a_u { + uint64_t ii_iprte1a_regval; + struct { + uint64_t i_rsvd_1 : 54; + uint64_t i_widget : 4; + uint64_t i_to_cnt : 5; + uint64_t i_vld : 1; + } ii_iprte1a_fld_s; +} ii_iprte1a_u_t; + + +/************************************************************************ + * * + * There are 8 instances of this register. This register contains * + * the information that the II has to remember once it has launched a * + * PIO Read operation. The contents are used to form the correct * + * Router Network packet and direct the Crosstalk reply to the * + * appropriate processor. * + * * + ************************************************************************/ + +typedef union ii_iprte2a_u { + uint64_t ii_iprte2a_regval; + struct { + uint64_t i_rsvd_1 : 54; + uint64_t i_widget : 4; + uint64_t i_to_cnt : 5; + uint64_t i_vld : 1; + } ii_iprte2a_fld_s; +} ii_iprte2a_u_t; + + +/************************************************************************ + * * + * There are 8 instances of this register. This register contains * + * the information that the II has to remember once it has launched a * + * PIO Read operation. The contents are used to form the correct * + * Router Network packet and direct the Crosstalk reply to the * + * appropriate processor. * + * * + ************************************************************************/ + +typedef union ii_iprte3a_u { + uint64_t ii_iprte3a_regval; + struct { + uint64_t i_rsvd_1 : 54; + uint64_t i_widget : 4; + uint64_t i_to_cnt : 5; + uint64_t i_vld : 1; + } ii_iprte3a_fld_s; +} ii_iprte3a_u_t; + + +/************************************************************************ + * * + * There are 8 instances of this register. This register contains * + * the information that the II has to remember once it has launched a * + * PIO Read operation. The contents are used to form the correct * + * Router Network packet and direct the Crosstalk reply to the * + * appropriate processor. * + * * + ************************************************************************/ + +typedef union ii_iprte4a_u { + uint64_t ii_iprte4a_regval; + struct { + uint64_t i_rsvd_1 : 54; + uint64_t i_widget : 4; + uint64_t i_to_cnt : 5; + uint64_t i_vld : 1; + } ii_iprte4a_fld_s; +} ii_iprte4a_u_t; + + +/************************************************************************ + * * + * There are 8 instances of this register. This register contains * + * the information that the II has to remember once it has launched a * + * PIO Read operation. The contents are used to form the correct * + * Router Network packet and direct the Crosstalk reply to the * + * appropriate processor. * + * * + ************************************************************************/ + +typedef union ii_iprte5a_u { + uint64_t ii_iprte5a_regval; + struct { + uint64_t i_rsvd_1 : 54; + uint64_t i_widget : 4; + uint64_t i_to_cnt : 5; + uint64_t i_vld : 1; + } ii_iprte5a_fld_s; +} ii_iprte5a_u_t; + + +/************************************************************************ + * * + * There are 8 instances of this register. This register contains * + * the information that the II has to remember once it has launched a * + * PIO Read operation. The contents are used to form the correct * + * Router Network packet and direct the Crosstalk reply to the * + * appropriate processor. * + * * + ************************************************************************/ + +typedef union ii_iprte6a_u { + uint64_t ii_iprte6a_regval; + struct { + uint64_t i_rsvd_1 : 54; + uint64_t i_widget : 4; + uint64_t i_to_cnt : 5; + uint64_t i_vld : 1; + } ii_iprte6a_fld_s; +} ii_iprte6a_u_t; + + +/************************************************************************ + * * + * There are 8 instances of this register. This register contains * + * the information that the II has to remember once it has launched a * + * PIO Read operation. The contents are used to form the correct * + * Router Network packet and direct the Crosstalk reply to the * + * appropriate processor. * + * * + ************************************************************************/ + +typedef union ii_iprte7a_u { + uint64_t ii_iprte7a_regval; + struct { + uint64_t i_rsvd_1 : 54; + uint64_t i_widget : 4; + uint64_t i_to_cnt : 5; + uint64_t i_vld : 1; + } ii_iprtea7_fld_s; +} ii_iprte7a_u_t; + + + +/************************************************************************ + * * + * There are 8 instances of this register. This register contains * + * the information that the II has to remember once it has launched a * + * PIO Read operation. The contents are used to form the correct * + * Router Network packet and direct the Crosstalk reply to the * + * appropriate processor. * + * * + ************************************************************************/ + + +typedef union ii_iprte0b_u { + uint64_t ii_iprte0b_regval; + struct { + uint64_t i_rsvd_1 : 3; + uint64_t i_address : 47; + uint64_t i_init : 3; + uint64_t i_source : 11; + } ii_iprte0b_fld_s; +} ii_iprte0b_u_t; + + +/************************************************************************ + * * + * There are 8 instances of this register. This register contains * + * the information that the II has to remember once it has launched a * + * PIO Read operation. The contents are used to form the correct * + * Router Network packet and direct the Crosstalk reply to the * + * appropriate processor. * + * * + ************************************************************************/ + +typedef union ii_iprte1b_u { + uint64_t ii_iprte1b_regval; + struct { + uint64_t i_rsvd_1 : 3; + uint64_t i_address : 47; + uint64_t i_init : 3; + uint64_t i_source : 11; + } ii_iprte1b_fld_s; +} ii_iprte1b_u_t; + + +/************************************************************************ + * * + * There are 8 instances of this register. This register contains * + * the information that the II has to remember once it has launched a * + * PIO Read operation. The contents are used to form the correct * + * Router Network packet and direct the Crosstalk reply to the * + * appropriate processor. * + * * + ************************************************************************/ + +typedef union ii_iprte2b_u { + uint64_t ii_iprte2b_regval; + struct { + uint64_t i_rsvd_1 : 3; + uint64_t i_address : 47; + uint64_t i_init : 3; + uint64_t i_source : 11; + } ii_iprte2b_fld_s; +} ii_iprte2b_u_t; + + +/************************************************************************ + * * + * There are 8 instances of this register. This register contains * + * the information that the II has to remember once it has launched a * + * PIO Read operation. The contents are used to form the correct * + * Router Network packet and direct the Crosstalk reply to the * + * appropriate processor. * + * * + ************************************************************************/ + +typedef union ii_iprte3b_u { + uint64_t ii_iprte3b_regval; + struct { + uint64_t i_rsvd_1 : 3; + uint64_t i_address : 47; + uint64_t i_init : 3; + uint64_t i_source : 11; + } ii_iprte3b_fld_s; +} ii_iprte3b_u_t; + + +/************************************************************************ + * * + * There are 8 instances of this register. This register contains * + * the information that the II has to remember once it has launched a * + * PIO Read operation. The contents are used to form the correct * + * Router Network packet and direct the Crosstalk reply to the * + * appropriate processor. * + * * + ************************************************************************/ + +typedef union ii_iprte4b_u { + uint64_t ii_iprte4b_regval; + struct { + uint64_t i_rsvd_1 : 3; + uint64_t i_address : 47; + uint64_t i_init : 3; + uint64_t i_source : 11; + } ii_iprte4b_fld_s; +} ii_iprte4b_u_t; + + +/************************************************************************ + * * + * There are 8 instances of this register. This register contains * + * the information that the II has to remember once it has launched a * + * PIO Read operation. The contents are used to form the correct * + * Router Network packet and direct the Crosstalk reply to the * + * appropriate processor. * + * * + ************************************************************************/ + +typedef union ii_iprte5b_u { + uint64_t ii_iprte5b_regval; + struct { + uint64_t i_rsvd_1 : 3; + uint64_t i_address : 47; + uint64_t i_init : 3; + uint64_t i_source : 11; + } ii_iprte5b_fld_s; +} ii_iprte5b_u_t; + + +/************************************************************************ + * * + * There are 8 instances of this register. This register contains * + * the information that the II has to remember once it has launched a * + * PIO Read operation. The contents are used to form the correct * + * Router Network packet and direct the Crosstalk reply to the * + * appropriate processor. * + * * + ************************************************************************/ + +typedef union ii_iprte6b_u { + uint64_t ii_iprte6b_regval; + struct { + uint64_t i_rsvd_1 : 3; + uint64_t i_address : 47; + uint64_t i_init : 3; + uint64_t i_source : 11; + + } ii_iprte6b_fld_s; +} ii_iprte6b_u_t; + + +/************************************************************************ + * * + * There are 8 instances of this register. This register contains * + * the information that the II has to remember once it has launched a * + * PIO Read operation. The contents are used to form the correct * + * Router Network packet and direct the Crosstalk reply to the * + * appropriate processor. * + * * + ************************************************************************/ + +typedef union ii_iprte7b_u { + uint64_t ii_iprte7b_regval; + struct { + uint64_t i_rsvd_1 : 3; + uint64_t i_address : 47; + uint64_t i_init : 3; + uint64_t i_source : 11; + } ii_iprte7b_fld_s; +} ii_iprte7b_u_t; + + +/************************************************************************ + * * + * Description: SHub II contains a feature which did not exist in * + * the Hub which automatically cleans up after a Read Response * + * timeout, including deallocation of the IPRTE and recovery of IBuf * + * space. The inclusion of this register in SHub is for backward * + * compatibility * + * A write to this register causes an entry from the table of * + * outstanding PIO Read Requests to be freed and returned to the * + * stack of free entries. This register is used in handling the * + * timeout errors that result in a PIO Reply never returning from * + * Crosstalk. * + * Note that this register does not affect the contents of the IPRTE * + * registers. The Valid bits in those registers have to be * + * specifically turned off by software. * + * * + ************************************************************************/ + +typedef union ii_ipdr_u { + uint64_t ii_ipdr_regval; + struct { + uint64_t i_te : 3; + uint64_t i_rsvd_1 : 1; + uint64_t i_pnd : 1; + uint64_t i_init_rpcnt : 1; + uint64_t i_rsvd : 58; + } ii_ipdr_fld_s; +} ii_ipdr_u_t; + + +/************************************************************************ + * * + * A write to this register causes a CRB entry to be returned to the * + * queue of free CRBs. The entry should have previously been cleared * + * (mark bit) via backdoor access to the pertinent CRB entry. This * + * register is used in the last step of handling the errors that are * + * captured and marked in CRB entries. Briefly: 1) first error for * + * DMA write from a particular device, and first error for a * + * particular BTE stream, lead to a marked CRB entry, and processor * + * interrupt, 2) software reads the error information captured in the * + * CRB entry, and presumably takes some corrective action, 3) * + * software clears the mark bit, and finally 4) software writes to * + * the ICDR register to return the CRB entry to the list of free CRB * + * entries. * + * * + ************************************************************************/ + +typedef union ii_icdr_u { + uint64_t ii_icdr_regval; + struct { + uint64_t i_crb_num : 4; + uint64_t i_pnd : 1; + uint64_t i_rsvd : 59; + } ii_icdr_fld_s; +} ii_icdr_u_t; + + +/************************************************************************ + * * + * This register provides debug access to two FIFOs inside of II. * + * Both IOQ_MAX* fields of this register contain the instantaneous * + * depth (in units of the number of available entries) of the * + * associated IOQ FIFO. A read of this register will return the * + * number of free entries on each FIFO at the time of the read. So * + * when a FIFO is idle, the associated field contains the maximum * + * depth of the FIFO. This register is writable for debug reasons * + * and is intended to be written with the maximum desired FIFO depth * + * while the FIFO is idle. Software must assure that II is idle when * + * this register is written. If there are any active entries in any * + * of these FIFOs when this register is written, the results are * + * undefined. * + * * + ************************************************************************/ + +typedef union ii_ifdr_u { + uint64_t ii_ifdr_regval; + struct { + uint64_t i_ioq_max_rq : 7; + uint64_t i_set_ioq_rq : 1; + uint64_t i_ioq_max_rp : 7; + uint64_t i_set_ioq_rp : 1; + uint64_t i_rsvd : 48; + } ii_ifdr_fld_s; +} ii_ifdr_u_t; + + +/************************************************************************ + * * + * This register allows the II to become sluggish in removing * + * messages from its inbound queue (IIQ). This will cause messages to * + * back up in either virtual channel. Disabling the "molasses" mode * + * subsequently allows the II to be tested under stress. In the * + * sluggish ("Molasses") mode, the localized effects of congestion * + * can be observed. * + * * + ************************************************************************/ + +typedef union ii_iiap_u { + uint64_t ii_iiap_regval; + struct { + uint64_t i_rq_mls : 6; + uint64_t i_rsvd_1 : 2; + uint64_t i_rp_mls : 6; + uint64_t i_rsvd : 50; + } ii_iiap_fld_s; +} ii_iiap_u_t; + + +/************************************************************************ + * * + * This register allows several parameters of CRB operation to be * + * set. Note that writing to this register can have catastrophic side * + * effects, if the CRB is not quiescent, i.e. if the CRB is * + * processing protocol messages when the write occurs. * + * * + ************************************************************************/ + +typedef union ii_icmr_u { + uint64_t ii_icmr_regval; + struct { + uint64_t i_sp_msg : 1; + uint64_t i_rd_hdr : 1; + uint64_t i_rsvd_4 : 2; + uint64_t i_c_cnt : 4; + uint64_t i_rsvd_3 : 4; + uint64_t i_clr_rqpd : 1; + uint64_t i_clr_rppd : 1; + uint64_t i_rsvd_2 : 2; + uint64_t i_fc_cnt : 4; + uint64_t i_crb_vld : 15; + uint64_t i_crb_mark : 15; + uint64_t i_rsvd_1 : 2; + uint64_t i_precise : 1; + uint64_t i_rsvd : 11; + } ii_icmr_fld_s; +} ii_icmr_u_t; + + +/************************************************************************ + * * + * This register allows control of the table portion of the CRB * + * logic via software. Control operations from this register have * + * priority over all incoming Crosstalk or BTE requests. * + * * + ************************************************************************/ + +typedef union ii_iccr_u { + uint64_t ii_iccr_regval; + struct { + uint64_t i_crb_num : 4; + uint64_t i_rsvd_1 : 4; + uint64_t i_cmd : 8; + uint64_t i_pending : 1; + uint64_t i_rsvd : 47; + } ii_iccr_fld_s; +} ii_iccr_u_t; + + +/************************************************************************ + * * + * This register allows the maximum timeout value to be programmed. * + * * + ************************************************************************/ + +typedef union ii_icto_u { + uint64_t ii_icto_regval; + struct { + uint64_t i_timeout : 8; + uint64_t i_rsvd : 56; + } ii_icto_fld_s; +} ii_icto_u_t; + + +/************************************************************************ + * * + * This register allows the timeout prescalar to be programmed. An * + * internal counter is associated with this register. When the * + * internal counter reaches the value of the PRESCALE field, the * + * timer registers in all valid CRBs are incremented (CRBx_D[TIMEOUT] * + * field). The internal counter resets to zero, and then continues * + * counting. * + * * + ************************************************************************/ + +typedef union ii_ictp_u { + uint64_t ii_ictp_regval; + struct { + uint64_t i_prescale : 24; + uint64_t i_rsvd : 40; + } ii_ictp_fld_s; +} ii_ictp_u_t; + + +/************************************************************************ + * * + * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * + * used for Crosstalk operations (both cacheline and partial * + * operations) or BTE/IO. Because the CRB entries are very wide, five * + * registers (_A to _E) are required to read and write each entry. * + * The CRB Entry registers can be conceptualized as rows and columns * + * (illustrated in the table above). Each row contains the 4 * + * registers required for a single CRB Entry. The first doubleword * + * (column) for each entry is labeled A, and the second doubleword * + * (higher address) is labeled B, the third doubleword is labeled C, * + * the fourth doubleword is labeled D and the fifth doubleword is * + * labeled E. All CRB entries have their addresses on a quarter * + * cacheline aligned boundary. * + * Upon reset, only the following fields are initialized: valid * + * (VLD), priority count, timeout, timeout valid, and context valid. * + * All other bits should be cleared by software before use (after * + * recovering any potential error state from before the reset). * + * The following four tables summarize the format for the four * + * registers that are used for each ICRB# Entry. * + * * + ************************************************************************/ + +typedef union ii_icrb0_a_u { + uint64_t ii_icrb0_a_regval; + struct { + uint64_t ia_iow : 1; + uint64_t ia_vld : 1; + uint64_t ia_addr : 47; + uint64_t ia_tnum : 5; + uint64_t ia_sidn : 4; + uint64_t ia_rsvd : 6; + } ii_icrb0_a_fld_s; +} ii_icrb0_a_u_t; + + +/************************************************************************ + * * + * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * + * used for Crosstalk operations (both cacheline and partial * + * operations) or BTE/IO. Because the CRB entries are very wide, five * + * registers (_A to _E) are required to read and write each entry. * + * * + ************************************************************************/ + +typedef union ii_icrb0_b_u { + uint64_t ii_icrb0_b_regval; + struct { + uint64_t ib_xt_err : 1; + uint64_t ib_mark : 1; + uint64_t ib_ln_uce : 1; + uint64_t ib_errcode : 3; + uint64_t ib_error : 1; + uint64_t ib_stall__bte_1 : 1; + uint64_t ib_stall__bte_0 : 1; + uint64_t ib_stall__intr : 1; + uint64_t ib_stall_ib : 1; + uint64_t ib_intvn : 1; + uint64_t ib_wb : 1; + uint64_t ib_hold : 1; + uint64_t ib_ack : 1; + uint64_t ib_resp : 1; + uint64_t ib_ack_cnt : 11; + uint64_t ib_rsvd : 7; + uint64_t ib_exc : 5; + uint64_t ib_init : 3; + uint64_t ib_imsg : 8; + uint64_t ib_imsgtype : 2; + uint64_t ib_use_old : 1; + uint64_t ib_rsvd_1 : 11; + } ii_icrb0_b_fld_s; +} ii_icrb0_b_u_t; + + +/************************************************************************ + * * + * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * + * used for Crosstalk operations (both cacheline and partial * + * operations) or BTE/IO. Because the CRB entries are very wide, five * + * registers (_A to _E) are required to read and write each entry. * + * * + ************************************************************************/ + +typedef union ii_icrb0_c_u { + uint64_t ii_icrb0_c_regval; + struct { + uint64_t ic_source : 15; + uint64_t ic_size : 2; + uint64_t ic_ct : 1; + uint64_t ic_bte_num : 1; + uint64_t ic_gbr : 1; + uint64_t ic_resprqd : 1; + uint64_t ic_bo : 1; + uint64_t ic_suppl : 15; + uint64_t ic_rsvd : 27; + } ii_icrb0_c_fld_s; +} ii_icrb0_c_u_t; + + +/************************************************************************ + * * + * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * + * used for Crosstalk operations (both cacheline and partial * + * operations) or BTE/IO. Because the CRB entries are very wide, five * + * registers (_A to _E) are required to read and write each entry. * + * * + ************************************************************************/ + +typedef union ii_icrb0_d_u { + uint64_t ii_icrb0_d_regval; + struct { + uint64_t id_pa_be : 43; + uint64_t id_bte_op : 1; + uint64_t id_pr_psc : 4; + uint64_t id_pr_cnt : 4; + uint64_t id_sleep : 1; + uint64_t id_rsvd : 11; + } ii_icrb0_d_fld_s; +} ii_icrb0_d_u_t; + + +/************************************************************************ + * * + * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * + * used for Crosstalk operations (both cacheline and partial * + * operations) or BTE/IO. Because the CRB entries are very wide, five * + * registers (_A to _E) are required to read and write each entry. * + * * + ************************************************************************/ + +typedef union ii_icrb0_e_u { + uint64_t ii_icrb0_e_regval; + struct { + uint64_t ie_timeout : 8; + uint64_t ie_context : 15; + uint64_t ie_rsvd : 1; + uint64_t ie_tvld : 1; + uint64_t ie_cvld : 1; + uint64_t ie_rsvd_0 : 38; + } ii_icrb0_e_fld_s; +} ii_icrb0_e_u_t; + + +/************************************************************************ + * * + * This register contains the lower 64 bits of the header of the * + * spurious message captured by II. Valid when the SP_MSG bit in ICMR * + * register is set. * + * * + ************************************************************************/ + +typedef union ii_icsml_u { + uint64_t ii_icsml_regval; + struct { + uint64_t i_tt_addr : 47; + uint64_t i_newsuppl_ex : 14; + uint64_t i_reserved : 2; + uint64_t i_overflow : 1; + } ii_icsml_fld_s; +} ii_icsml_u_t; + + +/************************************************************************ + * * + * This register contains the middle 64 bits of the header of the * + * spurious message captured by II. Valid when the SP_MSG bit in ICMR * + * register is set. * + * * + ************************************************************************/ + +typedef union ii_icsmm_u { + uint64_t ii_icsmm_regval; + struct { + uint64_t i_tt_ack_cnt : 11; + uint64_t i_reserved : 53; + } ii_icsmm_fld_s; +} ii_icsmm_u_t; + + +/************************************************************************ + * * + * This register contains the microscopic state, all the inputs to * + * the protocol table, captured with the spurious message. Valid when * + * the SP_MSG bit in the ICMR register is set. * + * * + ************************************************************************/ + +typedef union ii_icsmh_u { + uint64_t ii_icsmh_regval; + struct { + uint64_t i_tt_vld : 1; + uint64_t i_xerr : 1; + uint64_t i_ft_cwact_o : 1; + uint64_t i_ft_wact_o : 1; + uint64_t i_ft_active_o : 1; + uint64_t i_sync : 1; + uint64_t i_mnusg : 1; + uint64_t i_mnusz : 1; + uint64_t i_plusz : 1; + uint64_t i_plusg : 1; + uint64_t i_tt_exc : 5; + uint64_t i_tt_wb : 1; + uint64_t i_tt_hold : 1; + uint64_t i_tt_ack : 1; + uint64_t i_tt_resp : 1; + uint64_t i_tt_intvn : 1; + uint64_t i_g_stall_bte1 : 1; + uint64_t i_g_stall_bte0 : 1; + uint64_t i_g_stall_il : 1; + uint64_t i_g_stall_ib : 1; + uint64_t i_tt_imsg : 8; + uint64_t i_tt_imsgtype : 2; + uint64_t i_tt_use_old : 1; + uint64_t i_tt_respreqd : 1; + uint64_t i_tt_bte_num : 1; + uint64_t i_cbn : 1; + uint64_t i_match : 1; + uint64_t i_rpcnt_lt_34 : 1; + uint64_t i_rpcnt_ge_34 : 1; + uint64_t i_rpcnt_lt_18 : 1; + uint64_t i_rpcnt_ge_18 : 1; + uint64_t i_rpcnt_lt_2 : 1; + uint64_t i_rpcnt_ge_2 : 1; + uint64_t i_rqcnt_lt_18 : 1; + uint64_t i_rqcnt_ge_18 : 1; + uint64_t i_rqcnt_lt_2 : 1; + uint64_t i_rqcnt_ge_2 : 1; + uint64_t i_tt_device : 7; + uint64_t i_tt_init : 3; + uint64_t i_reserved : 5; + } ii_icsmh_fld_s; +} ii_icsmh_u_t; + + +/************************************************************************ + * * + * The Shub DEBUG unit provides a 3-bit selection signal to the * + * II core and a 3-bit selection signal to the fsbclk domain in the II * + * wrapper. * + * * + ************************************************************************/ + +typedef union ii_idbss_u { + uint64_t ii_idbss_regval; + struct { + uint64_t i_iioclk_core_submenu : 3; + uint64_t i_rsvd : 5; + uint64_t i_fsbclk_wrapper_submenu : 3; + uint64_t i_rsvd_1 : 5; + uint64_t i_iioclk_menu : 5; + uint64_t i_rsvd_2 : 43; + } ii_idbss_fld_s; +} ii_idbss_u_t; + + +/************************************************************************ + * * + * Description: This register is used to set up the length for a * + * transfer and then to monitor the progress of that transfer. This * + * register needs to be initialized before a transfer is started. A * + * legitimate write to this register will set the Busy bit, clear the * + * Error bit, and initialize the length to the value desired. * + * While the transfer is in progress, hardware will decrement the * + * length field with each successful block that is copied. Once the * + * transfer completes, hardware will clear the Busy bit. The length * + * field will also contain the number of cache lines left to be * + * transferred. * + * * + ************************************************************************/ + +typedef union ii_ibls0_u { + uint64_t ii_ibls0_regval; + struct { + uint64_t i_length : 16; + uint64_t i_error : 1; + uint64_t i_rsvd_1 : 3; + uint64_t i_busy : 1; + uint64_t i_rsvd : 43; + } ii_ibls0_fld_s; +} ii_ibls0_u_t; + + +/************************************************************************ + * * + * This register should be loaded before a transfer is started. The * + * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * + * address as described in Section 1.3, Figure2 and Figure3. Since * + * the bottom 7 bits of the address are always taken to be zero, BTE * + * transfers are always cacheline-aligned. * + * * + ************************************************************************/ + +typedef union ii_ibsa0_u { + uint64_t ii_ibsa0_regval; + struct { + uint64_t i_rsvd_1 : 7; + uint64_t i_addr : 42; + uint64_t i_rsvd : 15; + } ii_ibsa0_fld_s; +} ii_ibsa0_u_t; + + +/************************************************************************ + * * + * This register should be loaded before a transfer is started. The * + * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * + * address as described in Section 1.3, Figure2 and Figure3. Since * + * the bottom 7 bits of the address are always taken to be zero, BTE * + * transfers are always cacheline-aligned. * + * * + ************************************************************************/ + +typedef union ii_ibda0_u { + uint64_t ii_ibda0_regval; + struct { + uint64_t i_rsvd_1 : 7; + uint64_t i_addr : 42; + uint64_t i_rsvd : 15; + } ii_ibda0_fld_s; +} ii_ibda0_u_t; + + +/************************************************************************ + * * + * Writing to this register sets up the attributes of the transfer * + * and initiates the transfer operation. Reading this register has * + * the side effect of terminating any transfer in progress. Note: * + * stopping a transfer midstream could have an adverse impact on the * + * other BTE. If a BTE stream has to be stopped (due to error * + * handling for example), both BTE streams should be stopped and * + * their transfers discarded. * + * * + ************************************************************************/ + +typedef union ii_ibct0_u { + uint64_t ii_ibct0_regval; + struct { + uint64_t i_zerofill : 1; + uint64_t i_rsvd_2 : 3; + uint64_t i_notify : 1; + uint64_t i_rsvd_1 : 3; + uint64_t i_poison : 1; + uint64_t i_rsvd : 55; + } ii_ibct0_fld_s; +} ii_ibct0_u_t; + + +/************************************************************************ + * * + * This register contains the address to which the WINV is sent. * + * This address has to be cache line aligned. * + * * + ************************************************************************/ + +typedef union ii_ibna0_u { + uint64_t ii_ibna0_regval; + struct { + uint64_t i_rsvd_1 : 7; + uint64_t i_addr : 42; + uint64_t i_rsvd : 15; + } ii_ibna0_fld_s; +} ii_ibna0_u_t; + + +/************************************************************************ + * * + * This register contains the programmable level as well as the node * + * ID and PI unit of the processor to which the interrupt will be * + * sent. * + * * + ************************************************************************/ + +typedef union ii_ibia0_u { + uint64_t ii_ibia0_regval; + struct { + uint64_t i_rsvd_2 : 1; + uint64_t i_node_id : 11; + uint64_t i_rsvd_1 : 4; + uint64_t i_level : 7; + uint64_t i_rsvd : 41; + } ii_ibia0_fld_s; +} ii_ibia0_u_t; + + +/************************************************************************ + * * + * Description: This register is used to set up the length for a * + * transfer and then to monitor the progress of that transfer. This * + * register needs to be initialized before a transfer is started. A * + * legitimate write to this register will set the Busy bit, clear the * + * Error bit, and initialize the length to the value desired. * + * While the transfer is in progress, hardware will decrement the * + * length field with each successful block that is copied. Once the * + * transfer completes, hardware will clear the Busy bit. The length * + * field will also contain the number of cache lines left to be * + * transferred. * + * * + ************************************************************************/ + +typedef union ii_ibls1_u { + uint64_t ii_ibls1_regval; + struct { + uint64_t i_length : 16; + uint64_t i_error : 1; + uint64_t i_rsvd_1 : 3; + uint64_t i_busy : 1; + uint64_t i_rsvd : 43; + } ii_ibls1_fld_s; +} ii_ibls1_u_t; + + +/************************************************************************ + * * + * This register should be loaded before a transfer is started. The * + * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * + * address as described in Section 1.3, Figure2 and Figure3. Since * + * the bottom 7 bits of the address are always taken to be zero, BTE * + * transfers are always cacheline-aligned. * + * * + ************************************************************************/ + +typedef union ii_ibsa1_u { + uint64_t ii_ibsa1_regval; + struct { + uint64_t i_rsvd_1 : 7; + uint64_t i_addr : 33; + uint64_t i_rsvd : 24; + } ii_ibsa1_fld_s; +} ii_ibsa1_u_t; + + +/************************************************************************ + * * + * This register should be loaded before a transfer is started. The * + * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * + * address as described in Section 1.3, Figure2 and Figure3. Since * + * the bottom 7 bits of the address are always taken to be zero, BTE * + * transfers are always cacheline-aligned. * + * * + ************************************************************************/ + +typedef union ii_ibda1_u { + uint64_t ii_ibda1_regval; + struct { + uint64_t i_rsvd_1 : 7; + uint64_t i_addr : 33; + uint64_t i_rsvd : 24; + } ii_ibda1_fld_s; +} ii_ibda1_u_t; + + +/************************************************************************ + * * + * Writing to this register sets up the attributes of the transfer * + * and initiates the transfer operation. Reading this register has * + * the side effect of terminating any transfer in progress. Note: * + * stopping a transfer midstream could have an adverse impact on the * + * other BTE. If a BTE stream has to be stopped (due to error * + * handling for example), both BTE streams should be stopped and * + * their transfers discarded. * + * * + ************************************************************************/ + +typedef union ii_ibct1_u { + uint64_t ii_ibct1_regval; + struct { + uint64_t i_zerofill : 1; + uint64_t i_rsvd_2 : 3; + uint64_t i_notify : 1; + uint64_t i_rsvd_1 : 3; + uint64_t i_poison : 1; + uint64_t i_rsvd : 55; + } ii_ibct1_fld_s; +} ii_ibct1_u_t; + + +/************************************************************************ + * * + * This register contains the address to which the WINV is sent. * + * This address has to be cache line aligned. * + * * + ************************************************************************/ + +typedef union ii_ibna1_u { + uint64_t ii_ibna1_regval; + struct { + uint64_t i_rsvd_1 : 7; + uint64_t i_addr : 33; + uint64_t i_rsvd : 24; + } ii_ibna1_fld_s; +} ii_ibna1_u_t; + + +/************************************************************************ + * * + * This register contains the programmable level as well as the node * + * ID and PI unit of the processor to which the interrupt will be * + * sent. * + * * + ************************************************************************/ + +typedef union ii_ibia1_u { + uint64_t ii_ibia1_regval; + struct { + uint64_t i_pi_id : 1; + uint64_t i_node_id : 8; + uint64_t i_rsvd_1 : 7; + uint64_t i_level : 7; + uint64_t i_rsvd : 41; + } ii_ibia1_fld_s; +} ii_ibia1_u_t; + + +/************************************************************************ + * * + * This register defines the resources that feed information into * + * the two performance counters located in the IO Performance * + * Profiling Register. There are 17 different quantities that can be * + * measured. Given these 17 different options, the two performance * + * counters have 15 of them in common; menu selections 0 through 0xE * + * are identical for each performance counter. As for the other two * + * options, one is available from one performance counter and the * + * other is available from the other performance counter. Hence, the * + * II supports all 17*16=272 possible combinations of quantities to * + * measure. * + * * + ************************************************************************/ + +typedef union ii_ipcr_u { + uint64_t ii_ipcr_regval; + struct { + uint64_t i_ippr0_c : 4; + uint64_t i_ippr1_c : 4; + uint64_t i_icct : 8; + uint64_t i_rsvd : 48; + } ii_ipcr_fld_s; +} ii_ipcr_u_t; + + +/************************************************************************ + * * + * * + * * + ************************************************************************/ + +typedef union ii_ippr_u { + uint64_t ii_ippr_regval; + struct { + uint64_t i_ippr0 : 32; + uint64_t i_ippr1 : 32; + } ii_ippr_fld_s; +} ii_ippr_u_t; + + + +/************************************************************************** + * * + * The following defines which were not formed into structures are * + * probably indentical to another register, and the name of the * + * register is provided against each of these registers. This * + * information needs to be checked carefully * + * * + * IIO_ICRB1_A IIO_ICRB0_A * + * IIO_ICRB1_B IIO_ICRB0_B * + * IIO_ICRB1_C IIO_ICRB0_C * + * IIO_ICRB1_D IIO_ICRB0_D * + * IIO_ICRB1_E IIO_ICRB0_E * + * IIO_ICRB2_A IIO_ICRB0_A * + * IIO_ICRB2_B IIO_ICRB0_B * + * IIO_ICRB2_C IIO_ICRB0_C * + * IIO_ICRB2_D IIO_ICRB0_D * + * IIO_ICRB2_E IIO_ICRB0_E * + * IIO_ICRB3_A IIO_ICRB0_A * + * IIO_ICRB3_B IIO_ICRB0_B * + * IIO_ICRB3_C IIO_ICRB0_C * + * IIO_ICRB3_D IIO_ICRB0_D * + * IIO_ICRB3_E IIO_ICRB0_E * + * IIO_ICRB4_A IIO_ICRB0_A * + * IIO_ICRB4_B IIO_ICRB0_B * + * IIO_ICRB4_C IIO_ICRB0_C * + * IIO_ICRB4_D IIO_ICRB0_D * + * IIO_ICRB4_E IIO_ICRB0_E * + * IIO_ICRB5_A IIO_ICRB0_A * + * IIO_ICRB5_B IIO_ICRB0_B * + * IIO_ICRB5_C IIO_ICRB0_C * + * IIO_ICRB5_D IIO_ICRB0_D * + * IIO_ICRB5_E IIO_ICRB0_E * + * IIO_ICRB6_A IIO_ICRB0_A * + * IIO_ICRB6_B IIO_ICRB0_B * + * IIO_ICRB6_C IIO_ICRB0_C * + * IIO_ICRB6_D IIO_ICRB0_D * + * IIO_ICRB6_E IIO_ICRB0_E * + * IIO_ICRB7_A IIO_ICRB0_A * + * IIO_ICRB7_B IIO_ICRB0_B * + * IIO_ICRB7_C IIO_ICRB0_C * + * IIO_ICRB7_D IIO_ICRB0_D * + * IIO_ICRB7_E IIO_ICRB0_E * + * IIO_ICRB8_A IIO_ICRB0_A * + * IIO_ICRB8_B IIO_ICRB0_B * + * IIO_ICRB8_C IIO_ICRB0_C * + * IIO_ICRB8_D IIO_ICRB0_D * + * IIO_ICRB8_E IIO_ICRB0_E * + * IIO_ICRB9_A IIO_ICRB0_A * + * IIO_ICRB9_B IIO_ICRB0_B * + * IIO_ICRB9_C IIO_ICRB0_C * + * IIO_ICRB9_D IIO_ICRB0_D * + * IIO_ICRB9_E IIO_ICRB0_E * + * IIO_ICRBA_A IIO_ICRB0_A * + * IIO_ICRBA_B IIO_ICRB0_B * + * IIO_ICRBA_C IIO_ICRB0_C * + * IIO_ICRBA_D IIO_ICRB0_D * + * IIO_ICRBA_E IIO_ICRB0_E * + * IIO_ICRBB_A IIO_ICRB0_A * + * IIO_ICRBB_B IIO_ICRB0_B * + * IIO_ICRBB_C IIO_ICRB0_C * + * IIO_ICRBB_D IIO_ICRB0_D * + * IIO_ICRBB_E IIO_ICRB0_E * + * IIO_ICRBC_A IIO_ICRB0_A * + * IIO_ICRBC_B IIO_ICRB0_B * + * IIO_ICRBC_C IIO_ICRB0_C * + * IIO_ICRBC_D IIO_ICRB0_D * + * IIO_ICRBC_E IIO_ICRB0_E * + * IIO_ICRBD_A IIO_ICRB0_A * + * IIO_ICRBD_B IIO_ICRB0_B * + * IIO_ICRBD_C IIO_ICRB0_C * + * IIO_ICRBD_D IIO_ICRB0_D * + * IIO_ICRBD_E IIO_ICRB0_E * + * IIO_ICRBE_A IIO_ICRB0_A * + * IIO_ICRBE_B IIO_ICRB0_B * + * IIO_ICRBE_C IIO_ICRB0_C * + * IIO_ICRBE_D IIO_ICRB0_D * + * IIO_ICRBE_E IIO_ICRB0_E * + * * + **************************************************************************/ + + +/* + * Slightly friendlier names for some common registers. + */ +#define IIO_WIDGET IIO_WID /* Widget identification */ +#define IIO_WIDGET_STAT IIO_WSTAT /* Widget status register */ +#define IIO_WIDGET_CTRL IIO_WCR /* Widget control register */ +#define IIO_PROTECT IIO_ILAPR /* IO interface protection */ +#define IIO_PROTECT_OVRRD IIO_ILAPO /* IO protect override */ +#define IIO_OUTWIDGET_ACCESS IIO_IOWA /* Outbound widget access */ +#define IIO_INWIDGET_ACCESS IIO_IIWA /* Inbound widget access */ +#define IIO_INDEV_ERR_MASK IIO_IIDEM /* Inbound device error mask */ +#define IIO_LLP_CSR IIO_ILCSR /* LLP control and status */ +#define IIO_LLP_LOG IIO_ILLR /* LLP log */ +#define IIO_XTALKCC_TOUT IIO_IXCC /* Xtalk credit count timeout*/ +#define IIO_XTALKTT_TOUT IIO_IXTT /* Xtalk tail timeout */ +#define IIO_IO_ERR_CLR IIO_IECLR /* IO error clear */ +#define IIO_IGFX_0 IIO_IGFX0 +#define IIO_IGFX_1 IIO_IGFX1 +#define IIO_IBCT_0 IIO_IBCT0 +#define IIO_IBCT_1 IIO_IBCT1 +#define IIO_IBLS_0 IIO_IBLS0 +#define IIO_IBLS_1 IIO_IBLS1 +#define IIO_IBSA_0 IIO_IBSA0 +#define IIO_IBSA_1 IIO_IBSA1 +#define IIO_IBDA_0 IIO_IBDA0 +#define IIO_IBDA_1 IIO_IBDA1 +#define IIO_IBNA_0 IIO_IBNA0 +#define IIO_IBNA_1 IIO_IBNA1 +#define IIO_IBIA_0 IIO_IBIA0 +#define IIO_IBIA_1 IIO_IBIA1 +#define IIO_IOPRB_0 IIO_IPRB0 + +#define IIO_PRTE_A(_x) (IIO_IPRTE0_A + (8 * (_x))) +#define IIO_PRTE_B(_x) (IIO_IPRTE0_B + (8 * (_x))) +#define IIO_NUM_PRTES 8 /* Total number of PRB table entries */ +#define IIO_WIDPRTE_A(x) IIO_PRTE_A(((x) - 8)) /* widget ID to its PRTE num */ +#define IIO_WIDPRTE_B(x) IIO_PRTE_B(((x) - 8)) /* widget ID to its PRTE num */ + +#define IIO_NUM_IPRBS (9) + +#define IIO_LLP_CSR_IS_UP 0x00002000 +#define IIO_LLP_CSR_LLP_STAT_MASK 0x00003000 +#define IIO_LLP_CSR_LLP_STAT_SHFT 12 + +#define IIO_LLP_CB_MAX 0xffff /* in ILLR CB_CNT, Max Check Bit errors */ +#define IIO_LLP_SN_MAX 0xffff /* in ILLR SN_CNT, Max Sequence Number errors */ + +/* key to IIO_PROTECT_OVRRD */ +#define IIO_PROTECT_OVRRD_KEY 0x53474972756c6573ull /* "SGIrules" */ + +/* BTE register names */ +#define IIO_BTE_STAT_0 IIO_IBLS_0 /* Also BTE length/status 0 */ +#define IIO_BTE_SRC_0 IIO_IBSA_0 /* Also BTE source address 0 */ +#define IIO_BTE_DEST_0 IIO_IBDA_0 /* Also BTE dest. address 0 */ +#define IIO_BTE_CTRL_0 IIO_IBCT_0 /* Also BTE control/terminate 0 */ +#define IIO_BTE_NOTIFY_0 IIO_IBNA_0 /* Also BTE notification 0 */ +#define IIO_BTE_INT_0 IIO_IBIA_0 /* Also BTE interrupt 0 */ +#define IIO_BTE_OFF_0 0 /* Base offset from BTE 0 regs. */ +#define IIO_BTE_OFF_1 (IIO_IBLS_1 - IIO_IBLS_0) /* Offset from base to BTE 1 */ + +/* BTE register offsets from base */ +#define BTEOFF_STAT 0 +#define BTEOFF_SRC (IIO_BTE_SRC_0 - IIO_BTE_STAT_0) +#define BTEOFF_DEST (IIO_BTE_DEST_0 - IIO_BTE_STAT_0) +#define BTEOFF_CTRL (IIO_BTE_CTRL_0 - IIO_BTE_STAT_0) +#define BTEOFF_NOTIFY (IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0) +#define BTEOFF_INT (IIO_BTE_INT_0 - IIO_BTE_STAT_0) + + +/* names used in shub diags */ +#define IIO_BASE_BTE0 IIO_IBLS_0 +#define IIO_BASE_BTE1 IIO_IBLS_1 + +/* + * Macro which takes the widget number, and returns the + * IO PRB address of that widget. + * value _x is expected to be a widget number in the range + * 0, 8 - 0xF + */ +#define IIO_IOPRB(_x) (IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \ + (_x) : \ + (_x) - (HUB_WIDGET_ID_MIN-1)) << 3) ) + + +/* GFX Flow Control Node/Widget Register */ +#define IIO_IGFX_W_NUM_BITS 4 /* size of widget num field */ +#define IIO_IGFX_W_NUM_MASK ((1<<IIO_IGFX_W_NUM_BITS)-1) +#define IIO_IGFX_W_NUM_SHIFT 0 +#define IIO_IGFX_PI_NUM_BITS 1 /* size of PI num field */ +#define IIO_IGFX_PI_NUM_MASK ((1<<IIO_IGFX_PI_NUM_BITS)-1) +#define IIO_IGFX_PI_NUM_SHIFT 4 +#define IIO_IGFX_N_NUM_BITS 8 /* size of node num field */ +#define IIO_IGFX_N_NUM_MASK ((1<<IIO_IGFX_N_NUM_BITS)-1) +#define IIO_IGFX_N_NUM_SHIFT 5 +#define IIO_IGFX_P_NUM_BITS 1 /* size of processor num field */ +#define IIO_IGFX_P_NUM_MASK ((1<<IIO_IGFX_P_NUM_BITS)-1) +#define IIO_IGFX_P_NUM_SHIFT 16 +#define IIO_IGFX_INIT(widget, pi, node, cpu) (\ + (((widget) & IIO_IGFX_W_NUM_MASK) << IIO_IGFX_W_NUM_SHIFT) | \ + (((pi) & IIO_IGFX_PI_NUM_MASK)<< IIO_IGFX_PI_NUM_SHIFT)| \ + (((node) & IIO_IGFX_N_NUM_MASK) << IIO_IGFX_N_NUM_SHIFT) | \ + (((cpu) & IIO_IGFX_P_NUM_MASK) << IIO_IGFX_P_NUM_SHIFT)) + + +/* Scratch registers (all bits available) */ +#define IIO_SCRATCH_REG0 IIO_ISCR0 +#define IIO_SCRATCH_REG1 IIO_ISCR1 +#define IIO_SCRATCH_MASK 0xffffffffffffffffUL + +#define IIO_SCRATCH_BIT0_0 0x0000000000000001UL +#define IIO_SCRATCH_BIT0_1 0x0000000000000002UL +#define IIO_SCRATCH_BIT0_2 0x0000000000000004UL +#define IIO_SCRATCH_BIT0_3 0x0000000000000008UL +#define IIO_SCRATCH_BIT0_4 0x0000000000000010UL +#define IIO_SCRATCH_BIT0_5 0x0000000000000020UL +#define IIO_SCRATCH_BIT0_6 0x0000000000000040UL +#define IIO_SCRATCH_BIT0_7 0x0000000000000080UL +#define IIO_SCRATCH_BIT0_8 0x0000000000000100UL +#define IIO_SCRATCH_BIT0_9 0x0000000000000200UL +#define IIO_SCRATCH_BIT0_A 0x0000000000000400UL + +#define IIO_SCRATCH_BIT1_0 0x0000000000000001UL +#define IIO_SCRATCH_BIT1_1 0x0000000000000002UL +/* IO Translation Table Entries */ +#define IIO_NUM_ITTES 7 /* ITTEs numbered 0..6 */ + /* Hw manuals number them 1..7! */ +/* + * IIO_IMEM Register fields. + */ +#define IIO_IMEM_W0ESD 0x1UL /* Widget 0 shut down due to error */ +#define IIO_IMEM_B0ESD (1UL << 4) /* BTE 0 shut down due to error */ +#define IIO_IMEM_B1ESD (1UL << 8) /* BTE 1 Shut down due to error */ + +/* + * As a permanent workaround for a bug in the PI side of the shub, we've + * redefined big window 7 as small window 0. + XXX does this still apply for SN1?? + */ +#define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1) + +/* + * Use the top big window as a surrogate for the first small window + */ +#define SWIN0_BIGWIN HUB_NUM_BIG_WINDOW + +#define ILCSR_WARM_RESET 0x100 + +/* + * CRB manipulation macros + * The CRB macros are slightly complicated, since there are up to + * four registers associated with each CRB entry. + */ +#define IIO_NUM_CRBS 15 /* Number of CRBs */ +#define IIO_NUM_PC_CRBS 4 /* Number of partial cache CRBs */ +#define IIO_ICRB_OFFSET 8 +#define IIO_ICRB_0 IIO_ICRB0_A +#define IIO_ICRB_ADDR_SHFT 2 /* Shift to get proper address */ +/* XXX - This is now tuneable: + #define IIO_FIRST_PC_ENTRY 12 + */ + +#define IIO_ICRB_A(_x) ((u64)(IIO_ICRB_0 + (6 * IIO_ICRB_OFFSET * (_x)))) +#define IIO_ICRB_B(_x) ((u64)((char *)IIO_ICRB_A(_x) + 1*IIO_ICRB_OFFSET)) +#define IIO_ICRB_C(_x) ((u64)((char *)IIO_ICRB_A(_x) + 2*IIO_ICRB_OFFSET)) +#define IIO_ICRB_D(_x) ((u64)((char *)IIO_ICRB_A(_x) + 3*IIO_ICRB_OFFSET)) +#define IIO_ICRB_E(_x) ((u64)((char *)IIO_ICRB_A(_x) + 4*IIO_ICRB_OFFSET)) + +#define TNUM_TO_WIDGET_DEV(_tnum) (_tnum & 0x7) + +/* + * values for "ecode" field + */ +#define IIO_ICRB_ECODE_DERR 0 /* Directory error due to IIO access */ +#define IIO_ICRB_ECODE_PERR 1 /* Poison error on IO access */ +#define IIO_ICRB_ECODE_WERR 2 /* Write error by IIO access + * e.g. WINV to a Read only line. */ +#define IIO_ICRB_ECODE_AERR 3 /* Access error caused by IIO access */ +#define IIO_ICRB_ECODE_PWERR 4 /* Error on partial write */ +#define IIO_ICRB_ECODE_PRERR 5 /* Error on partial read */ +#define IIO_ICRB_ECODE_TOUT 6 /* CRB timeout before deallocating */ +#define IIO_ICRB_ECODE_XTERR 7 /* Incoming xtalk pkt had error bit */ + +/* + * Values for field imsgtype + */ +#define IIO_ICRB_IMSGT_XTALK 0 /* Incoming Meessage from Xtalk */ +#define IIO_ICRB_IMSGT_BTE 1 /* Incoming message from BTE */ +#define IIO_ICRB_IMSGT_SN1NET 2 /* Incoming message from SN1 net */ +#define IIO_ICRB_IMSGT_CRB 3 /* Incoming message from CRB ??? */ + +/* + * values for field initiator. + */ +#define IIO_ICRB_INIT_XTALK 0 /* Message originated in xtalk */ +#define IIO_ICRB_INIT_BTE0 0x1 /* Message originated in BTE 0 */ +#define IIO_ICRB_INIT_SN1NET 0x2 /* Message originated in SN1net */ +#define IIO_ICRB_INIT_CRB 0x3 /* Message originated in CRB ? */ +#define IIO_ICRB_INIT_BTE1 0x5 /* MEssage originated in BTE 1 */ + +/* + * Number of credits Hub widget has while sending req/response to + * xbow. + * Value of 3 is required by Xbow 1.1 + * We may be able to increase this to 4 with Xbow 1.2. + */ +#define HUBII_XBOW_CREDIT 3 +#define HUBII_XBOW_REV2_CREDIT 4 + +/* + * Number of credits that xtalk devices should use when communicating + * with a SHub (depth of SHub's queue). + */ +#define HUB_CREDIT 4 + +/* + * Some IIO_PRB fields + */ +#define IIO_PRB_MULTI_ERR (1LL << 63) +#define IIO_PRB_SPUR_RD (1LL << 51) +#define IIO_PRB_SPUR_WR (1LL << 50) +#define IIO_PRB_RD_TO (1LL << 49) +#define IIO_PRB_ERROR (1LL << 48) + +/************************************************************************* + + Some of the IIO field masks and shifts are defined here. + This is in order to maintain compatibility in SN0 and SN1 code + +**************************************************************************/ + +/* + * ICMR register fields + * (Note: the IIO_ICMR_P_CNT and IIO_ICMR_PC_VLD from Hub are not + * present in SHub) + */ + +#define IIO_ICMR_CRB_VLD_SHFT 20 +#define IIO_ICMR_CRB_VLD_MASK (0x7fffUL << IIO_ICMR_CRB_VLD_SHFT) + +#define IIO_ICMR_FC_CNT_SHFT 16 +#define IIO_ICMR_FC_CNT_MASK (0xf << IIO_ICMR_FC_CNT_SHFT) + +#define IIO_ICMR_C_CNT_SHFT 4 +#define IIO_ICMR_C_CNT_MASK (0xf << IIO_ICMR_C_CNT_SHFT) + +#define IIO_ICMR_PRECISE (1UL << 52) +#define IIO_ICMR_CLR_RPPD (1UL << 13) +#define IIO_ICMR_CLR_RQPD (1UL << 12) + +/* + * IIO PIO Deallocation register field masks : (IIO_IPDR) + XXX present but not needed in bedrock? See the manual. + */ +#define IIO_IPDR_PND (1 << 4) + +/* + * IIO CRB deallocation register field masks: (IIO_ICDR) + */ +#define IIO_ICDR_PND (1 << 4) + +/* + * IO BTE Length/Status (IIO_IBLS) register bit field definitions + */ +#define IBLS_BUSY (0x1UL << 20) +#define IBLS_ERROR_SHFT 16 +#define IBLS_ERROR (0x1UL << IBLS_ERROR_SHFT) +#define IBLS_LENGTH_MASK 0xffff + +/* + * IO BTE Control/Terminate register (IBCT) register bit field definitions + */ +#define IBCT_POISON (0x1UL << 8) +#define IBCT_NOTIFY (0x1UL << 4) +#define IBCT_ZFIL_MODE (0x1UL << 0) + +/* + * IIO Incoming Error Packet Header (IIO_IIEPH1/IIO_IIEPH2) + */ +#define IIEPH1_VALID (1UL << 44) +#define IIEPH1_OVERRUN (1UL << 40) +#define IIEPH1_ERR_TYPE_SHFT 32 +#define IIEPH1_ERR_TYPE_MASK 0xf +#define IIEPH1_SOURCE_SHFT 20 +#define IIEPH1_SOURCE_MASK 11 +#define IIEPH1_SUPPL_SHFT 8 +#define IIEPH1_SUPPL_MASK 11 +#define IIEPH1_CMD_SHFT 0 +#define IIEPH1_CMD_MASK 7 + +#define IIEPH2_TAIL (1UL << 40) +#define IIEPH2_ADDRESS_SHFT 0 +#define IIEPH2_ADDRESS_MASK 38 + +#define IIEPH1_ERR_SHORT_REQ 2 +#define IIEPH1_ERR_SHORT_REPLY 3 +#define IIEPH1_ERR_LONG_REQ 4 +#define IIEPH1_ERR_LONG_REPLY 5 + +/* + * IO Error Clear register bit field definitions + */ +#define IECLR_PI1_FWD_INT (1UL << 31) /* clear PI1_FORWARD_INT in iidsr */ +#define IECLR_PI0_FWD_INT (1UL << 30) /* clear PI0_FORWARD_INT in iidsr */ +#define IECLR_SPUR_RD_HDR (1UL << 29) /* clear valid bit in ixss reg */ +#define IECLR_BTE1 (1UL << 18) /* clear bte error 1 */ +#define IECLR_BTE0 (1UL << 17) /* clear bte error 0 */ +#define IECLR_CRAZY (1UL << 16) /* clear crazy bit in wstat reg */ +#define IECLR_PRB_F (1UL << 15) /* clear err bit in PRB_F reg */ +#define IECLR_PRB_E (1UL << 14) /* clear err bit in PRB_E reg */ +#define IECLR_PRB_D (1UL << 13) /* clear err bit in PRB_D reg */ +#define IECLR_PRB_C (1UL << 12) /* clear err bit in PRB_C reg */ +#define IECLR_PRB_B (1UL << 11) /* clear err bit in PRB_B reg */ +#define IECLR_PRB_A (1UL << 10) /* clear err bit in PRB_A reg */ +#define IECLR_PRB_9 (1UL << 9) /* clear err bit in PRB_9 reg */ +#define IECLR_PRB_8 (1UL << 8) /* clear err bit in PRB_8 reg */ +#define IECLR_PRB_0 (1UL << 0) /* clear err bit in PRB_0 reg */ + +/* + * IIO CRB control register Fields: IIO_ICCR + */ +#define IIO_ICCR_PENDING (0x10000) +#define IIO_ICCR_CMD_MASK (0xFF) +#define IIO_ICCR_CMD_SHFT (7) +#define IIO_ICCR_CMD_NOP (0x0) /* No Op */ +#define IIO_ICCR_CMD_WAKE (0x100) /* Reactivate CRB entry and process */ +#define IIO_ICCR_CMD_TIMEOUT (0x200) /* Make CRB timeout & mark invalid */ +#define IIO_ICCR_CMD_EJECT (0x400) /* Contents of entry written to memory + * via a WB + */ +#define IIO_ICCR_CMD_FLUSH (0x800) + +/* + * + * CRB Register description. + * + * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING + * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING + * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING + * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING + * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING + * + * Many of the fields in CRB are status bits used by hardware + * for implementation of the protocol. It's very dangerous to + * mess around with the CRB registers. + * + * It's OK to read the CRB registers and try to make sense out of the + * fields in CRB. + * + * Updating CRB requires all activities in Hub IIO to be quiesced. + * otherwise, a write to CRB could corrupt other CRB entries. + * CRBs are here only as a back door peek to shub IIO's status. + * Quiescing implies no dmas no PIOs + * either directly from the cpu or from sn0net. + * this is not something that can be done easily. So, AVOID updating + * CRBs. + */ + +/* + * Easy access macros for CRBs, all 5 registers (A-E) + */ +typedef ii_icrb0_a_u_t icrba_t; +#define a_sidn ii_icrb0_a_fld_s.ia_sidn +#define a_tnum ii_icrb0_a_fld_s.ia_tnum +#define a_addr ii_icrb0_a_fld_s.ia_addr +#define a_valid ii_icrb0_a_fld_s.ia_vld +#define a_iow ii_icrb0_a_fld_s.ia_iow +#define a_regvalue ii_icrb0_a_regval + +typedef ii_icrb0_b_u_t icrbb_t; +#define b_use_old ii_icrb0_b_fld_s.ib_use_old +#define b_imsgtype ii_icrb0_b_fld_s.ib_imsgtype +#define b_imsg ii_icrb0_b_fld_s.ib_imsg +#define b_initiator ii_icrb0_b_fld_s.ib_init +#define b_exc ii_icrb0_b_fld_s.ib_exc +#define b_ackcnt ii_icrb0_b_fld_s.ib_ack_cnt +#define b_resp ii_icrb0_b_fld_s.ib_resp +#define b_ack ii_icrb0_b_fld_s.ib_ack +#define b_hold ii_icrb0_b_fld_s.ib_hold +#define b_wb ii_icrb0_b_fld_s.ib_wb +#define b_intvn ii_icrb0_b_fld_s.ib_intvn +#define b_stall_ib ii_icrb0_b_fld_s.ib_stall_ib +#define b_stall_int ii_icrb0_b_fld_s.ib_stall__intr +#define b_stall_bte_0 ii_icrb0_b_fld_s.ib_stall__bte_0 +#define b_stall_bte_1 ii_icrb0_b_fld_s.ib_stall__bte_1 +#define b_error ii_icrb0_b_fld_s.ib_error +#define b_ecode ii_icrb0_b_fld_s.ib_errcode +#define b_lnetuce ii_icrb0_b_fld_s.ib_ln_uce +#define b_mark ii_icrb0_b_fld_s.ib_mark +#define b_xerr ii_icrb0_b_fld_s.ib_xt_err +#define b_regvalue ii_icrb0_b_regval + +typedef ii_icrb0_c_u_t icrbc_t; +#define c_suppl ii_icrb0_c_fld_s.ic_suppl +#define c_barrop ii_icrb0_c_fld_s.ic_bo +#define c_doresp ii_icrb0_c_fld_s.ic_resprqd +#define c_gbr ii_icrb0_c_fld_s.ic_gbr +#define c_btenum ii_icrb0_c_fld_s.ic_bte_num +#define c_cohtrans ii_icrb0_c_fld_s.ic_ct +#define c_xtsize ii_icrb0_c_fld_s.ic_size +#define c_source ii_icrb0_c_fld_s.ic_source +#define c_regvalue ii_icrb0_c_regval + + +typedef ii_icrb0_d_u_t icrbd_t; +#define d_sleep ii_icrb0_d_fld_s.id_sleep +#define d_pricnt ii_icrb0_d_fld_s.id_pr_cnt +#define d_pripsc ii_icrb0_d_fld_s.id_pr_psc +#define d_bteop ii_icrb0_d_fld_s.id_bte_op +#define d_bteaddr ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names*/ +#define d_benable ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names*/ +#define d_regvalue ii_icrb0_d_regval + +typedef ii_icrb0_e_u_t icrbe_t; +#define icrbe_ctxtvld ii_icrb0_e_fld_s.ie_cvld +#define icrbe_toutvld ii_icrb0_e_fld_s.ie_tvld +#define icrbe_context ii_icrb0_e_fld_s.ie_context +#define icrbe_timeout ii_icrb0_e_fld_s.ie_timeout +#define e_regvalue ii_icrb0_e_regval + + +/* Number of widgets supported by shub */ +#define HUB_NUM_WIDGET 9 +#define HUB_WIDGET_ID_MIN 0x8 +#define HUB_WIDGET_ID_MAX 0xf + +#define HUB_WIDGET_PART_NUM 0xc120 +#define MAX_HUBS_PER_XBOW 2 + +/* A few more #defines for backwards compatibility */ +#define iprb_t ii_iprb0_u_t +#define iprb_regval ii_iprb0_regval +#define iprb_mult_err ii_iprb0_fld_s.i_mult_err +#define iprb_spur_rd ii_iprb0_fld_s.i_spur_rd +#define iprb_spur_wr ii_iprb0_fld_s.i_spur_wr +#define iprb_rd_to ii_iprb0_fld_s.i_rd_to +#define iprb_ovflow ii_iprb0_fld_s.i_of_cnt +#define iprb_error ii_iprb0_fld_s.i_error +#define iprb_ff ii_iprb0_fld_s.i_f +#define iprb_mode ii_iprb0_fld_s.i_m +#define iprb_bnakctr ii_iprb0_fld_s.i_nb +#define iprb_anakctr ii_iprb0_fld_s.i_na +#define iprb_xtalkctr ii_iprb0_fld_s.i_c + +#define LNK_STAT_WORKING 0x2 /* LLP is working */ + +#define IIO_WSTAT_ECRAZY (1ULL << 32) /* Hub gone crazy */ +#define IIO_WSTAT_TXRETRY (1ULL << 9) /* Hub Tx Retry timeout */ +#define IIO_WSTAT_TXRETRY_MASK (0x7F) /* should be 0xFF?? */ +#define IIO_WSTAT_TXRETRY_SHFT (16) +#define IIO_WSTAT_TXRETRY_CNT(w) (((w) >> IIO_WSTAT_TXRETRY_SHFT) & \ + IIO_WSTAT_TXRETRY_MASK) + +/* Number of II perf. counters we can multiplex at once */ + +#define IO_PERF_SETS 32 + +/* Bit for the widget in inbound access register */ +#define IIO_IIWA_WIDGET(_w) ((uint64_t)(1ULL << _w)) +/* Bit for the widget in outbound access register */ +#define IIO_IOWA_WIDGET(_w) ((uint64_t)(1ULL << _w)) + +/* NOTE: The following define assumes that we are going to get + * widget numbers from 8 thru F and the device numbers within + * widget from 0 thru 7. + */ +#define IIO_IIDEM_WIDGETDEV_MASK(w, d) ((uint64_t)(1ULL << (8 * ((w) - 8) + (d)))) + +/* IO Interrupt Destination Register */ +#define IIO_IIDSR_SENT_SHIFT 28 +#define IIO_IIDSR_SENT_MASK 0x30000000 +#define IIO_IIDSR_ENB_SHIFT 24 +#define IIO_IIDSR_ENB_MASK 0x01000000 +#define IIO_IIDSR_NODE_SHIFT 9 +#define IIO_IIDSR_NODE_MASK 0x000ff700 +#define IIO_IIDSR_PI_ID_SHIFT 8 +#define IIO_IIDSR_PI_ID_MASK 0x00000100 +#define IIO_IIDSR_LVL_SHIFT 0 +#define IIO_IIDSR_LVL_MASK 0x000000ff + +/* Xtalk timeout threshhold register (IIO_IXTT) */ +#define IXTT_RRSP_TO_SHFT 55 /* read response timeout */ +#define IXTT_RRSP_TO_MASK (0x1FULL << IXTT_RRSP_TO_SHFT) +#define IXTT_RRSP_PS_SHFT 32 /* read responsed TO prescalar */ +#define IXTT_RRSP_PS_MASK (0x7FFFFFULL << IXTT_RRSP_PS_SHFT) +#define IXTT_TAIL_TO_SHFT 0 /* tail timeout counter threshold */ +#define IXTT_TAIL_TO_MASK (0x3FFFFFFULL << IXTT_TAIL_TO_SHFT) + +/* + * The IO LLP control status register and widget control register + */ + +typedef union hubii_wcr_u { + uint64_t wcr_reg_value; + struct { + uint64_t wcr_widget_id: 4, /* LLP crossbar credit */ + wcr_tag_mode: 1, /* Tag mode */ + wcr_rsvd1: 8, /* Reserved */ + wcr_xbar_crd: 3, /* LLP crossbar credit */ + wcr_f_bad_pkt: 1, /* Force bad llp pkt enable */ + wcr_dir_con: 1, /* widget direct connect */ + wcr_e_thresh: 5, /* elasticity threshold */ + wcr_rsvd: 41; /* unused */ + } wcr_fields_s; +} hubii_wcr_t; + +#define iwcr_dir_con wcr_fields_s.wcr_dir_con + +/* The structures below are defined to extract and modify the ii +performance registers */ + +/* io_perf_sel allows the caller to specify what tests will be + performed */ + +typedef union io_perf_sel { + uint64_t perf_sel_reg; + struct { + uint64_t perf_ippr0 : 4, + perf_ippr1 : 4, + perf_icct : 8, + perf_rsvd : 48; + } perf_sel_bits; +} io_perf_sel_t; + +/* io_perf_cnt is to extract the count from the shub registers. Due to + hardware problems there is only one counter, not two. */ + +typedef union io_perf_cnt { + uint64_t perf_cnt; + struct { + uint64_t perf_cnt : 20, + perf_rsvd2 : 12, + perf_rsvd1 : 32; + } perf_cnt_bits; + +} io_perf_cnt_t; + +typedef union iprte_a { + uint64_t entry; + struct { + uint64_t i_rsvd_1 : 3; + uint64_t i_addr : 38; + uint64_t i_init : 3; + uint64_t i_source : 8; + uint64_t i_rsvd : 2; + uint64_t i_widget : 4; + uint64_t i_to_cnt : 5; + uint64_t i_vld : 1; + } iprte_fields; +} iprte_a_t; + +#endif /* _ASM_IA64_SN_SHUBIO_H */ + diff --git a/include/asm-ia64/sn/simulator.h b/include/asm-ia64/sn/simulator.h new file mode 100644 index 000000000000..78eb4f869c8b --- /dev/null +++ b/include/asm-ia64/sn/simulator.h @@ -0,0 +1,27 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * Copyright (C) 2000-2004 Silicon Graphics, Inc. All rights reserved. + */ + +#ifndef _ASM_IA64_SN_SIMULATOR_H +#define _ASM_IA64_SN_SIMULATOR_H + +#include <linux/config.h> + +#ifdef CONFIG_IA64_SGI_SN_SIM + +#define SNMAGIC 0xaeeeeeee8badbeefL +#define IS_RUNNING_ON_SIMULATOR() ({long sn; asm("mov %0=cpuid[%1]" : "=r"(sn) : "r"(2)); sn == SNMAGIC;}) + +#define SIMULATOR_SLEEP() asm("nop.i 0x8beef") + +#else + +#define IS_RUNNING_ON_SIMULATOR() (0) +#define SIMULATOR_SLEEP() + +#endif + +#endif /* _ASM_IA64_SN_SIMULATOR_H */ diff --git a/include/asm-ia64/sn/sn2/sn_hwperf.h b/include/asm-ia64/sn/sn2/sn_hwperf.h new file mode 100644 index 000000000000..b0c4d6dd77ba --- /dev/null +++ b/include/asm-ia64/sn/sn2/sn_hwperf.h @@ -0,0 +1,226 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 2004 Silicon Graphics, Inc. All rights reserved. + * + * Data types used by the SN_SAL_HWPERF_OP SAL call for monitoring + * SGI Altix node and router hardware + * + * Mark Goodwin <markgw@sgi.com> Mon Aug 30 12:23:46 EST 2004 + */ + +#ifndef SN_HWPERF_H +#define SN_HWPERF_H + +/* + * object structure. SN_HWPERF_ENUM_OBJECTS and SN_HWPERF_GET_CPU_INFO + * return an array of these. Do not change this without also + * changing the corresponding SAL code. + */ +#define SN_HWPERF_MAXSTRING 128 +struct sn_hwperf_object_info { + u32 id; + union { + struct { + u64 this_part:1; + u64 is_shared:1; + } fields; + struct { + u64 flags; + u64 reserved; + } b; + } f; + char name[SN_HWPERF_MAXSTRING]; + char location[SN_HWPERF_MAXSTRING]; + u32 ports; +}; + +#define sn_hwp_this_part f.fields.this_part +#define sn_hwp_is_shared f.fields.is_shared +#define sn_hwp_flags f.b.flags + +/* macros for object classification */ +#define SN_HWPERF_IS_NODE(x) ((x) && strstr((x)->name, "SHub")) +#define SN_HWPERF_IS_IONODE(x) ((x) && strstr((x)->name, "TIO")) +#define SN_HWPERF_IS_ROUTER(x) ((x) && strstr((x)->name, "Router")) +#define SN_HWPERF_IS_NL3ROUTER(x) ((x) && strstr((x)->name, "NL3Router")) +#define SN_HWPERF_FOREIGN(x) ((x) && !(x)->sn_hwp_this_part && !(x)->sn_hwp_is_shared) +#define SN_HWPERF_SAME_OBJTYPE(x,y) ((SN_HWPERF_IS_NODE(x) && SN_HWPERF_IS_NODE(y)) ||\ + (SN_HWPERF_IS_IONODE(x) && SN_HWPERF_IS_IONODE(y)) ||\ + (SN_HWPERF_IS_ROUTER(x) && SN_HWPERF_IS_ROUTER(y))) + +/* numa port structure, SN_HWPERF_ENUM_PORTS returns an array of these */ +struct sn_hwperf_port_info { + u32 port; + u32 conn_id; + u32 conn_port; +}; + +/* for HWPERF_{GET,SET}_MMRS */ +struct sn_hwperf_data { + u64 addr; + u64 data; +}; + +/* user ioctl() argument, see below */ +struct sn_hwperf_ioctl_args { + u64 arg; /* argument, usually an object id */ + u64 sz; /* size of transfer */ + void *ptr; /* pointer to source/target */ + u32 v0; /* second return value */ +}; + +/* + * For SN_HWPERF_{GET,SET}_MMRS and SN_HWPERF_OBJECT_DISTANCE, + * sn_hwperf_ioctl_args.arg can be used to specify a CPU on which + * to call SAL, and whether to use an interprocessor interrupt + * or task migration in order to do so. If the CPU specified is + * SN_HWPERF_ARG_ANY_CPU, then the current CPU will be used. + */ +#define SN_HWPERF_ARG_ANY_CPU 0x7fffffffUL +#define SN_HWPERF_ARG_CPU_MASK 0x7fffffff00000000ULL +#define SN_HWPERF_ARG_USE_IPI_MASK 0x8000000000000000ULL +#define SN_HWPERF_ARG_OBJID_MASK 0x00000000ffffffffULL + +/* + * ioctl requests on the "sn_hwperf" misc device that call SAL. + */ +#define SN_HWPERF_OP_MEM_COPYIN 0x1000 +#define SN_HWPERF_OP_MEM_COPYOUT 0x2000 +#define SN_HWPERF_OP_MASK 0x0fff + +/* + * Determine mem requirement. + * arg don't care + * sz 8 + * p pointer to u64 integer + */ +#define SN_HWPERF_GET_HEAPSIZE 1 + +/* + * Install mem for SAL drvr + * arg don't care + * sz sizeof buffer pointed to by p + * p pointer to buffer for scratch area + */ +#define SN_HWPERF_INSTALL_HEAP 2 + +/* + * Determine number of objects + * arg don't care + * sz 8 + * p pointer to u64 integer + */ +#define SN_HWPERF_OBJECT_COUNT (10|SN_HWPERF_OP_MEM_COPYOUT) + +/* + * Determine object "distance", relative to a cpu. This operation can + * execute on a designated logical cpu number, using either an IPI or + * via task migration. If the cpu number is SN_HWPERF_ANY_CPU, then + * the current CPU is used. See the SN_HWPERF_ARG_* macros above. + * + * arg bitmap of IPI flag, cpu number and object id + * sz 8 + * p pointer to u64 integer + */ +#define SN_HWPERF_OBJECT_DISTANCE (11|SN_HWPERF_OP_MEM_COPYOUT) + +/* + * Enumerate objects. Special case if sz == 8, returns the required + * buffer size. + * arg don't care + * sz sizeof buffer pointed to by p + * p pointer to array of struct sn_hwperf_object_info + */ +#define SN_HWPERF_ENUM_OBJECTS (12|SN_HWPERF_OP_MEM_COPYOUT) + +/* + * Enumerate NumaLink ports for an object. Special case if sz == 8, + * returns the required buffer size. + * arg object id + * sz sizeof buffer pointed to by p + * p pointer to array of struct sn_hwperf_port_info + */ +#define SN_HWPERF_ENUM_PORTS (13|SN_HWPERF_OP_MEM_COPYOUT) + +/* + * SET/GET memory mapped registers. These operations can execute + * on a designated logical cpu number, using either an IPI or via + * task migration. If the cpu number is SN_HWPERF_ANY_CPU, then + * the current CPU is used. See the SN_HWPERF_ARG_* macros above. + * + * arg bitmap of ipi flag, cpu number and object id + * sz sizeof buffer pointed to by p + * p pointer to array of struct sn_hwperf_data + */ +#define SN_HWPERF_SET_MMRS (14|SN_HWPERF_OP_MEM_COPYIN) +#define SN_HWPERF_GET_MMRS (15|SN_HWPERF_OP_MEM_COPYOUT| \ + SN_HWPERF_OP_MEM_COPYIN) +/* + * Lock a shared object + * arg object id + * sz don't care + * p don't care + */ +#define SN_HWPERF_ACQUIRE 16 + +/* + * Unlock a shared object + * arg object id + * sz don't care + * p don't care + */ +#define SN_HWPERF_RELEASE 17 + +/* + * Break a lock on a shared object + * arg object id + * sz don't care + * p don't care + */ +#define SN_HWPERF_FORCE_RELEASE 18 + +/* + * ioctl requests on "sn_hwperf" that do not call SAL + */ + +/* + * get cpu info as an array of hwperf_object_info_t. + * id is logical CPU number, name is description, location + * is geoid (e.g. 001c04#1c). Special case if sz == 8, + * returns the required buffer size. + * + * arg don't care + * sz sizeof buffer pointed to by p + * p pointer to array of struct sn_hwperf_object_info + */ +#define SN_HWPERF_GET_CPU_INFO (100|SN_HWPERF_OP_MEM_COPYOUT) + +/* + * Given an object id, return it's node number (aka cnode). + * arg object id + * sz 8 + * p pointer to u64 integer + */ +#define SN_HWPERF_GET_OBJ_NODE (101|SN_HWPERF_OP_MEM_COPYOUT) + +/* + * Given a node number (cnode), return it's nasid. + * arg ordinal node number (aka cnodeid) + * sz 8 + * p pointer to u64 integer + */ +#define SN_HWPERF_GET_NODE_NASID (102|SN_HWPERF_OP_MEM_COPYOUT) + +/* return codes */ +#define SN_HWPERF_OP_OK 0 +#define SN_HWPERF_OP_NOMEM 1 +#define SN_HWPERF_OP_NO_PERM 2 +#define SN_HWPERF_OP_IO_ERROR 3 +#define SN_HWPERF_OP_BUSY 4 +#define SN_HWPERF_OP_RECONFIGURE 253 +#define SN_HWPERF_OP_INVAL 254 + +#endif /* SN_HWPERF_H */ diff --git a/include/asm-ia64/sn/sn_cpuid.h b/include/asm-ia64/sn/sn_cpuid.h new file mode 100644 index 000000000000..685435af170d --- /dev/null +++ b/include/asm-ia64/sn/sn_cpuid.h @@ -0,0 +1,144 @@ +/* + * + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 2000-2004 Silicon Graphics, Inc. All rights reserved. + */ + + +#ifndef _ASM_IA64_SN_SN_CPUID_H +#define _ASM_IA64_SN_SN_CPUID_H + +#include <linux/config.h> +#include <linux/smp.h> +#include <asm/sn/addrs.h> +#include <asm/sn/pda.h> +#include <asm/intrinsics.h> + + +/* + * Functions for converting between cpuids, nodeids and NASIDs. + * + * These are for SGI platforms only. + * + */ + + + + +/* + * Definitions of terms (these definitions are for IA64 ONLY. Other architectures + * use cpuid/cpunum quite defferently): + * + * CPUID - a number in range of 0..NR_CPUS-1 that uniquely identifies + * the cpu. The value cpuid has no significance on IA64 other than + * the boot cpu is 0. + * smp_processor_id() returns the cpuid of the current cpu. + * + * CPU_PHYSICAL_ID (also known as HARD_PROCESSOR_ID) + * This is the same as 31:24 of the processor LID register + * hard_smp_processor_id()- cpu_physical_id of current processor + * cpu_physical_id(cpuid) - convert a <cpuid> to a <physical_cpuid> + * cpu_logical_id(phy_id) - convert a <physical_cpuid> to a <cpuid> + * * not real efficient - don't use in perf critical code + * + * SLICE - a number in the range of 0 - 3 (typically) that represents the + * cpu number on a brick. + * + * SUBNODE - (almost obsolete) the number of the FSB that a cpu is + * connected to. This is also the same as the PI number. Usually 0 or 1. + * + * NOTE!!!: the value of the bits in the cpu physical id (SAPICid or LID) of a cpu has no + * significance. The SAPIC id (LID) is a 16-bit cookie that has meaning only to the PROM. + * + * + * The macros convert between cpu physical ids & slice/nasid/cnodeid. + * These terms are described below: + * + * + * Brick + * ----- ----- ----- ----- CPU + * | 0 | | 1 | | 0 | | 1 | SLICE + * ----- ----- ----- ----- + * | | | | + * | | | | + * 0 | | 2 0 | | 2 FSB SLOT + * ------- ------- + * | | + * | | + * | | + * ------------ ------------- + * | | | | + * | SHUB | | SHUB | NASID (0..MAX_NASIDS) + * | |----- | | CNODEID (0..num_compact_nodes-1) + * | | | | + * | | | | + * ------------ ------------- + * | | + * + * + */ + +#ifndef CONFIG_SMP +#define cpu_physical_id(cpuid) ((ia64_getreg(_IA64_REG_CR_LID) >> 16) & 0xffff) +#endif + + +#define get_node_number(addr) NASID_GET(addr) + +/* + * NOTE: on non-MP systems, only cpuid 0 exists + */ + +extern short physical_node_map[]; /* indexed by nasid to get cnode */ + +/* + * Macros for retrieving info about current cpu + */ +#define get_nasid() (nodepda->phys_cpuid[smp_processor_id()].nasid) +#define get_subnode() (nodepda->phys_cpuid[smp_processor_id()].subnode) +#define get_slice() (nodepda->phys_cpuid[smp_processor_id()].slice) +#define get_cnode() (nodepda->phys_cpuid[smp_processor_id()].cnode) +#define get_sapicid() ((ia64_getreg(_IA64_REG_CR_LID) >> 16) & 0xffff) + +/* + * Macros for retrieving info about an arbitrary cpu + * cpuid - logical cpu id + */ +#define cpuid_to_nasid(cpuid) (nodepda->phys_cpuid[cpuid].nasid) +#define cpuid_to_subnode(cpuid) (nodepda->phys_cpuid[cpuid].subnode) +#define cpuid_to_slice(cpuid) (nodepda->phys_cpuid[cpuid].slice) +#define cpuid_to_cnodeid(cpuid) (physical_node_map[cpuid_to_nasid(cpuid)]) + + +/* + * Dont use the following in performance critical code. They require scans + * of potentially large tables. + */ +extern int nasid_slice_to_cpuid(int, int); +#define nasid_slice_to_cpu_physical_id(nasid, slice) \ + cpu_physical_id(nasid_slice_to_cpuid(nasid, slice)) + +/* + * cnodeid_to_nasid - convert a cnodeid to a NASID + * Macro relies on pg_data for a node being on the node itself. + * Just extract the NASID from the pointer. + * + */ +#define cnodeid_to_nasid(cnodeid) pda->cnodeid_to_nasid_table[cnodeid] + +/* + * nasid_to_cnodeid - convert a NASID to a cnodeid + */ +#define nasid_to_cnodeid(nasid) (physical_node_map[nasid]) + +/* + * partition_coherence_id - get the coherence ID of the current partition + */ +extern u8 sn_coherency_id; +#define partition_coherence_id() (sn_coherency_id) + +#endif /* _ASM_IA64_SN_SN_CPUID_H */ + diff --git a/include/asm-ia64/sn/sn_fru.h b/include/asm-ia64/sn/sn_fru.h new file mode 100644 index 000000000000..8c21ac3f0156 --- /dev/null +++ b/include/asm-ia64/sn/sn_fru.h @@ -0,0 +1,44 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 1992-1997,1999-2004 Silicon Graphics, Inc. All rights reserved. + */ +#ifndef _ASM_IA64_SN_SN_FRU_H +#define _ASM_IA64_SN_SN_FRU_H + +#define MAX_DIMMS 8 /* max # of dimm banks */ +#define MAX_PCIDEV 8 /* max # of pci devices on a pci bus */ + +typedef unsigned char confidence_t; + +typedef struct kf_mem_s { + confidence_t km_confidence; /* confidence level that the memory is bad + * is this necessary ? + */ + confidence_t km_dimm[MAX_DIMMS]; + /* confidence level that dimm[i] is bad + *I think this is the right number + */ + +} kf_mem_t; + +typedef struct kf_cpu_s { + confidence_t kc_confidence; /* confidence level that cpu is bad */ + confidence_t kc_icache; /* confidence level that instr. cache is bad */ + confidence_t kc_dcache; /* confidence level that data cache is bad */ + confidence_t kc_scache; /* confidence level that sec. cache is bad */ + confidence_t kc_sysbus; /* confidence level that sysad/cmd/state bus is bad */ +} kf_cpu_t; + + +typedef struct kf_pci_bus_s { + confidence_t kpb_belief; /* confidence level that the pci bus is bad */ + confidence_t kpb_pcidev_belief[MAX_PCIDEV]; + /* confidence level that the pci dev is bad */ +} kf_pci_bus_t; + + +#endif /* _ASM_IA64_SN_SN_FRU_H */ + diff --git a/include/asm-ia64/sn/sn_sal.h b/include/asm-ia64/sn/sn_sal.h new file mode 100644 index 000000000000..88c31b53dc09 --- /dev/null +++ b/include/asm-ia64/sn/sn_sal.h @@ -0,0 +1,1015 @@ +#ifndef _ASM_IA64_SN_SN_SAL_H +#define _ASM_IA64_SN_SN_SAL_H + +/* + * System Abstraction Layer definitions for IA64 + * + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (c) 2000-2004 Silicon Graphics, Inc. All rights reserved. + */ + + +#include <linux/config.h> +#include <asm/sal.h> +#include <asm/sn/sn_cpuid.h> +#include <asm/sn/arch.h> +#include <asm/sn/geo.h> +#include <asm/sn/nodepda.h> +#include <asm/sn/shub_mmr.h> + +// SGI Specific Calls +#define SN_SAL_POD_MODE 0x02000001 +#define SN_SAL_SYSTEM_RESET 0x02000002 +#define SN_SAL_PROBE 0x02000003 +#define SN_SAL_GET_MASTER_NASID 0x02000004 +#define SN_SAL_GET_KLCONFIG_ADDR 0x02000005 +#define SN_SAL_LOG_CE 0x02000006 +#define SN_SAL_REGISTER_CE 0x02000007 +#define SN_SAL_GET_PARTITION_ADDR 0x02000009 +#define SN_SAL_XP_ADDR_REGION 0x0200000f +#define SN_SAL_NO_FAULT_ZONE_VIRTUAL 0x02000010 +#define SN_SAL_NO_FAULT_ZONE_PHYSICAL 0x02000011 +#define SN_SAL_PRINT_ERROR 0x02000012 +#define SN_SAL_SET_ERROR_HANDLING_FEATURES 0x0200001a // reentrant +#define SN_SAL_GET_FIT_COMPT 0x0200001b // reentrant +#define SN_SAL_GET_SN_INFO 0x0200001c +#define SN_SAL_GET_SAPIC_INFO 0x0200001d +#define SN_SAL_CONSOLE_PUTC 0x02000021 +#define SN_SAL_CONSOLE_GETC 0x02000022 +#define SN_SAL_CONSOLE_PUTS 0x02000023 +#define SN_SAL_CONSOLE_GETS 0x02000024 +#define SN_SAL_CONSOLE_GETS_TIMEOUT 0x02000025 +#define SN_SAL_CONSOLE_POLL 0x02000026 +#define SN_SAL_CONSOLE_INTR 0x02000027 +#define SN_SAL_CONSOLE_PUTB 0x02000028 +#define SN_SAL_CONSOLE_XMIT_CHARS 0x0200002a +#define SN_SAL_CONSOLE_READC 0x0200002b +#define SN_SAL_SYSCTL_MODID_GET 0x02000031 +#define SN_SAL_SYSCTL_GET 0x02000032 +#define SN_SAL_SYSCTL_IOBRICK_MODULE_GET 0x02000033 +#define SN_SAL_SYSCTL_IO_PORTSPEED_GET 0x02000035 +#define SN_SAL_SYSCTL_SLAB_GET 0x02000036 +#define SN_SAL_BUS_CONFIG 0x02000037 +#define SN_SAL_SYS_SERIAL_GET 0x02000038 +#define SN_SAL_PARTITION_SERIAL_GET 0x02000039 +#define SN_SAL_SYSCTL_PARTITION_GET 0x0200003a +#define SN_SAL_SYSTEM_POWER_DOWN 0x0200003b +#define SN_SAL_GET_MASTER_BASEIO_NASID 0x0200003c +#define SN_SAL_COHERENCE 0x0200003d +#define SN_SAL_MEMPROTECT 0x0200003e +#define SN_SAL_SYSCTL_FRU_CAPTURE 0x0200003f + +#define SN_SAL_SYSCTL_IOBRICK_PCI_OP 0x02000042 // reentrant +#define SN_SAL_IROUTER_OP 0x02000043 +#define SN_SAL_IOIF_INTERRUPT 0x0200004a +#define SN_SAL_HWPERF_OP 0x02000050 // lock +#define SN_SAL_IOIF_ERROR_INTERRUPT 0x02000051 + +#define SN_SAL_IOIF_SLOT_ENABLE 0x02000053 +#define SN_SAL_IOIF_SLOT_DISABLE 0x02000054 +#define SN_SAL_IOIF_GET_HUBDEV_INFO 0x02000055 +#define SN_SAL_IOIF_GET_PCIBUS_INFO 0x02000056 +#define SN_SAL_IOIF_GET_PCIDEV_INFO 0x02000057 +#define SN_SAL_IOIF_GET_WIDGET_DMAFLUSH_LIST 0x02000058 + +#define SN_SAL_HUB_ERROR_INTERRUPT 0x02000060 + + +/* + * Service-specific constants + */ + +/* Console interrupt manipulation */ + /* action codes */ +#define SAL_CONSOLE_INTR_OFF 0 /* turn the interrupt off */ +#define SAL_CONSOLE_INTR_ON 1 /* turn the interrupt on */ +#define SAL_CONSOLE_INTR_STATUS 2 /* retrieve the interrupt status */ + /* interrupt specification & status return codes */ +#define SAL_CONSOLE_INTR_XMIT 1 /* output interrupt */ +#define SAL_CONSOLE_INTR_RECV 2 /* input interrupt */ + +/* interrupt handling */ +#define SAL_INTR_ALLOC 1 +#define SAL_INTR_FREE 2 + +/* + * IRouter (i.e. generalized system controller) operations + */ +#define SAL_IROUTER_OPEN 0 /* open a subchannel */ +#define SAL_IROUTER_CLOSE 1 /* close a subchannel */ +#define SAL_IROUTER_SEND 2 /* send part of an IRouter packet */ +#define SAL_IROUTER_RECV 3 /* receive part of an IRouter packet */ +#define SAL_IROUTER_INTR_STATUS 4 /* check the interrupt status for + * an open subchannel + */ +#define SAL_IROUTER_INTR_ON 5 /* enable an interrupt */ +#define SAL_IROUTER_INTR_OFF 6 /* disable an interrupt */ +#define SAL_IROUTER_INIT 7 /* initialize IRouter driver */ + +/* IRouter interrupt mask bits */ +#define SAL_IROUTER_INTR_XMIT SAL_CONSOLE_INTR_XMIT +#define SAL_IROUTER_INTR_RECV SAL_CONSOLE_INTR_RECV + + +/* + * SAL Error Codes + */ +#define SALRET_MORE_PASSES 1 +#define SALRET_OK 0 +#define SALRET_NOT_IMPLEMENTED (-1) +#define SALRET_INVALID_ARG (-2) +#define SALRET_ERROR (-3) + + +/** + * sn_sal_rev_major - get the major SGI SAL revision number + * + * The SGI PROM stores its version in sal_[ab]_rev_(major|minor). + * This routine simply extracts the major value from the + * @ia64_sal_systab structure constructed by ia64_sal_init(). + */ +static inline int +sn_sal_rev_major(void) +{ + struct ia64_sal_systab *systab = efi.sal_systab; + + return (int)systab->sal_b_rev_major; +} + +/** + * sn_sal_rev_minor - get the minor SGI SAL revision number + * + * The SGI PROM stores its version in sal_[ab]_rev_(major|minor). + * This routine simply extracts the minor value from the + * @ia64_sal_systab structure constructed by ia64_sal_init(). + */ +static inline int +sn_sal_rev_minor(void) +{ + struct ia64_sal_systab *systab = efi.sal_systab; + + return (int)systab->sal_b_rev_minor; +} + +/* + * Specify the minimum PROM revsion required for this kernel. + * Note that they're stored in hex format... + */ +#define SN_SAL_MIN_MAJOR 0x4 /* SN2 kernels need at least PROM 4.0 */ +#define SN_SAL_MIN_MINOR 0x0 + +/* + * Returns the master console nasid, if the call fails, return an illegal + * value. + */ +static inline u64 +ia64_sn_get_console_nasid(void) +{ + struct ia64_sal_retval ret_stuff; + + ret_stuff.status = 0; + ret_stuff.v0 = 0; + ret_stuff.v1 = 0; + ret_stuff.v2 = 0; + SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_NASID, 0, 0, 0, 0, 0, 0, 0); + + if (ret_stuff.status < 0) + return ret_stuff.status; + + /* Master console nasid is in 'v0' */ + return ret_stuff.v0; +} + +/* + * Returns the master baseio nasid, if the call fails, return an illegal + * value. + */ +static inline u64 +ia64_sn_get_master_baseio_nasid(void) +{ + struct ia64_sal_retval ret_stuff; + + ret_stuff.status = 0; + ret_stuff.v0 = 0; + ret_stuff.v1 = 0; + ret_stuff.v2 = 0; + SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_BASEIO_NASID, 0, 0, 0, 0, 0, 0, 0); + + if (ret_stuff.status < 0) + return ret_stuff.status; + + /* Master baseio nasid is in 'v0' */ + return ret_stuff.v0; +} + +static inline char * +ia64_sn_get_klconfig_addr(nasid_t nasid) +{ + struct ia64_sal_retval ret_stuff; + int cnodeid; + + cnodeid = nasid_to_cnodeid(nasid); + ret_stuff.status = 0; + ret_stuff.v0 = 0; + ret_stuff.v1 = 0; + ret_stuff.v2 = 0; + SAL_CALL(ret_stuff, SN_SAL_GET_KLCONFIG_ADDR, (u64)nasid, 0, 0, 0, 0, 0, 0); + + /* + * We should panic if a valid cnode nasid does not produce + * a klconfig address. + */ + if (ret_stuff.status != 0) { + panic("ia64_sn_get_klconfig_addr: Returned error %lx\n", ret_stuff.status); + } + return ret_stuff.v0 ? __va(ret_stuff.v0) : NULL; +} + +/* + * Returns the next console character. + */ +static inline u64 +ia64_sn_console_getc(int *ch) +{ + struct ia64_sal_retval ret_stuff; + + ret_stuff.status = 0; + ret_stuff.v0 = 0; + ret_stuff.v1 = 0; + ret_stuff.v2 = 0; + SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_GETC, 0, 0, 0, 0, 0, 0, 0); + + /* character is in 'v0' */ + *ch = (int)ret_stuff.v0; + + return ret_stuff.status; +} + +/* + * Read a character from the SAL console device, after a previous interrupt + * or poll operation has given us to know that a character is available + * to be read. + */ +static inline u64 +ia64_sn_console_readc(void) +{ + struct ia64_sal_retval ret_stuff; + + ret_stuff.status = 0; + ret_stuff.v0 = 0; + ret_stuff.v1 = 0; + ret_stuff.v2 = 0; + SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_READC, 0, 0, 0, 0, 0, 0, 0); + + /* character is in 'v0' */ + return ret_stuff.v0; +} + +/* + * Sends the given character to the console. + */ +static inline u64 +ia64_sn_console_putc(char ch) +{ + struct ia64_sal_retval ret_stuff; + + ret_stuff.status = 0; + ret_stuff.v0 = 0; + ret_stuff.v1 = 0; + ret_stuff.v2 = 0; + SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTC, (uint64_t)ch, 0, 0, 0, 0, 0, 0); + + return ret_stuff.status; +} + +/* + * Sends the given buffer to the console. + */ +static inline u64 +ia64_sn_console_putb(const char *buf, int len) +{ + struct ia64_sal_retval ret_stuff; + + ret_stuff.status = 0; + ret_stuff.v0 = 0; + ret_stuff.v1 = 0; + ret_stuff.v2 = 0; + SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTB, (uint64_t)buf, (uint64_t)len, 0, 0, 0, 0, 0); + + if ( ret_stuff.status == 0 ) { + return ret_stuff.v0; + } + return (u64)0; +} + +/* + * Print a platform error record + */ +static inline u64 +ia64_sn_plat_specific_err_print(int (*hook)(const char*, ...), char *rec) +{ + struct ia64_sal_retval ret_stuff; + + ret_stuff.status = 0; + ret_stuff.v0 = 0; + ret_stuff.v1 = 0; + ret_stuff.v2 = 0; + SAL_CALL_REENTRANT(ret_stuff, SN_SAL_PRINT_ERROR, (uint64_t)hook, (uint64_t)rec, 0, 0, 0, 0, 0); + + return ret_stuff.status; +} + +/* + * Check for Platform errors + */ +static inline u64 +ia64_sn_plat_cpei_handler(void) +{ + struct ia64_sal_retval ret_stuff; + + ret_stuff.status = 0; + ret_stuff.v0 = 0; + ret_stuff.v1 = 0; + ret_stuff.v2 = 0; + SAL_CALL_NOLOCK(ret_stuff, SN_SAL_LOG_CE, 0, 0, 0, 0, 0, 0, 0); + + return ret_stuff.status; +} + +/* + * Checks for console input. + */ +static inline u64 +ia64_sn_console_check(int *result) +{ + struct ia64_sal_retval ret_stuff; + + ret_stuff.status = 0; + ret_stuff.v0 = 0; + ret_stuff.v1 = 0; + ret_stuff.v2 = 0; + SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_POLL, 0, 0, 0, 0, 0, 0, 0); + + /* result is in 'v0' */ + *result = (int)ret_stuff.v0; + + return ret_stuff.status; +} + +/* + * Checks console interrupt status + */ +static inline u64 +ia64_sn_console_intr_status(void) +{ + struct ia64_sal_retval ret_stuff; + + ret_stuff.status = 0; + ret_stuff.v0 = 0; + ret_stuff.v1 = 0; + ret_stuff.v2 = 0; + SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR, + 0, SAL_CONSOLE_INTR_STATUS, + 0, 0, 0, 0, 0); + + if (ret_stuff.status == 0) { + return ret_stuff.v0; + } + + return 0; +} + +/* + * Enable an interrupt on the SAL console device. + */ +static inline void +ia64_sn_console_intr_enable(uint64_t intr) +{ + struct ia64_sal_retval ret_stuff; + + ret_stuff.status = 0; + ret_stuff.v0 = 0; + ret_stuff.v1 = 0; + ret_stuff.v2 = 0; + SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR, + intr, SAL_CONSOLE_INTR_ON, + 0, 0, 0, 0, 0); +} + +/* + * Disable an interrupt on the SAL console device. + */ +static inline void +ia64_sn_console_intr_disable(uint64_t intr) +{ + struct ia64_sal_retval ret_stuff; + + ret_stuff.status = 0; + ret_stuff.v0 = 0; + ret_stuff.v1 = 0; + ret_stuff.v2 = 0; + SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR, + intr, SAL_CONSOLE_INTR_OFF, + 0, 0, 0, 0, 0); +} + +/* + * Sends a character buffer to the console asynchronously. + */ +static inline u64 +ia64_sn_console_xmit_chars(char *buf, int len) +{ + struct ia64_sal_retval ret_stuff; + + ret_stuff.status = 0; + ret_stuff.v0 = 0; + ret_stuff.v1 = 0; + ret_stuff.v2 = 0; + SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_XMIT_CHARS, + (uint64_t)buf, (uint64_t)len, + 0, 0, 0, 0, 0); + + if (ret_stuff.status == 0) { + return ret_stuff.v0; + } + + return 0; +} + +/* + * Returns the iobrick module Id + */ +static inline u64 +ia64_sn_sysctl_iobrick_module_get(nasid_t nasid, int *result) +{ + struct ia64_sal_retval ret_stuff; + + ret_stuff.status = 0; + ret_stuff.v0 = 0; + ret_stuff.v1 = 0; + ret_stuff.v2 = 0; + SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYSCTL_IOBRICK_MODULE_GET, nasid, 0, 0, 0, 0, 0, 0); + + /* result is in 'v0' */ + *result = (int)ret_stuff.v0; + + return ret_stuff.status; +} + +/** + * ia64_sn_pod_mode - call the SN_SAL_POD_MODE function + * + * SN_SAL_POD_MODE actually takes an argument, but it's always + * 0 when we call it from the kernel, so we don't have to expose + * it to the caller. + */ +static inline u64 +ia64_sn_pod_mode(void) +{ + struct ia64_sal_retval isrv; + SAL_CALL(isrv, SN_SAL_POD_MODE, 0, 0, 0, 0, 0, 0, 0); + if (isrv.status) + return 0; + return isrv.v0; +} + +/** + * ia64_sn_probe_mem - read from memory safely + * @addr: address to probe + * @size: number bytes to read (1,2,4,8) + * @data_ptr: address to store value read by probe (-1 returned if probe fails) + * + * Call into the SAL to do a memory read. If the read generates a machine + * check, this routine will recover gracefully and return -1 to the caller. + * @addr is usually a kernel virtual address in uncached space (i.e. the + * address starts with 0xc), but if called in physical mode, @addr should + * be a physical address. + * + * Return values: + * 0 - probe successful + * 1 - probe failed (generated MCA) + * 2 - Bad arg + * <0 - PAL error + */ +static inline u64 +ia64_sn_probe_mem(long addr, long size, void *data_ptr) +{ + struct ia64_sal_retval isrv; + + SAL_CALL(isrv, SN_SAL_PROBE, addr, size, 0, 0, 0, 0, 0); + + if (data_ptr) { + switch (size) { + case 1: + *((u8*)data_ptr) = (u8)isrv.v0; + break; + case 2: + *((u16*)data_ptr) = (u16)isrv.v0; + break; + case 4: + *((u32*)data_ptr) = (u32)isrv.v0; + break; + case 8: + *((u64*)data_ptr) = (u64)isrv.v0; + break; + default: + isrv.status = 2; + } + } + return isrv.status; +} + +/* + * Retrieve the system serial number as an ASCII string. + */ +static inline u64 +ia64_sn_sys_serial_get(char *buf) +{ + struct ia64_sal_retval ret_stuff; + SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYS_SERIAL_GET, buf, 0, 0, 0, 0, 0, 0); + return ret_stuff.status; +} + +extern char sn_system_serial_number_string[]; +extern u64 sn_partition_serial_number; + +static inline char * +sn_system_serial_number(void) { + if (sn_system_serial_number_string[0]) { + return(sn_system_serial_number_string); + } else { + ia64_sn_sys_serial_get(sn_system_serial_number_string); + return(sn_system_serial_number_string); + } +} + + +/* + * Returns a unique id number for this system and partition (suitable for + * use with license managers), based in part on the system serial number. + */ +static inline u64 +ia64_sn_partition_serial_get(void) +{ + struct ia64_sal_retval ret_stuff; + SAL_CALL(ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0, 0, 0, 0, 0, 0, 0); + if (ret_stuff.status != 0) + return 0; + return ret_stuff.v0; +} + +static inline u64 +sn_partition_serial_number_val(void) { + if (sn_partition_serial_number) { + return(sn_partition_serial_number); + } else { + return(sn_partition_serial_number = ia64_sn_partition_serial_get()); + } +} + +/* + * Returns the partition id of the nasid passed in as an argument, + * or INVALID_PARTID if the partition id cannot be retrieved. + */ +static inline partid_t +ia64_sn_sysctl_partition_get(nasid_t nasid) +{ + struct ia64_sal_retval ret_stuff; + SAL_CALL(ret_stuff, SN_SAL_SYSCTL_PARTITION_GET, nasid, + 0, 0, 0, 0, 0, 0); + if (ret_stuff.status != 0) + return INVALID_PARTID; + return ((partid_t)ret_stuff.v0); +} + +/* + * Returns the partition id of the current processor. + */ + +extern partid_t sn_partid; + +static inline partid_t +sn_local_partid(void) { + if (sn_partid < 0) { + return (sn_partid = ia64_sn_sysctl_partition_get(cpuid_to_nasid(smp_processor_id()))); + } else { + return sn_partid; + } +} + +/* + * Register or unregister a physical address range being referenced across + * a partition boundary for which certain SAL errors should be scanned for, + * cleaned up and ignored. This is of value for kernel partitioning code only. + * Values for the operation argument: + * 1 = register this address range with SAL + * 0 = unregister this address range with SAL + * + * SAL maintains a reference count on an address range in case it is registered + * multiple times. + * + * On success, returns the reference count of the address range after the SAL + * call has performed the current registration/unregistration. Returns a + * negative value if an error occurred. + */ +static inline int +sn_register_xp_addr_region(u64 paddr, u64 len, int operation) +{ + struct ia64_sal_retval ret_stuff; + SAL_CALL(ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len, (u64)operation, + 0, 0, 0, 0); + return ret_stuff.status; +} + +/* + * Register or unregister an instruction range for which SAL errors should + * be ignored. If an error occurs while in the registered range, SAL jumps + * to return_addr after ignoring the error. Values for the operation argument: + * 1 = register this instruction range with SAL + * 0 = unregister this instruction range with SAL + * + * Returns 0 on success, or a negative value if an error occurred. + */ +static inline int +sn_register_nofault_code(u64 start_addr, u64 end_addr, u64 return_addr, + int virtual, int operation) +{ + struct ia64_sal_retval ret_stuff; + u64 call; + if (virtual) { + call = SN_SAL_NO_FAULT_ZONE_VIRTUAL; + } else { + call = SN_SAL_NO_FAULT_ZONE_PHYSICAL; + } + SAL_CALL(ret_stuff, call, start_addr, end_addr, return_addr, (u64)1, + 0, 0, 0); + return ret_stuff.status; +} + +/* + * Change or query the coherence domain for this partition. Each cpu-based + * nasid is represented by a bit in an array of 64-bit words: + * 0 = not in this partition's coherency domain + * 1 = in this partition's coherency domain + * + * It is not possible for the local system's nasids to be removed from + * the coherency domain. Purpose of the domain arguments: + * new_domain = set the coherence domain to the given nasids + * old_domain = return the current coherence domain + * + * Returns 0 on success, or a negative value if an error occurred. + */ +static inline int +sn_change_coherence(u64 *new_domain, u64 *old_domain) +{ + struct ia64_sal_retval ret_stuff; + SAL_CALL(ret_stuff, SN_SAL_COHERENCE, new_domain, old_domain, 0, 0, + 0, 0, 0); + return ret_stuff.status; +} + +/* + * Change memory access protections for a physical address range. + * nasid_array is not used on Altix, but may be in future architectures. + * Available memory protection access classes are defined after the function. + */ +static inline int +sn_change_memprotect(u64 paddr, u64 len, u64 perms, u64 *nasid_array) +{ + struct ia64_sal_retval ret_stuff; + int cnodeid; + unsigned long irq_flags; + + cnodeid = nasid_to_cnodeid(get_node_number(paddr)); + // spin_lock(&NODEPDA(cnodeid)->bist_lock); + local_irq_save(irq_flags); + SAL_CALL_NOLOCK(ret_stuff, SN_SAL_MEMPROTECT, paddr, len, nasid_array, + perms, 0, 0, 0); + local_irq_restore(irq_flags); + // spin_unlock(&NODEPDA(cnodeid)->bist_lock); + return ret_stuff.status; +} +#define SN_MEMPROT_ACCESS_CLASS_0 0x14a080 +#define SN_MEMPROT_ACCESS_CLASS_1 0x2520c2 +#define SN_MEMPROT_ACCESS_CLASS_2 0x14a1ca +#define SN_MEMPROT_ACCESS_CLASS_3 0x14a290 +#define SN_MEMPROT_ACCESS_CLASS_6 0x084080 +#define SN_MEMPROT_ACCESS_CLASS_7 0x021080 + +/* + * Turns off system power. + */ +static inline void +ia64_sn_power_down(void) +{ + struct ia64_sal_retval ret_stuff; + SAL_CALL(ret_stuff, SN_SAL_SYSTEM_POWER_DOWN, 0, 0, 0, 0, 0, 0, 0); + while(1); + /* never returns */ +} + +/** + * ia64_sn_fru_capture - tell the system controller to capture hw state + * + * This routine will call the SAL which will tell the system controller(s) + * to capture hw mmr information from each SHub in the system. + */ +static inline u64 +ia64_sn_fru_capture(void) +{ + struct ia64_sal_retval isrv; + SAL_CALL(isrv, SN_SAL_SYSCTL_FRU_CAPTURE, 0, 0, 0, 0, 0, 0, 0); + if (isrv.status) + return 0; + return isrv.v0; +} + +/* + * Performs an operation on a PCI bus or slot -- power up, power down + * or reset. + */ +static inline u64 +ia64_sn_sysctl_iobrick_pci_op(nasid_t n, u64 connection_type, + u64 bus, char slot, + u64 action) +{ + struct ia64_sal_retval rv = {0, 0, 0, 0}; + + SAL_CALL_NOLOCK(rv, SN_SAL_SYSCTL_IOBRICK_PCI_OP, connection_type, n, action, + bus, (u64) slot, 0, 0); + if (rv.status) + return rv.v0; + return 0; +} + + +/* + * Open a subchannel for sending arbitrary data to the system + * controller network via the system controller device associated with + * 'nasid'. Return the subchannel number or a negative error code. + */ +static inline int +ia64_sn_irtr_open(nasid_t nasid) +{ + struct ia64_sal_retval rv; + SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_OPEN, nasid, + 0, 0, 0, 0, 0); + return (int) rv.v0; +} + +/* + * Close system controller subchannel 'subch' previously opened on 'nasid'. + */ +static inline int +ia64_sn_irtr_close(nasid_t nasid, int subch) +{ + struct ia64_sal_retval rv; + SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_CLOSE, + (u64) nasid, (u64) subch, 0, 0, 0, 0); + return (int) rv.status; +} + +/* + * Read data from system controller associated with 'nasid' on + * subchannel 'subch'. The buffer to be filled is pointed to by + * 'buf', and its capacity is in the integer pointed to by 'len'. The + * referent of 'len' is set to the number of bytes read by the SAL + * call. The return value is either SALRET_OK (for bytes read) or + * SALRET_ERROR (for error or "no data available"). + */ +static inline int +ia64_sn_irtr_recv(nasid_t nasid, int subch, char *buf, int *len) +{ + struct ia64_sal_retval rv; + SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_RECV, + (u64) nasid, (u64) subch, (u64) buf, (u64) len, + 0, 0); + return (int) rv.status; +} + +/* + * Write data to the system controller network via the system + * controller associated with 'nasid' on suchannel 'subch'. The + * buffer to be written out is pointed to by 'buf', and 'len' is the + * number of bytes to be written. The return value is either the + * number of bytes written (which could be zero) or a negative error + * code. + */ +static inline int +ia64_sn_irtr_send(nasid_t nasid, int subch, char *buf, int len) +{ + struct ia64_sal_retval rv; + SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_SEND, + (u64) nasid, (u64) subch, (u64) buf, (u64) len, + 0, 0); + return (int) rv.v0; +} + +/* + * Check whether any interrupts are pending for the system controller + * associated with 'nasid' and its subchannel 'subch'. The return + * value is a mask of pending interrupts (SAL_IROUTER_INTR_XMIT and/or + * SAL_IROUTER_INTR_RECV). + */ +static inline int +ia64_sn_irtr_intr(nasid_t nasid, int subch) +{ + struct ia64_sal_retval rv; + SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_STATUS, + (u64) nasid, (u64) subch, 0, 0, 0, 0); + return (int) rv.v0; +} + +/* + * Enable the interrupt indicated by the intr parameter (either + * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV). + */ +static inline int +ia64_sn_irtr_intr_enable(nasid_t nasid, int subch, u64 intr) +{ + struct ia64_sal_retval rv; + SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_ON, + (u64) nasid, (u64) subch, intr, 0, 0, 0); + return (int) rv.v0; +} + +/* + * Disable the interrupt indicated by the intr parameter (either + * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV). + */ +static inline int +ia64_sn_irtr_intr_disable(nasid_t nasid, int subch, u64 intr) +{ + struct ia64_sal_retval rv; + SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_OFF, + (u64) nasid, (u64) subch, intr, 0, 0, 0); + return (int) rv.v0; +} + +/** + * ia64_sn_get_fit_compt - read a FIT entry from the PROM header + * @nasid: NASID of node to read + * @index: FIT entry index to be retrieved (0..n) + * @fitentry: 16 byte buffer where FIT entry will be stored. + * @banbuf: optional buffer for retrieving banner + * @banlen: length of banner buffer + * + * Access to the physical PROM chips needs to be serialized since reads and + * writes can't occur at the same time, so we need to call into the SAL when + * we want to look at the FIT entries on the chips. + * + * Returns: + * %SALRET_OK if ok + * %SALRET_INVALID_ARG if index too big + * %SALRET_NOT_IMPLEMENTED if running on older PROM + * ??? if nasid invalid OR banner buffer not large enough + */ +static inline int +ia64_sn_get_fit_compt(u64 nasid, u64 index, void *fitentry, void *banbuf, + u64 banlen) +{ + struct ia64_sal_retval rv; + SAL_CALL_NOLOCK(rv, SN_SAL_GET_FIT_COMPT, nasid, index, fitentry, + banbuf, banlen, 0, 0); + return (int) rv.status; +} + +/* + * Initialize the SAL components of the system controller + * communication driver; specifically pass in a sizable buffer that + * can be used for allocation of subchannel queues as new subchannels + * are opened. "buf" points to the buffer, and "len" specifies its + * length. + */ +static inline int +ia64_sn_irtr_init(nasid_t nasid, void *buf, int len) +{ + struct ia64_sal_retval rv; + SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INIT, + (u64) nasid, (u64) buf, (u64) len, 0, 0, 0); + return (int) rv.status; +} + +/* + * Returns the nasid, subnode & slice corresponding to a SAPIC ID + * + * In: + * arg0 - SN_SAL_GET_SAPIC_INFO + * arg1 - sapicid (lid >> 16) + * Out: + * v0 - nasid + * v1 - subnode + * v2 - slice + */ +static inline u64 +ia64_sn_get_sapic_info(int sapicid, int *nasid, int *subnode, int *slice) +{ + struct ia64_sal_retval ret_stuff; + + ret_stuff.status = 0; + ret_stuff.v0 = 0; + ret_stuff.v1 = 0; + ret_stuff.v2 = 0; + SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SAPIC_INFO, sapicid, 0, 0, 0, 0, 0, 0); + +/***** BEGIN HACK - temp til old proms no longer supported ********/ + if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) { + if (nasid) *nasid = sapicid & 0xfff; + if (subnode) *subnode = (sapicid >> 13) & 1; + if (slice) *slice = (sapicid >> 12) & 3; + return 0; + } +/***** END HACK *******/ + + if (ret_stuff.status < 0) + return ret_stuff.status; + + if (nasid) *nasid = (int) ret_stuff.v0; + if (subnode) *subnode = (int) ret_stuff.v1; + if (slice) *slice = (int) ret_stuff.v2; + return 0; +} + +/* + * Returns information about the HUB/SHUB. + * In: + * arg0 - SN_SAL_GET_SN_INFO + * arg1 - 0 (other values reserved for future use) + * Out: + * v0 + * [7:0] - shub type (0=shub1, 1=shub2) + * [15:8] - Log2 max number of nodes in entire system (includes + * C-bricks, I-bricks, etc) + * [23:16] - Log2 of nodes per sharing domain + * [31:24] - partition ID + * [39:32] - coherency_id + * [47:40] - regionsize + * v1 + * [15:0] - nasid mask (ex., 0x7ff for 11 bit nasid) + * [23:15] - bit position of low nasid bit + */ +static inline u64 +ia64_sn_get_sn_info(int fc, u8 *shubtype, u16 *nasid_bitmask, u8 *nasid_shift, + u8 *systemsize, u8 *sharing_domain_size, u8 *partid, u8 *coher, u8 *reg) +{ + struct ia64_sal_retval ret_stuff; + + ret_stuff.status = 0; + ret_stuff.v0 = 0; + ret_stuff.v1 = 0; + ret_stuff.v2 = 0; + SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SN_INFO, fc, 0, 0, 0, 0, 0, 0); + +/***** BEGIN HACK - temp til old proms no longer supported ********/ + if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) { + int nasid = get_sapicid() & 0xfff;; +#define SH_SHUB_ID_NODES_PER_BIT_MASK 0x001f000000000000UL +#define SH_SHUB_ID_NODES_PER_BIT_SHFT 48 + if (shubtype) *shubtype = 0; + if (nasid_bitmask) *nasid_bitmask = 0x7ff; + if (nasid_shift) *nasid_shift = 38; + if (systemsize) *systemsize = 11; + if (sharing_domain_size) *sharing_domain_size = 9; + if (partid) *partid = ia64_sn_sysctl_partition_get(nasid); + if (coher) *coher = nasid >> 9; + if (reg) *reg = (HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_SHUB_ID)) & SH_SHUB_ID_NODES_PER_BIT_MASK) >> + SH_SHUB_ID_NODES_PER_BIT_SHFT; + return 0; + } +/***** END HACK *******/ + + if (ret_stuff.status < 0) + return ret_stuff.status; + + if (shubtype) *shubtype = ret_stuff.v0 & 0xff; + if (systemsize) *systemsize = (ret_stuff.v0 >> 8) & 0xff; + if (sharing_domain_size) *sharing_domain_size = (ret_stuff.v0 >> 16) & 0xff; + if (partid) *partid = (ret_stuff.v0 >> 24) & 0xff; + if (coher) *coher = (ret_stuff.v0 >> 32) & 0xff; + if (reg) *reg = (ret_stuff.v0 >> 40) & 0xff; + if (nasid_bitmask) *nasid_bitmask = (ret_stuff.v1 & 0xffff); + if (nasid_shift) *nasid_shift = (ret_stuff.v1 >> 16) & 0xff; + return 0; +} + +/* + * This is the access point to the Altix PROM hardware performance + * and status monitoring interface. For info on using this, see + * include/asm-ia64/sn/sn2/sn_hwperf.h + */ +static inline int +ia64_sn_hwperf_op(nasid_t nasid, u64 opcode, u64 a0, u64 a1, u64 a2, + u64 a3, u64 a4, int *v0) +{ + struct ia64_sal_retval rv; + SAL_CALL_NOLOCK(rv, SN_SAL_HWPERF_OP, (u64)nasid, + opcode, a0, a1, a2, a3, a4); + if (v0) + *v0 = (int) rv.v0; + return (int) rv.status; +} + +#endif /* _ASM_IA64_SN_SN_SAL_H */ diff --git a/include/asm-ia64/sn/sndrv.h b/include/asm-ia64/sn/sndrv.h new file mode 100644 index 000000000000..aa00d42cde32 --- /dev/null +++ b/include/asm-ia64/sn/sndrv.h @@ -0,0 +1,47 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (c) 2002-2004 Silicon Graphics, Inc. All Rights Reserved. + */ + +#ifndef _ASM_IA64_SN_SNDRV_H +#define _ASM_IA64_SN_SNDRV_H + +/* ioctl commands */ +#define SNDRV_GET_ROUTERINFO 1 +#define SNDRV_GET_INFOSIZE 2 +#define SNDRV_GET_HUBINFO 3 +#define SNDRV_GET_FLASHLOGSIZE 4 +#define SNDRV_SET_FLASHSYNC 5 +#define SNDRV_GET_FLASHLOGDATA 6 +#define SNDRV_GET_FLASHLOGALL 7 + +#define SNDRV_SET_HISTOGRAM_TYPE 14 + +#define SNDRV_ELSC_COMMAND 19 +#define SNDRV_CLEAR_LOG 20 +#define SNDRV_INIT_LOG 21 +#define SNDRV_GET_PIMM_PSC 22 +#define SNDRV_SET_PARTITION 23 +#define SNDRV_GET_PARTITION 24 + +/* see synergy_perf_ioctl() */ +#define SNDRV_GET_SYNERGY_VERSION 30 +#define SNDRV_GET_SYNERGY_STATUS 31 +#define SNDRV_GET_SYNERGYINFO 32 +#define SNDRV_SYNERGY_APPEND 33 +#define SNDRV_SYNERGY_ENABLE 34 +#define SNDRV_SYNERGY_FREQ 35 + +/* Devices */ +#define SNDRV_UKNOWN_DEVICE -1 +#define SNDRV_ROUTER_DEVICE 1 +#define SNDRV_HUB_DEVICE 2 +#define SNDRV_ELSC_NVRAM_DEVICE 3 +#define SNDRV_ELSC_CONTROLLER_DEVICE 4 +#define SNDRV_SYSCTL_SUBCH 5 +#define SNDRV_SYNERGY_DEVICE 6 + +#endif /* _ASM_IA64_SN_SNDRV_H */ diff --git a/include/asm-ia64/sn/types.h b/include/asm-ia64/sn/types.h new file mode 100644 index 000000000000..586ed47cae9c --- /dev/null +++ b/include/asm-ia64/sn/types.h @@ -0,0 +1,25 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 1999,2001-2003 Silicon Graphics, Inc. All Rights Reserved. + * Copyright (C) 1999 by Ralf Baechle + */ +#ifndef _ASM_IA64_SN_TYPES_H +#define _ASM_IA64_SN_TYPES_H + +#include <linux/types.h> + +typedef unsigned long cpuid_t; +typedef signed short nasid_t; /* node id in numa-as-id space */ +typedef signed char partid_t; /* partition ID type */ +typedef unsigned int moduleid_t; /* user-visible module number type */ +typedef unsigned int cmoduleid_t; /* kernel compact module id type */ +typedef signed char slabid_t; +typedef u64 nic_t; +typedef unsigned long iopaddr_t; +typedef unsigned long paddr_t; +typedef short cnodeid_t; + +#endif /* _ASM_IA64_SN_TYPES_H */ |