summaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless/ath9k/rc.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2008-08-08 11:15:23 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2008-08-08 11:15:23 -0700
commitf2d7499be1b1fe1cd8a5e6a01c1f44173894a241 (patch)
tree64d341a90d8cb831a5097e365d303367906f1373 /drivers/net/wireless/ath9k/rc.c
parent8d659f5e43c5db2630e85f507b7384365e9e1c1e (diff)
parent76aab2c1eae491a5d73ac83deec97dd28ebac584 (diff)
downloadblackbird-op-linux-f2d7499be1b1fe1cd8a5e6a01c1f44173894a241.tar.gz
blackbird-op-linux-f2d7499be1b1fe1cd8a5e6a01c1f44173894a241.zip
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6: (99 commits) pkt_sched: Fix actions referencing bnx2x: fix logical op tcp: (whitespace only) fix confusing indentation pkt_sched: Fix qdisc config when link is down. [Bluetooth] Add full quirk implementation for btusb driver [Bluetooth] Removal of unnecessary ignore module parameter [Bluetooth] Add parameters to control BNEP header compression ath9k: Revamp wireless mode usage ath9k: More unused macros ath9k: Remove a few unused macros and fix indentation ath9k: Use mac80211's band macros and remove enum hal_freq_band ath9k: Remove redundant data structure ath9k_txq_info ath9k: Cleanup data structures related to HW capabilities ath9k: work around gcc ICEs ath9k: Add new Atheros IEEE 802.11n driver ath5k: remove Atheros 11n devices from supported list list.h: add list_cut_position() list.h: Add list_splice_tail() and list_splice_tail_init() p54: swap short slot time dcf values rt2x00: Block all unsupported modes ...
Diffstat (limited to 'drivers/net/wireless/ath9k/rc.c')
-rw-r--r--drivers/net/wireless/ath9k/rc.c2126
1 files changed, 2126 insertions, 0 deletions
diff --git a/drivers/net/wireless/ath9k/rc.c b/drivers/net/wireless/ath9k/rc.c
new file mode 100644
index 000000000000..73c460ad355f
--- /dev/null
+++ b/drivers/net/wireless/ath9k/rc.c
@@ -0,0 +1,2126 @@
+/*
+ * Copyright (c) 2004 Video54 Technologies, Inc.
+ * Copyright (c) 2004-2008 Atheros Communications, Inc.
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+/*
+ * Atheros rate control algorithm
+ */
+
+#include "core.h"
+#include "../net/mac80211/rate.h"
+
+static u32 tx_triglevel_max;
+
+static struct ath_rate_table ar5416_11na_ratetable = {
+ 42,
+ {
+ { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
+ 5400, 0x0b, 0x00, 12,
+ 0, 2, 1, 0, 0, 0, 0, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
+ 7800, 0x0f, 0x00, 18,
+ 0, 3, 1, 1, 1, 1, 1, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
+ 10000, 0x0a, 0x00, 24,
+ 2, 4, 2, 2, 2, 2, 2, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
+ 13900, 0x0e, 0x00, 36,
+ 2, 6, 2, 3, 3, 3, 3, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
+ 17300, 0x09, 0x00, 48,
+ 4, 10, 3, 4, 4, 4, 4, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
+ 23000, 0x0d, 0x00, 72,
+ 4, 14, 3, 5, 5, 5, 5, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
+ 27400, 0x08, 0x00, 96,
+ 4, 20, 3, 6, 6, 6, 6, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
+ 29300, 0x0c, 0x00, 108,
+ 4, 23, 3, 7, 7, 7, 7, 0 },
+ { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */
+ 6400, 0x80, 0x00, 0,
+ 0, 2, 3, 8, 24, 8, 24, 3216 },
+ { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */
+ 12700, 0x81, 0x00, 1,
+ 2, 4, 3, 9, 25, 9, 25, 6434 },
+ { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */
+ 18800, 0x82, 0x00, 2,
+ 2, 6, 3, 10, 26, 10, 26, 9650 },
+ { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */
+ 25000, 0x83, 0x00, 3,
+ 4, 10, 3, 11, 27, 11, 27, 12868 },
+ { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */
+ 36700, 0x84, 0x00, 4,
+ 4, 14, 3, 12, 28, 12, 28, 19304 },
+ { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */
+ 48100, 0x85, 0x00, 5,
+ 4, 20, 3, 13, 29, 13, 29, 25740 },
+ { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */
+ 53500, 0x86, 0x00, 6,
+ 4, 23, 3, 14, 30, 14, 30, 28956 },
+ { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */
+ 59000, 0x87, 0x00, 7,
+ 4, 25, 3, 15, 31, 15, 32, 32180 },
+ { FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */
+ 12700, 0x88, 0x00,
+ 8, 0, 2, 3, 16, 33, 16, 33, 6430 },
+ { FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */
+ 24800, 0x89, 0x00, 9,
+ 2, 4, 3, 17, 34, 17, 34, 12860 },
+ { FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */
+ 36600, 0x8a, 0x00, 10,
+ 2, 6, 3, 18, 35, 18, 35, 19300 },
+ { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */
+ 48100, 0x8b, 0x00, 11,
+ 4, 10, 3, 19, 36, 19, 36, 25736 },
+ { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */
+ 69500, 0x8c, 0x00, 12,
+ 4, 14, 3, 20, 37, 20, 37, 38600 },
+ { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */
+ 89500, 0x8d, 0x00, 13,
+ 4, 20, 3, 21, 38, 21, 38, 51472 },
+ { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */
+ 98900, 0x8e, 0x00, 14,
+ 4, 23, 3, 22, 39, 22, 39, 57890 },
+ { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */
+ 108300, 0x8f, 0x00, 15,
+ 4, 25, 3, 23, 40, 23, 41, 64320 },
+ { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */
+ 13200, 0x80, 0x00, 0,
+ 0, 2, 3, 8, 24, 24, 24, 6684 },
+ { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */
+ 25900, 0x81, 0x00, 1,
+ 2, 4, 3, 9, 25, 25, 25, 13368 },
+ { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */
+ 38600, 0x82, 0x00, 2,
+ 2, 6, 3, 10, 26, 26, 26, 20052 },
+ { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */
+ 49800, 0x83, 0x00, 3,
+ 4, 10, 3, 11, 27, 27, 27, 26738 },
+ { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */
+ 72200, 0x84, 0x00, 4,
+ 4, 14, 3, 12, 28, 28, 28, 40104 },
+ { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */
+ 92900, 0x85, 0x00, 5,
+ 4, 20, 3, 13, 29, 29, 29, 53476 },
+ { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */
+ 102700, 0x86, 0x00, 6,
+ 4, 23, 3, 14, 30, 30, 30, 60156 },
+ { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */
+ 112000, 0x87, 0x00, 7,
+ 4, 25, 3, 15, 31, 32, 32, 66840 },
+ { FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
+ 122000, 0x87, 0x00, 7,
+ 4, 25, 3, 15, 31, 32, 32, 74200 },
+ { FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */
+ 25800, 0x88, 0x00, 8,
+ 0, 2, 3, 16, 33, 33, 33, 13360 },
+ { FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */
+ 49800, 0x89, 0x00, 9,
+ 2, 4, 3, 17, 34, 34, 34, 26720 },
+ { FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */
+ 71900, 0x8a, 0x00, 10,
+ 2, 6, 3, 18, 35, 35, 35, 40080 },
+ { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */
+ 92500, 0x8b, 0x00, 11,
+ 4, 10, 3, 19, 36, 36, 36, 53440 },
+ { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */
+ 130300, 0x8c, 0x00, 12,
+ 4, 14, 3, 20, 37, 37, 37, 80160 },
+ { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */
+ 162800, 0x8d, 0x00, 13,
+ 4, 20, 3, 21, 38, 38, 38, 106880 },
+ { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */
+ 178200, 0x8e, 0x00, 14,
+ 4, 23, 3, 22, 39, 39, 39, 120240 },
+ { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */
+ 192100, 0x8f, 0x00, 15,
+ 4, 25, 3, 23, 40, 41, 41, 133600 },
+ { TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
+ 207000, 0x8f, 0x00, 15,
+ 4, 25, 3, 23, 40, 41, 41, 148400 },
+ },
+ 50, /* probe interval */
+ 50, /* rssi reduce interval */
+ WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
+};
+
+/* TRUE_ALL - valid for 20/40/Legacy,
+ * TRUE - Legacy only,
+ * TRUE_20 - HT 20 only,
+ * TRUE_40 - HT 40 only */
+
+/* 4ms frame limit not used for NG mode. The values filled
+ * for HT are the 64K max aggregate limit */
+
+static struct ath_rate_table ar5416_11ng_ratetable = {
+ 46,
+ {
+ { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 1000, /* 1 Mb */
+ 900, 0x1b, 0x00, 2,
+ 0, 0, 1, 0, 0, 0, 0, 0 },
+ { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 2000, /* 2 Mb */
+ 1900, 0x1a, 0x04, 4,
+ 1, 1, 1, 1, 1, 1, 1, 0 },
+ { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 5500, /* 5.5 Mb */
+ 4900, 0x19, 0x04, 11,
+ 2, 2, 2, 2, 2, 2, 2, 0 },
+ { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 11000, /* 11 Mb */
+ 8100, 0x18, 0x04, 22,
+ 3, 3, 2, 3, 3, 3, 3, 0 },
+ { FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
+ 5400, 0x0b, 0x00, 12,
+ 4, 2, 1, 4, 4, 4, 4, 0 },
+ { FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
+ 7800, 0x0f, 0x00, 18,
+ 4, 3, 1, 5, 5, 5, 5, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
+ 10100, 0x0a, 0x00, 24,
+ 6, 4, 1, 6, 6, 6, 6, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
+ 14100, 0x0e, 0x00, 36,
+ 6, 6, 2, 7, 7, 7, 7, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
+ 17700, 0x09, 0x00, 48,
+ 8, 10, 3, 8, 8, 8, 8, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
+ 23700, 0x0d, 0x00, 72,
+ 8, 14, 3, 9, 9, 9, 9, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
+ 27400, 0x08, 0x00, 96,
+ 8, 20, 3, 10, 10, 10, 10, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
+ 30900, 0x0c, 0x00, 108,
+ 8, 23, 3, 11, 11, 11, 11, 0 },
+ { FALSE, FALSE, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */
+ 6400, 0x80, 0x00, 0,
+ 4, 2, 3, 12, 28, 12, 28, 3216 },
+ { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */
+ 12700, 0x81, 0x00, 1,
+ 6, 4, 3, 13, 29, 13, 29, 6434 },
+ { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */
+ 18800, 0x82, 0x00, 2,
+ 6, 6, 3, 14, 30, 14, 30, 9650 },
+ { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */
+ 25000, 0x83, 0x00, 3,
+ 8, 10, 3, 15, 31, 15, 31, 12868 },
+ { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */
+ 36700, 0x84, 0x00, 4,
+ 8, 14, 3, 16, 32, 16, 32, 19304 },
+ { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */
+ 48100, 0x85, 0x00, 5,
+ 8, 20, 3, 17, 33, 17, 33, 25740 },
+ { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */
+ 53500, 0x86, 0x00, 6,
+ 8, 23, 3, 18, 34, 18, 34, 28956 },
+ { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */
+ 59000, 0x87, 0x00, 7,
+ 8, 25, 3, 19, 35, 19, 36, 32180 },
+ { FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */
+ 12700, 0x88, 0x00, 8,
+ 4, 2, 3, 20, 37, 20, 37, 6430 },
+ { FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */
+ 24800, 0x89, 0x00, 9,
+ 6, 4, 3, 21, 38, 21, 38, 12860 },
+ { FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */
+ 36600, 0x8a, 0x00, 10,
+ 6, 6, 3, 22, 39, 22, 39, 19300 },
+ { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */
+ 48100, 0x8b, 0x00, 11,
+ 8, 10, 3, 23, 40, 23, 40, 25736 },
+ { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */
+ 69500, 0x8c, 0x00, 12,
+ 8, 14, 3, 24, 41, 24, 41, 38600 },
+ { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */
+ 89500, 0x8d, 0x00, 13,
+ 8, 20, 3, 25, 42, 25, 42, 51472 },
+ { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */
+ 98900, 0x8e, 0x00, 14,
+ 8, 23, 3, 26, 43, 26, 44, 57890 },
+ { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */
+ 108300, 0x8f, 0x00, 15,
+ 8, 25, 3, 27, 44, 27, 45, 64320 },
+ { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */
+ 13200, 0x80, 0x00, 0,
+ 8, 2, 3, 12, 28, 28, 28, 6684 },
+ { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */
+ 25900, 0x81, 0x00, 1,
+ 8, 4, 3, 13, 29, 29, 29, 13368 },
+ { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */
+ 38600, 0x82, 0x00, 2,
+ 8, 6, 3, 14, 30, 30, 30, 20052 },
+ { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */
+ 49800, 0x83, 0x00, 3,
+ 8, 10, 3, 15, 31, 31, 31, 26738 },
+ { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */
+ 72200, 0x84, 0x00, 4,
+ 8, 14, 3, 16, 32, 32, 32, 40104 },
+ { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */
+ 92900, 0x85, 0x00, 5,
+ 8, 20, 3, 17, 33, 33, 33, 53476 },
+ { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */
+ 102700, 0x86, 0x00, 6,
+ 8, 23, 3, 18, 34, 34, 34, 60156 },
+ { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */
+ 112000, 0x87, 0x00, 7,
+ 8, 23, 3, 19, 35, 36, 36, 66840 },
+ { FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
+ 122000, 0x87, 0x00, 7,
+ 8, 25, 3, 19, 35, 36, 36, 74200 },
+ { FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */
+ 25800, 0x88, 0x00, 8,
+ 8, 2, 3, 20, 37, 37, 37, 13360 },
+ { FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */
+ 49800, 0x89, 0x00, 9,
+ 8, 4, 3, 21, 38, 38, 38, 26720 },
+ { FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */
+ 71900, 0x8a, 0x00, 10,
+ 8, 6, 3, 22, 39, 39, 39, 40080 },
+ { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */
+ 92500, 0x8b, 0x00, 11,
+ 8, 10, 3, 23, 40, 40, 40, 53440 },
+ { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */
+ 130300, 0x8c, 0x00, 12,
+ 8, 14, 3, 24, 41, 41, 41, 80160 },
+ { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */
+ 162800, 0x8d, 0x00, 13,
+ 8, 20, 3, 25, 42, 42, 42, 106880 },
+ { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */
+ 178200, 0x8e, 0x00, 14,
+ 8, 23, 3, 26, 43, 43, 43, 120240 },
+ { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */
+ 192100, 0x8f, 0x00, 15,
+ 8, 23, 3, 27, 44, 45, 45, 133600 },
+ { TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
+ 207000, 0x8f, 0x00, 15,
+ 8, 25, 3, 27, 44, 45, 45, 148400 },
+ },
+ 50, /* probe interval */
+ 50, /* rssi reduce interval */
+ WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
+};
+
+static struct ath_rate_table ar5416_11a_ratetable = {
+ 8,
+ {
+ { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
+ 5400, 0x0b, 0x00, (0x80|12),
+ 0, 2, 1, 0, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
+ 7800, 0x0f, 0x00, 18,
+ 0, 3, 1, 1, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
+ 10000, 0x0a, 0x00, (0x80|24),
+ 2, 4, 2, 2, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
+ 13900, 0x0e, 0x00, 36,
+ 2, 6, 2, 3, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
+ 17300, 0x09, 0x00, (0x80|48),
+ 4, 10, 3, 4, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
+ 23000, 0x0d, 0x00, 72,
+ 4, 14, 3, 5, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
+ 27400, 0x08, 0x00, 96,
+ 4, 19, 3, 6, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
+ 29300, 0x0c, 0x00, 108,
+ 4, 23, 3, 7, 0 },
+ },
+ 50, /* probe interval */
+ 50, /* rssi reduce interval */
+ 0, /* Phy rates allowed initially */
+};
+
+static struct ath_rate_table ar5416_11a_ratetable_Half = {
+ 8,
+ {
+ { TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 6 Mb */
+ 2700, 0x0b, 0x00, (0x80|6),
+ 0, 2, 1, 0, 0},
+ { TRUE, TRUE, WLAN_PHY_OFDM, 4500, /* 9 Mb */
+ 3900, 0x0f, 0x00, 9,
+ 0, 3, 1, 1, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 12 Mb */
+ 5000, 0x0a, 0x00, (0x80|12),
+ 2, 4, 2, 2, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 18 Mb */
+ 6950, 0x0e, 0x00, 18,
+ 2, 6, 2, 3, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 24 Mb */
+ 8650, 0x09, 0x00, (0x80|24),
+ 4, 10, 3, 4, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 36 Mb */
+ 11500, 0x0d, 0x00, 36,
+ 4, 14, 3, 5, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 48 Mb */
+ 13700, 0x08, 0x00, 48,
+ 4, 19, 3, 6, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 27000, /* 54 Mb */
+ 14650, 0x0c, 0x00, 54,
+ 4, 23, 3, 7, 0 },
+ },
+ 50, /* probe interval */
+ 50, /* rssi reduce interval */
+ 0, /* Phy rates allowed initially */
+};
+
+static struct ath_rate_table ar5416_11a_ratetable_Quarter = {
+ 8,
+ {
+ { TRUE, TRUE, WLAN_PHY_OFDM, 1500, /* 6 Mb */
+ 1350, 0x0b, 0x00, (0x80|3),
+ 0, 2, 1, 0, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 2250, /* 9 Mb */
+ 1950, 0x0f, 0x00, 4,
+ 0, 3, 1, 1, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 12 Mb */
+ 2500, 0x0a, 0x00, (0x80|6),
+ 2, 4, 2, 2, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 4500, /* 18 Mb */
+ 3475, 0x0e, 0x00, 9,
+ 2, 6, 2, 3, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 25 Mb */
+ 4325, 0x09, 0x00, (0x80|12),
+ 4, 10, 3, 4, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 36 Mb */
+ 5750, 0x0d, 0x00, 18,
+ 4, 14, 3, 5, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 48 Mb */
+ 6850, 0x08, 0x00, 24,
+ 4, 19, 3, 6, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 13500, /* 54 Mb */
+ 7325, 0x0c, 0x00, 27,
+ 4, 23, 3, 7, 0 },
+ },
+ 50, /* probe interval */
+ 50, /* rssi reduce interval */
+ 0, /* Phy rates allowed initially */
+};
+
+static struct ath_rate_table ar5416_11g_ratetable = {
+ 12,
+ {
+ { TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */
+ 900, 0x1b, 0x00, 2,
+ 0, 0, 1, 0, 0 },
+ { TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */
+ 1900, 0x1a, 0x04, 4,
+ 1, 1, 1, 1, 0 },
+ { TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */
+ 4900, 0x19, 0x04, 11,
+ 2, 2, 2, 2, 0 },
+ { TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */
+ 8100, 0x18, 0x04, 22,
+ 3, 3, 2, 3, 0 },
+ { FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
+ 5400, 0x0b, 0x00, 12,
+ 4, 2, 1, 4, 0 },
+ { FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
+ 7800, 0x0f, 0x00, 18,
+ 4, 3, 1, 5, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
+ 10000, 0x0a, 0x00, 24,
+ 6, 4, 1, 6, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
+ 13900, 0x0e, 0x00, 36,
+ 6, 6, 2, 7, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
+ 17300, 0x09, 0x00, 48,
+ 8, 10, 3, 8, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
+ 23000, 0x0d, 0x00, 72,
+ 8, 14, 3, 9, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
+ 27400, 0x08, 0x00, 96,
+ 8, 19, 3, 10, 0 },
+ { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
+ 29300, 0x0c, 0x00, 108,
+ 8, 23, 3, 11, 0 },
+ },
+ 50, /* probe interval */
+ 50, /* rssi reduce interval */
+ 0, /* Phy rates allowed initially */
+};
+
+static struct ath_rate_table ar5416_11b_ratetable = {
+ 4,
+ {
+ { TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */
+ 900, 0x1b, 0x00, (0x80|2),
+ 0, 0, 1, 0, 0 },
+ { TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */
+ 1800, 0x1a, 0x04, (0x80|4),
+ 1, 1, 1, 1, 0 },
+ { TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */
+ 4300, 0x19, 0x04, (0x80|11),
+ 1, 2, 2, 2, 0 },
+ { TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */
+ 7100, 0x18, 0x04, (0x80|22),
+ 1, 4, 100, 3, 0 },
+ },
+ 100, /* probe interval */
+ 100, /* rssi reduce interval */
+ 0, /* Phy rates allowed initially */
+};
+
+static void ar5416_attach_ratetables(struct ath_rate_softc *sc)
+{
+ /*
+ * Attach rate tables.
+ */
+ sc->hw_rate_table[ATH9K_MODE_11B] = &ar5416_11b_ratetable;
+ sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable;
+ sc->hw_rate_table[ATH9K_MODE_11G] = &ar5416_11g_ratetable;
+
+ sc->hw_rate_table[ATH9K_MODE_11NA_HT20] = &ar5416_11na_ratetable;
+ sc->hw_rate_table[ATH9K_MODE_11NG_HT20] = &ar5416_11ng_ratetable;
+ sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] =
+ &ar5416_11na_ratetable;
+ sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] =
+ &ar5416_11na_ratetable;
+ sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] =
+ &ar5416_11ng_ratetable;
+ sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] =
+ &ar5416_11ng_ratetable;
+}
+
+static void ar5416_setquarter_ratetable(struct ath_rate_softc *sc)
+{
+ sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable_Quarter;
+ return;
+}
+
+static void ar5416_sethalf_ratetable(struct ath_rate_softc *sc)
+{
+ sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable_Half;
+ return;
+}
+
+static void ar5416_setfull_ratetable(struct ath_rate_softc *sc)
+{
+ sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable;
+ return;
+}
+
+/*
+ * Return the median of three numbers
+ */
+static inline int8_t median(int8_t a, int8_t b, int8_t c)
+{
+ if (a >= b) {
+ if (b >= c)
+ return b;
+ else if (a > c)
+ return c;
+ else
+ return a;
+ } else {
+ if (a >= c)
+ return a;
+ else if (b >= c)
+ return c;
+ else
+ return b;
+ }
+}
+
+static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table,
+ struct ath_tx_ratectrl *rate_ctrl)
+{
+ u8 i, j, idx, idx_next;
+
+ for (i = rate_ctrl->max_valid_rate - 1; i > 0; i--) {
+ for (j = 0; j <= i-1; j++) {
+ idx = rate_ctrl->valid_rate_index[j];
+ idx_next = rate_ctrl->valid_rate_index[j+1];
+
+ if (rate_table->info[idx].ratekbps >
+ rate_table->info[idx_next].ratekbps) {
+ rate_ctrl->valid_rate_index[j] = idx_next;
+ rate_ctrl->valid_rate_index[j+1] = idx;
+ }
+ }
+ }
+}
+
+/* Access functions for valid_txrate_mask */
+
+static void ath_rc_init_valid_txmask(struct ath_tx_ratectrl *rate_ctrl)
+{
+ u8 i;
+
+ for (i = 0; i < rate_ctrl->rate_table_size; i++)
+ rate_ctrl->valid_rate_index[i] = FALSE;
+}
+
+static inline void ath_rc_set_valid_txmask(struct ath_tx_ratectrl *rate_ctrl,
+ u8 index, int valid_tx_rate)
+{
+ ASSERT(index <= rate_ctrl->rate_table_size);
+ rate_ctrl->valid_rate_index[index] = valid_tx_rate ? TRUE : FALSE;
+}
+
+static inline int ath_rc_isvalid_txmask(struct ath_tx_ratectrl *rate_ctrl,
+ u8 index)
+{
+ ASSERT(index <= rate_ctrl->rate_table_size);
+ return rate_ctrl->valid_rate_index[index];
+}
+
+/* Iterators for valid_txrate_mask */
+static inline int
+ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
+ struct ath_tx_ratectrl *rate_ctrl,
+ u8 cur_valid_txrate,
+ u8 *next_idx)
+{
+ u8 i;
+
+ for (i = 0; i < rate_ctrl->max_valid_rate - 1; i++) {
+ if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) {
+ *next_idx = rate_ctrl->valid_rate_index[i+1];
+ return TRUE;
+ }
+ }
+
+ /* No more valid rates */
+ *next_idx = 0;
+ return FALSE;
+}
+
+/* Return true only for single stream */
+
+static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
+{
+ if (WLAN_RC_PHY_HT(phy) & !(capflag & WLAN_RC_HT_FLAG))
+ return FALSE;
+ if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
+ return FALSE;
+ if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
+ return FALSE;
+ if (!ignore_cw && WLAN_RC_PHY_HT(phy))
+ if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
+ return FALSE;
+ if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG))
+ return FALSE;
+ return TRUE;
+}
+
+static inline int
+ath_rc_get_nextlowervalid_txrate(const struct ath_rate_table *rate_table,
+ struct ath_tx_ratectrl *rate_ctrl,
+ u8 cur_valid_txrate, u8 *next_idx)
+{
+ int8_t i;
+
+ for (i = 1; i < rate_ctrl->max_valid_rate ; i++) {
+ if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) {
+ *next_idx = rate_ctrl->valid_rate_index[i-1];
+ return TRUE;
+ }
+ }
+ return FALSE;
+}
+
+/*
+ * Initialize the Valid Rate Index from valid entries in Rate Table
+ */
+static u8
+ath_rc_sib_init_validrates(struct ath_rate_node *ath_rc_priv,
+ const struct ath_rate_table *rate_table,
+ u32 capflag)
+{
+ struct ath_tx_ratectrl *rate_ctrl;
+ u8 i, hi = 0;
+ u32 valid;
+
+ rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv);
+ for (i = 0; i < rate_table->rate_cnt; i++) {
+ valid = (ath_rc_priv->single_stream ?
+ rate_table->info[i].valid_single_stream :
+ rate_table->info[i].valid);
+ if (valid == TRUE) {
+ u32 phy = rate_table->info[i].phy;
+ u8 valid_rate_count = 0;
+
+ if (!ath_rc_valid_phyrate(phy, capflag, FALSE))
+ continue;
+
+ valid_rate_count = rate_ctrl->valid_phy_ratecnt[phy];
+
+ rate_ctrl->valid_phy_rateidx[phy][valid_rate_count] = i;
+ rate_ctrl->valid_phy_ratecnt[phy] += 1;
+ ath_rc_set_valid_txmask(rate_ctrl, i, TRUE);
+ hi = A_MAX(hi, i);
+ }
+ }
+ return hi;
+}
+
+/*
+ * Initialize the Valid Rate Index from Rate Set
+ */
+static u8
+ath_rc_sib_setvalid_rates(struct ath_rate_node *ath_rc_priv,
+ const struct ath_rate_table *rate_table,
+ struct ath_rateset *rateset,
+ u32 capflag)
+{
+ /* XXX: Clean me up and make identation friendly */
+ u8 i, j, hi = 0;
+ struct ath_tx_ratectrl *rate_ctrl =
+ (struct ath_tx_ratectrl *)(ath_rc_priv);
+
+ /* Use intersection of working rates and valid rates */
+ for (i = 0; i < rateset->rs_nrates; i++) {
+ for (j = 0; j < rate_table->rate_cnt; j++) {
+ u32 phy = rate_table->info[j].phy;
+ u32 valid = (ath_rc_priv->single_stream ?
+ rate_table->info[j].valid_single_stream :
+ rate_table->info[j].valid);
+
+ /* We allow a rate only if its valid and the
+ * capflag matches one of the validity
+ * (TRUE/TRUE_20/TRUE_40) flags */
+
+ /* XXX: catch the negative of this branch
+ * first and then continue */
+ if (((rateset->rs_rates[i] & 0x7F) ==
+ (rate_table->info[j].dot11rate & 0x7F)) &&
+ ((valid & WLAN_RC_CAP_MODE(capflag)) ==
+ WLAN_RC_CAP_MODE(capflag)) &&
+ !WLAN_RC_PHY_HT(phy)) {
+
+ u8 valid_rate_count = 0;
+
+ if (!ath_rc_valid_phyrate(phy, capflag, FALSE))
+ continue;
+
+ valid_rate_count =
+ rate_ctrl->valid_phy_ratecnt[phy];
+
+ rate_ctrl->valid_phy_rateidx[phy]
+ [valid_rate_count] = j;
+ rate_ctrl->valid_phy_ratecnt[phy] += 1;
+ ath_rc_set_valid_txmask(rate_ctrl, j, TRUE);
+ hi = A_MAX(hi, j);
+ }
+ }
+ }
+ return hi;
+}
+
+static u8
+ath_rc_sib_setvalid_htrates(struct ath_rate_node *ath_rc_priv,
+ const struct ath_rate_table *rate_table,
+ u8 *mcs_set, u32 capflag)
+{
+ u8 i, j, hi = 0;
+ struct ath_tx_ratectrl *rate_ctrl =
+ (struct ath_tx_ratectrl *)(ath_rc_priv);
+
+ /* Use intersection of working rates and valid rates */
+ for (i = 0; i < ((struct ath_rateset *)mcs_set)->rs_nrates; i++) {
+ for (j = 0; j < rate_table->rate_cnt; j++) {
+ u32 phy = rate_table->info[j].phy;
+ u32 valid = (ath_rc_priv->single_stream ?
+ rate_table->info[j].valid_single_stream :
+ rate_table->info[j].valid);
+
+ if (((((struct ath_rateset *)
+ mcs_set)->rs_rates[i] & 0x7F) !=
+ (rate_table->info[j].dot11rate & 0x7F)) ||
+ !WLAN_RC_PHY_HT(phy) ||
+ !WLAN_RC_PHY_HT_VALID(valid, capflag))
+ continue;
+
+ if (!ath_rc_valid_phyrate(phy, capflag, FALSE))
+ continue;
+
+ rate_ctrl->valid_phy_rateidx[phy]
+ [rate_ctrl->valid_phy_ratecnt[phy]] = j;
+ rate_ctrl->valid_phy_ratecnt[phy] += 1;
+ ath_rc_set_valid_txmask(rate_ctrl, j, TRUE);
+ hi = A_MAX(hi, j);
+ }
+ }
+ return hi;
+}
+
+/*
+ * Attach to a device instance. Setup the public definition
+ * of how much per-node space we need and setup the private
+ * phy tables that have rate control parameters.
+ */
+struct ath_rate_softc *ath_rate_attach(struct ath_hal *ah)
+{
+ struct ath_rate_softc *asc;
+
+ /* we are only in user context so we can sleep for memory */
+ asc = kzalloc(sizeof(struct ath_rate_softc), GFP_KERNEL);
+ if (asc == NULL)
+ return NULL;
+
+ ar5416_attach_ratetables(asc);
+
+ /* Save Maximum TX Trigger Level (used for 11n) */
+ tx_triglevel_max = ah->ah_caps.tx_triglevel_max;
+ /* return alias for ath_rate_softc * */
+ return asc;
+}
+
+static struct ath_rate_node *ath_rate_node_alloc(struct ath_vap *avp,
+ struct ath_rate_softc *rsc,
+ gfp_t gfp)
+{
+ struct ath_rate_node *anode;
+
+ anode = kzalloc(sizeof(struct ath_rate_node), gfp);
+ if (anode == NULL)
+ return NULL;
+
+ anode->avp = avp;
+ anode->asc = rsc;
+ avp->rc_node = anode;
+
+ return anode;
+}
+
+static void ath_rate_node_free(struct ath_rate_node *anode)
+{
+ if (anode != NULL)
+ kfree(anode);
+}
+
+void ath_rate_detach(struct ath_rate_softc *asc)
+{
+ if (asc != NULL)
+ kfree(asc);
+}
+
+u8 ath_rate_findrateix(struct ath_softc *sc,
+ u8 dot11rate)
+{
+ const struct ath_rate_table *ratetable;
+ struct ath_rate_softc *rsc = sc->sc_rc;
+ int i;
+
+ ratetable = rsc->hw_rate_table[sc->sc_curmode];
+
+ if (WARN_ON(!ratetable))
+ return 0;
+
+ for (i = 0; i < ratetable->rate_cnt; i++) {
+ if ((ratetable->info[i].dot11rate & 0x7f) == (dot11rate & 0x7f))
+ return i;
+ }
+
+ return 0;
+}
+
+/*
+ * Update rate-control state on a device state change. When
+ * operating as a station this includes associate/reassociate
+ * with an AP. Otherwise this gets called, for example, when
+ * the we transition to run state when operating as an AP.
+ */
+void ath_rate_newstate(struct ath_softc *sc, struct ath_vap *avp)
+{
+ struct ath_rate_softc *asc = sc->sc_rc;
+
+ /* For half and quarter rate channles use different
+ * rate tables
+ */
+ if (sc->sc_curchan.channelFlags & CHANNEL_HALF)
+ ar5416_sethalf_ratetable(asc);
+ else if (sc->sc_curchan.channelFlags & CHANNEL_QUARTER)
+ ar5416_setquarter_ratetable(asc);
+ else /* full rate */
+ ar5416_setfull_ratetable(asc);
+
+ if (avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE) {
+ asc->fixedrix =
+ sc->sc_rixmap[avp->av_config.av_fixed_rateset & 0xff];
+ /* NB: check the fixed rate exists */
+ if (asc->fixedrix == 0xff)
+ asc->fixedrix = IEEE80211_FIXED_RATE_NONE;
+ } else {
+ asc->fixedrix = IEEE80211_FIXED_RATE_NONE;
+ }
+}
+
+static u8 ath_rc_ratefind_ht(struct ath_softc *sc,
+ struct ath_rate_node *ath_rc_priv,
+ const struct ath_rate_table *rate_table,
+ int probe_allowed, int *is_probing,
+ int is_retry)
+{
+ u32 dt, best_thruput, this_thruput, now_msec;
+ u8 rate, next_rate, best_rate, maxindex, minindex;
+ int8_t rssi_last, rssi_reduce = 0, index = 0;
+ struct ath_tx_ratectrl *rate_ctrl = NULL;
+
+ rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv ?
+ (ath_rc_priv) : NULL);
+
+ *is_probing = FALSE;
+
+ rssi_last = median(rate_ctrl->rssi_last,
+ rate_ctrl->rssi_last_prev,
+ rate_ctrl->rssi_last_prev2);
+
+ /*
+ * Age (reduce) last ack rssi based on how old it is.
+ * The bizarre numbers are so the delta is 160msec,
+ * meaning we divide by 16.
+ * 0msec <= dt <= 25msec: don't derate
+ * 25msec <= dt <= 185msec: derate linearly from 0 to 10dB
+ * 185msec <= dt: derate by 10dB
+ */
+
+ now_msec = jiffies_to_msecs(jiffies);
+ dt = now_msec - rate_ctrl->rssi_time;
+
+ if (dt >= 185)
+ rssi_reduce = 10;
+ else if (dt >= 25)
+ rssi_reduce = (u8)((dt - 25) >> 4);
+
+ /* Now reduce rssi_last by rssi_reduce */
+ if (rssi_last < rssi_reduce)
+ rssi_last = 0;
+ else
+ rssi_last -= rssi_reduce;
+
+ /*
+ * Now look up the rate in the rssi table and return it.
+ * If no rates match then we return 0 (lowest rate)
+ */
+
+ best_thruput = 0;
+ maxindex = rate_ctrl->max_valid_rate-1;
+
+ minindex = 0;
+ best_rate = minindex;
+
+ /*
+ * Try the higher rate first. It will reduce memory moving time
+ * if we have very good channel characteristics.
+ */
+ for (index = maxindex; index >= minindex ; index--) {
+ u8 per_thres;
+
+ rate = rate_ctrl->valid_rate_index[index];
+ if (rate > rate_ctrl->rate_max_phy)
+ continue;
+
+ /*
+ * For TCP the average collision rate is around 11%,
+ * so we ignore PERs less than this. This is to
+ * prevent the rate we are currently using (whose
+ * PER might be in the 10-15 range because of TCP
+ * collisions) looking worse than the next lower
+ * rate whose PER has decayed close to 0. If we
+ * used to next lower rate, its PER would grow to
+ * 10-15 and we would be worse off then staying
+ * at the current rate.
+ */
+ per_thres = rate_ctrl->state[rate].per;
+ if (per_thres < 12)
+ per_thres = 12;
+
+ this_thruput = rate_table->info[rate].user_ratekbps *
+ (100 - per_thres);
+
+ if (best_thruput <= this_thruput) {
+ best_thruput = this_thruput;
+ best_rate = rate;
+ }
+ }
+
+ rate = best_rate;
+
+ /* if we are retrying for more than half the number
+ * of max retries, use the min rate for the next retry
+ */
+ if (is_retry)
+ rate = rate_ctrl->valid_rate_index[minindex];
+
+ rate_ctrl->rssi_last_lookup = rssi_last;
+
+ /*
+ * Must check the actual rate (ratekbps) to account for
+ * non-monoticity of 11g's rate table
+ */
+
+ if (rate >= rate_ctrl->rate_max_phy && probe_allowed) {
+ rate = rate_ctrl->rate_max_phy;
+
+ /* Probe the next allowed phy state */
+ /* FIXME:XXXX Check to make sure ratMax is checked properly */
+ if (ath_rc_get_nextvalid_txrate(rate_table,
+ rate_ctrl, rate, &next_rate) &&
+ (now_msec - rate_ctrl->probe_time >
+ rate_table->probe_interval) &&
+ (rate_ctrl->hw_maxretry_pktcnt >= 1)) {
+ rate = next_rate;
+ rate_ctrl->probe_rate = rate;
+ rate_ctrl->probe_time = now_msec;
+ rate_ctrl->hw_maxretry_pktcnt = 0;
+ *is_probing = TRUE;
+ }
+ }
+
+ /*
+ * Make sure rate is not higher than the allowed maximum.
+ * We should also enforce the min, but I suspect the min is
+ * normally 1 rather than 0 because of the rate 9 vs 6 issue
+ * in the old code.
+ */
+ if (rate > (rate_ctrl->rate_table_size - 1))
+ rate = rate_ctrl->rate_table_size - 1;
+
+ ASSERT((rate_table->info[rate].valid && !ath_rc_priv->single_stream) ||
+ (rate_table->info[rate].valid_single_stream &&
+ ath_rc_priv->single_stream));
+
+ return rate;
+}
+
+static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table ,
+ struct ath_rc_series *series,
+ u8 tries,
+ u8 rix,
+ int rtsctsenable)
+{
+ series->tries = tries;
+ series->flags = (rtsctsenable ? ATH_RC_RTSCTS_FLAG : 0) |
+ (WLAN_RC_PHY_DS(rate_table->info[rix].phy) ?
+ ATH_RC_DS_FLAG : 0) |
+ (WLAN_RC_PHY_40(rate_table->info[rix].phy) ?
+ ATH_RC_CW40_FLAG : 0) |
+ (WLAN_RC_PHY_SGI(rate_table->info[rix].phy) ?
+ ATH_RC_SGI_FLAG : 0);
+
+ series->rix = rate_table->info[rix].base_index;
+ series->max_4ms_framelen = rate_table->info[rix].max_4ms_framelen;
+}
+
+static u8 ath_rc_rate_getidx(struct ath_softc *sc,
+ struct ath_rate_node *ath_rc_priv,
+ const struct ath_rate_table *rate_table,
+ u8 rix, u16 stepdown,
+ u16 min_rate)
+{
+ u32 j;
+ u8 nextindex;
+ struct ath_tx_ratectrl *rate_ctrl =
+ (struct ath_tx_ratectrl *)(ath_rc_priv);
+
+ if (min_rate) {
+ for (j = RATE_TABLE_SIZE; j > 0; j--) {
+ if (ath_rc_get_nextlowervalid_txrate(rate_table,
+ rate_ctrl, rix, &nextindex))
+ rix = nextindex;
+ else
+ break;
+ }
+ } else {
+ for (j = stepdown; j > 0; j--) {
+ if (ath_rc_get_nextlowervalid_txrate(rate_table,
+ rate_ctrl, rix, &nextindex))
+ rix = nextindex;
+ else
+ break;
+ }
+ }
+ return rix;
+}
+
+static void ath_rc_ratefind(struct ath_softc *sc,
+ struct ath_rate_node *ath_rc_priv,
+ int num_tries, int num_rates, unsigned int rcflag,
+ struct ath_rc_series series[], int *is_probe,
+ int is_retry)
+{
+ u8 try_per_rate = 0, i = 0, rix, nrix;
+ struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
+ struct ath_rate_table *rate_table;
+
+ rate_table =
+ (struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode];
+ rix = ath_rc_ratefind_ht(sc, ath_rc_priv, rate_table,
+ (rcflag & ATH_RC_PROBE_ALLOWED) ? 1 : 0,
+ is_probe, is_retry);
+ nrix = rix;
+
+ if ((rcflag & ATH_RC_PROBE_ALLOWED) && (*is_probe)) {
+ /* set one try for probe rates. For the
+ * probes don't enable rts */
+ ath_rc_rate_set_series(rate_table,
+ &series[i++], 1, nrix, FALSE);
+
+ try_per_rate = (num_tries/num_rates);
+ /* Get the next tried/allowed rate. No RTS for the next series
+ * after the probe rate
+ */
+ nrix = ath_rc_rate_getidx(sc,
+ ath_rc_priv, rate_table, nrix, 1, FALSE);
+ ath_rc_rate_set_series(rate_table,
+ &series[i++], try_per_rate, nrix, 0);
+ } else {
+ try_per_rate = (num_tries/num_rates);
+ /* Set the choosen rate. No RTS for first series entry. */
+ ath_rc_rate_set_series(rate_table,
+ &series[i++], try_per_rate, nrix, FALSE);
+ }
+
+ /* Fill in the other rates for multirate retry */
+ for ( ; i < num_rates; i++) {
+ u8 try_num;
+ u8 min_rate;
+
+ try_num = ((i + 1) == num_rates) ?
+ num_tries - (try_per_rate * i) : try_per_rate ;
+ min_rate = (((i + 1) == num_rates) &&
+ (rcflag & ATH_RC_MINRATE_LASTRATE)) ? 1 : 0;
+
+ nrix = ath_rc_rate_getidx(sc, ath_rc_priv,
+ rate_table, nrix, 1, min_rate);
+ /* All other rates in the series have RTS enabled */
+ ath_rc_rate_set_series(rate_table,
+ &series[i], try_num, nrix, TRUE);
+ }
+
+ /*
+ * NB:Change rate series to enable aggregation when operating
+ * at lower MCS rates. When first rate in series is MCS2
+ * in HT40 @ 2.4GHz, series should look like:
+ *
+ * {MCS2, MCS1, MCS0, MCS0}.
+ *
+ * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
+ * look like:
+ *
+ * {MCS3, MCS2, MCS1, MCS1}
+ *
+ * So, set fourth rate in series to be same as third one for
+ * above conditions.
+ */
+ if ((sc->sc_curmode == ATH9K_MODE_11NG_HT20) ||
+ (sc->sc_curmode == ATH9K_MODE_11NG_HT40PLUS) ||
+ (sc->sc_curmode == ATH9K_MODE_11NG_HT40MINUS)) {
+ u8 dot11rate = rate_table->info[rix].dot11rate;
+ u8 phy = rate_table->info[rix].phy;
+ if (i == 4 &&
+ ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
+ (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
+ series[3].rix = series[2].rix;
+ series[3].flags = series[2].flags;
+ series[3].max_4ms_framelen = series[2].max_4ms_framelen;
+ }
+ }
+}
+
+/*
+ * Return the Tx rate series.
+ */
+void ath_rate_findrate(struct ath_softc *sc,
+ struct ath_rate_node *ath_rc_priv,
+ int num_tries,
+ int num_rates,
+ unsigned int rcflag,
+ struct ath_rc_series series[],
+ int *is_probe,
+ int is_retry)
+{
+ struct ath_vap *avp = ath_rc_priv->avp;
+
+ DPRINTF(sc, ATH_DBG_RATE, "%s", __func__);
+ if (!num_rates || !num_tries)
+ return;
+
+ if (avp->av_config.av_fixed_rateset == IEEE80211_FIXED_RATE_NONE) {
+ ath_rc_ratefind(sc, ath_rc_priv, num_tries, num_rates,
+ rcflag, series, is_probe, is_retry);
+ } else {
+ /* Fixed rate */
+ int idx;
+ u8 flags;
+ u32 rix;
+ struct ath_rate_softc *asc = ath_rc_priv->asc;
+ struct ath_rate_table *rate_table;
+
+ rate_table = (struct ath_rate_table *)
+ asc->hw_rate_table[sc->sc_curmode];
+
+ for (idx = 0; idx < 4; idx++) {
+ unsigned int mcs;
+ u8 series_rix = 0;
+
+ series[idx].tries =
+ IEEE80211_RATE_IDX_ENTRY(
+ avp->av_config.av_fixed_retryset, idx);
+
+ mcs = IEEE80211_RATE_IDX_ENTRY(
+ avp->av_config.av_fixed_rateset, idx);
+
+ if (idx == 3 && (mcs & 0xf0) == 0x70)
+ mcs = (mcs & ~0xf0)|0x80;
+
+ if (!(mcs & 0x80))
+ flags = 0;
+ else
+ flags = ((ath_rc_priv->ht_cap &
+ WLAN_RC_DS_FLAG) ?
+ ATH_RC_DS_FLAG : 0) |
+ ((ath_rc_priv->ht_cap &
+ WLAN_RC_40_FLAG) ?
+ ATH_RC_CW40_FLAG : 0) |
+ ((ath_rc_priv->ht_cap &
+ WLAN_RC_SGI_FLAG) ?
+ ((ath_rc_priv->ht_cap &
+ WLAN_RC_40_FLAG) ?
+ ATH_RC_SGI_FLAG : 0) : 0);
+
+ series[idx].rix = sc->sc_rixmap[mcs];
+ series_rix = series[idx].rix;
+
+ /* XXX: Give me some cleanup love */
+ if ((flags & ATH_RC_CW40_FLAG) &&
+ (flags & ATH_RC_SGI_FLAG))
+ rix = rate_table->info[series_rix].ht_index;
+ else if (flags & ATH_RC_SGI_FLAG)
+ rix = rate_table->info[series_rix].sgi_index;
+ else if (flags & ATH_RC_CW40_FLAG)
+ rix = rate_table->info[series_rix].cw40index;
+ else
+ rix = rate_table->info[series_rix].base_index;
+ series[idx].max_4ms_framelen =
+ rate_table->info[rix].max_4ms_framelen;
+ series[idx].flags = flags;
+ }
+ }
+}
+
+static void ath_rc_update_ht(struct ath_softc *sc,
+ struct ath_rate_node *ath_rc_priv,
+ struct ath_tx_info_priv *info_priv,
+ int tx_rate, int xretries, int retries)
+{
+ struct ath_tx_ratectrl *rate_ctrl;
+ u32 now_msec = jiffies_to_msecs(jiffies);
+ int state_change = FALSE, rate, count;
+ u8 last_per;
+ struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
+ struct ath_rate_table *rate_table =
+ (struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode];
+
+ static u32 nretry_to_per_lookup[10] = {
+ 100 * 0 / 1,
+ 100 * 1 / 4,
+ 100 * 1 / 2,
+ 100 * 3 / 4,
+ 100 * 4 / 5,
+ 100 * 5 / 6,
+ 100 * 6 / 7,
+ 100 * 7 / 8,
+ 100 * 8 / 9,
+ 100 * 9 / 10
+ };
+
+ if (!ath_rc_priv)
+ return;
+
+ rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv);
+
+ ASSERT(tx_rate >= 0);
+ if (tx_rate < 0)
+ return;
+
+ /* To compensate for some imbalance between ctrl and ext. channel */
+
+ if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy))
+ info_priv->tx.ts_rssi =
+ info_priv->tx.ts_rssi < 3 ? 0 :
+ info_priv->tx.ts_rssi - 3;
+
+ last_per = rate_ctrl->state[tx_rate].per;
+
+ if (xretries) {
+ /* Update the PER. */
+ if (xretries == 1) {
+ rate_ctrl->state[tx_rate].per += 30;
+ if (rate_ctrl->state[tx_rate].per > 100)
+ rate_ctrl->state[tx_rate].per = 100;
+ } else {
+ /* xretries == 2 */
+ count = sizeof(nretry_to_per_lookup) /
+ sizeof(nretry_to_per_lookup[0]);
+ if (retries >= count)
+ retries = count - 1;
+ /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
+ rate_ctrl->state[tx_rate].per =
+ (u8)(rate_ctrl->state[tx_rate].per -
+ (rate_ctrl->state[tx_rate].per >> 3) +
+ ((100) >> 3));
+ }
+
+ /* xretries == 1 or 2 */
+
+ if (rate_ctrl->probe_rate == tx_rate)
+ rate_ctrl->probe_rate = 0;
+
+ } else { /* xretries == 0 */
+ /* Update the PER. */
+ /* Make sure it doesn't index out of array's bounds. */
+ count = sizeof(nretry_to_per_lookup) /
+ sizeof(nretry_to_per_lookup[0]);
+ if (retries >= count)
+ retries = count - 1;
+ if (info_priv->n_bad_frames) {
+ /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
+ /*
+ * Assuming that n_frames is not 0. The current PER
+ * from the retries is 100 * retries / (retries+1),
+ * since the first retries attempts failed, and the
+ * next one worked. For the one that worked,
+ * n_bad_frames subframes out of n_frames wored,
+ * so the PER for that part is
+ * 100 * n_bad_frames / n_frames, and it contributes
+ * 100 * n_bad_frames / (n_frames * (retries+1)) to
+ * the above PER. The expression below is a
+ * simplified version of the sum of these two terms.
+ */
+ if (info_priv->n_frames > 0)
+ rate_ctrl->state[tx_rate].per
+ = (u8)
+ (rate_ctrl->state[tx_rate].per -
+ (rate_ctrl->state[tx_rate].per >> 3) +
+ ((100*(retries*info_priv->n_frames +
+ info_priv->n_bad_frames) /
+ (info_priv->n_frames *
+ (retries+1))) >> 3));
+ } else {
+ /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
+
+ rate_ctrl->state[tx_rate].per = (u8)
+ (rate_ctrl->state[tx_rate].per -
+ (rate_ctrl->state[tx_rate].per >> 3) +
+ (nretry_to_per_lookup[retries] >> 3));
+ }
+
+ rate_ctrl->rssi_last_prev2 = rate_ctrl->rssi_last_prev;
+ rate_ctrl->rssi_last_prev = rate_ctrl->rssi_last;
+ rate_ctrl->rssi_last = info_priv->tx.ts_rssi;
+ rate_ctrl->rssi_time = now_msec;
+
+ /*
+ * If we got at most one retry then increase the max rate if
+ * this was a probe. Otherwise, ignore the probe.
+ */
+
+ if (rate_ctrl->probe_rate && rate_ctrl->probe_rate == tx_rate) {
+ if (retries > 0 || 2 * info_priv->n_bad_frames >
+ info_priv->n_frames) {
+ /*
+ * Since we probed with just a single attempt,
+ * any retries means the probe failed. Also,
+ * if the attempt worked, but more than half
+ * the subframes were bad then also consider
+ * the probe a failure.
+ */
+ rate_ctrl->probe_rate = 0;
+ } else {
+ u8 probe_rate = 0;
+
+ rate_ctrl->rate_max_phy = rate_ctrl->probe_rate;
+ probe_rate = rate_ctrl->probe_rate;
+
+ if (rate_ctrl->state[probe_rate].per > 30)
+ rate_ctrl->state[probe_rate].per = 20;
+
+ rate_ctrl->probe_rate = 0;
+
+ /*
+ * Since this probe succeeded, we allow the next
+ * probe twice as soon. This allows the maxRate
+ * to move up faster if the probes are
+ * succesful.
+ */
+ rate_ctrl->probe_time = now_msec -
+ rate_table->probe_interval / 2;
+ }
+ }
+
+ if (retries > 0) {
+ /*
+ * Don't update anything. We don't know if
+ * this was because of collisions or poor signal.
+ *
+ * Later: if rssi_ack is close to
+ * rate_ctrl->state[txRate].rssi_thres and we see lots
+ * of retries, then we could increase
+ * rate_ctrl->state[txRate].rssi_thres.
+ */
+ rate_ctrl->hw_maxretry_pktcnt = 0;
+ } else {
+ /*
+ * It worked with no retries. First ignore bogus (small)
+ * rssi_ack values.
+ */
+ if (tx_rate == rate_ctrl->rate_max_phy &&
+ rate_ctrl->hw_maxretry_pktcnt < 255) {
+ rate_ctrl->hw_maxretry_pktcnt++;
+ }
+
+ if (info_priv->tx.ts_rssi >=
+ rate_table->info[tx_rate].rssi_ack_validmin) {
+ /* Average the rssi */
+ if (tx_rate != rate_ctrl->rssi_sum_rate) {
+ rate_ctrl->rssi_sum_rate = tx_rate;
+ rate_ctrl->rssi_sum =
+ rate_ctrl->rssi_sum_cnt = 0;
+ }
+
+ rate_ctrl->rssi_sum += info_priv->tx.ts_rssi;
+ rate_ctrl->rssi_sum_cnt++;
+
+ if (rate_ctrl->rssi_sum_cnt > 4) {
+ int32_t rssi_ackAvg =
+ (rate_ctrl->rssi_sum + 2) / 4;
+ int8_t rssi_thres =
+ rate_ctrl->state[tx_rate].
+ rssi_thres;
+ int8_t rssi_ack_vmin =
+ rate_table->info[tx_rate].
+ rssi_ack_validmin;
+
+ rate_ctrl->rssi_sum =
+ rate_ctrl->rssi_sum_cnt = 0;
+
+ /* Now reduce the current
+ * rssi threshold. */
+ if ((rssi_ackAvg < rssi_thres + 2) &&
+ (rssi_thres > rssi_ack_vmin)) {
+ rate_ctrl->state[tx_rate].
+ rssi_thres--;
+ }
+
+ state_change = TRUE;
+ }
+ }
+ }
+ }
+
+ /* For all cases */
+
+ /*
+ * If this rate looks bad (high PER) then stop using it for
+ * a while (except if we are probing).
+ */
+ if (rate_ctrl->state[tx_rate].per >= 55 && tx_rate > 0 &&
+ rate_table->info[tx_rate].ratekbps <=
+ rate_table->info[rate_ctrl->rate_max_phy].ratekbps) {
+ ath_rc_get_nextlowervalid_txrate(rate_table, rate_ctrl,
+ (u8) tx_rate, &rate_ctrl->rate_max_phy);
+
+ /* Don't probe for a little while. */
+ rate_ctrl->probe_time = now_msec;
+ }
+
+ if (state_change) {
+ /*
+ * Make sure the rates above this have higher rssi thresholds.
+ * (Note: Monotonicity is kept within the OFDM rates and
+ * within the CCK rates. However, no adjustment is
+ * made to keep the rssi thresholds monotonically
+ * increasing between the CCK and OFDM rates.)
+ */
+ for (rate = tx_rate; rate <
+ rate_ctrl->rate_table_size - 1; rate++) {
+ if (rate_table->info[rate+1].phy !=
+ rate_table->info[tx_rate].phy)
+ break;
+
+ if (rate_ctrl->state[rate].rssi_thres +
+ rate_table->info[rate].rssi_ack_deltamin >
+ rate_ctrl->state[rate+1].rssi_thres) {
+ rate_ctrl->state[rate+1].rssi_thres =
+ rate_ctrl->state[rate].
+ rssi_thres +
+ rate_table->info[rate].
+ rssi_ack_deltamin;
+ }
+ }
+
+ /* Make sure the rates below this have lower rssi thresholds. */
+ for (rate = tx_rate - 1; rate >= 0; rate--) {
+ if (rate_table->info[rate].phy !=
+ rate_table->info[tx_rate].phy)
+ break;
+
+ if (rate_ctrl->state[rate].rssi_thres +
+ rate_table->info[rate].rssi_ack_deltamin >
+ rate_ctrl->state[rate+1].rssi_thres) {
+ if (rate_ctrl->state[rate+1].rssi_thres <
+ rate_table->info[rate].
+ rssi_ack_deltamin)
+ rate_ctrl->state[rate].rssi_thres = 0;
+ else {
+ rate_ctrl->state[rate].rssi_thres =
+ rate_ctrl->state[rate+1].
+ rssi_thres -
+ rate_table->info[rate].
+ rssi_ack_deltamin;
+ }
+
+ if (rate_ctrl->state[rate].rssi_thres <
+ rate_table->info[rate].
+ rssi_ack_validmin) {
+ rate_ctrl->state[rate].rssi_thres =
+ rate_table->info[rate].
+ rssi_ack_validmin;
+ }
+ }
+ }
+ }
+
+ /* Make sure the rates below this have lower PER */
+ /* Monotonicity is kept only for rates below the current rate. */
+ if (rate_ctrl->state[tx_rate].per < last_per) {
+ for (rate = tx_rate - 1; rate >= 0; rate--) {
+ if (rate_table->info[rate].phy !=
+ rate_table->info[tx_rate].phy)
+ break;
+
+ if (rate_ctrl->state[rate].per >
+ rate_ctrl->state[rate+1].per) {
+ rate_ctrl->state[rate].per =
+ rate_ctrl->state[rate+1].per;
+ }
+ }
+ }
+
+ /* Maintain monotonicity for rates above the current rate */
+ for (rate = tx_rate; rate < rate_ctrl->rate_table_size - 1; rate++) {
+ if (rate_ctrl->state[rate+1].per < rate_ctrl->state[rate].per)
+ rate_ctrl->state[rate+1].per =
+ rate_ctrl->state[rate].per;
+ }
+
+ /* Every so often, we reduce the thresholds and
+ * PER (different for CCK and OFDM). */
+ if (now_msec - rate_ctrl->rssi_down_time >=
+ rate_table->rssi_reduce_interval) {
+
+ for (rate = 0; rate < rate_ctrl->rate_table_size; rate++) {
+ if (rate_ctrl->state[rate].rssi_thres >
+ rate_table->info[rate].rssi_ack_validmin)
+ rate_ctrl->state[rate].rssi_thres -= 1;
+ }
+ rate_ctrl->rssi_down_time = now_msec;
+ }
+
+ /* Every so often, we reduce the thresholds
+ * and PER (different for CCK and OFDM). */
+ if (now_msec - rate_ctrl->per_down_time >=
+ rate_table->rssi_reduce_interval) {
+ for (rate = 0; rate < rate_ctrl->rate_table_size; rate++) {
+ rate_ctrl->state[rate].per =
+ 7 * rate_ctrl->state[rate].per / 8;
+ }
+
+ rate_ctrl->per_down_time = now_msec;
+ }
+}
+
+/*
+ * This routine is called in rate control callback tx_status() to give
+ * the status of previous frames.
+ */
+static void ath_rc_update(struct ath_softc *sc,
+ struct ath_rate_node *ath_rc_priv,
+ struct ath_tx_info_priv *info_priv, int final_ts_idx,
+ int xretries, int long_retry)
+{
+ struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
+ struct ath_rate_table *rate_table;
+ struct ath_tx_ratectrl *rate_ctrl;
+ struct ath_rc_series rcs[4];
+ u8 flags;
+ u32 series = 0, rix;
+
+ memcpy(rcs, info_priv->rcs, 4 * sizeof(rcs[0]));
+ rate_table = (struct ath_rate_table *)
+ asc->hw_rate_table[sc->sc_curmode];
+ rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv);
+ ASSERT(rcs[0].tries != 0);
+
+ /*
+ * If the first rate is not the final index, there
+ * are intermediate rate failures to be processed.
+ */
+ if (final_ts_idx != 0) {
+ /* Process intermediate rates that failed.*/
+ for (series = 0; series < final_ts_idx ; series++) {
+ if (rcs[series].tries != 0) {
+ flags = rcs[series].flags;
+ /* If HT40 and we have switched mode from
+ * 40 to 20 => don't update */
+ if ((flags & ATH_RC_CW40_FLAG) &&
+ (rate_ctrl->rc_phy_mode !=
+ (flags & ATH_RC_CW40_FLAG)))
+ return;
+ if ((flags & ATH_RC_CW40_FLAG) &&
+ (flags & ATH_RC_SGI_FLAG))
+ rix = rate_table->info[
+ rcs[series].rix].ht_index;
+ else if (flags & ATH_RC_SGI_FLAG)
+ rix = rate_table->info[
+ rcs[series].rix].sgi_index;
+ else if (flags & ATH_RC_CW40_FLAG)
+ rix = rate_table->info[
+ rcs[series].rix].cw40index;
+ else
+ rix = rate_table->info[
+ rcs[series].rix].base_index;
+ ath_rc_update_ht(sc, ath_rc_priv,
+ info_priv, rix,
+ xretries ? 1 : 2,
+ rcs[series].tries);
+ }
+ }
+ } else {
+ /*
+ * Handle the special case of MIMO PS burst, where the second
+ * aggregate is sent out with only one rate and one try.
+ * Treating it as an excessive retry penalizes the rate
+ * inordinately.
+ */
+ if (rcs[0].tries == 1 && xretries == 1)
+ xretries = 2;
+ }
+
+ flags = rcs[series].flags;
+ /* If HT40 and we have switched mode from 40 to 20 => don't update */
+ if ((flags & ATH_RC_CW40_FLAG) &&
+ (rate_ctrl->rc_phy_mode != (flags & ATH_RC_CW40_FLAG)))
+ return;
+
+ if ((flags & ATH_RC_CW40_FLAG) && (flags & ATH_RC_SGI_FLAG))
+ rix = rate_table->info[rcs[series].rix].ht_index;
+ else if (flags & ATH_RC_SGI_FLAG)
+ rix = rate_table->info[rcs[series].rix].sgi_index;
+ else if (flags & ATH_RC_CW40_FLAG)
+ rix = rate_table->info[rcs[series].rix].cw40index;
+ else
+ rix = rate_table->info[rcs[series].rix].base_index;
+
+ ath_rc_update_ht(sc, ath_rc_priv, info_priv, rix,
+ xretries, long_retry);
+}
+
+
+/*
+ * Process a tx descriptor for a completed transmit (success or failure).
+ */
+static void ath_rate_tx_complete(struct ath_softc *sc,
+ struct ath_node *an,
+ struct ath_rate_node *rc_priv,
+ struct ath_tx_info_priv *info_priv)
+{
+ int final_ts_idx = info_priv->tx.ts_rateindex;
+ int tx_status = 0, is_underrun = 0;
+ struct ath_vap *avp;
+
+ avp = rc_priv->avp;
+ if ((avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE)
+ || info_priv->tx.ts_status & ATH9K_TXERR_FILT)
+ return;
+
+ if (info_priv->tx.ts_rssi > 0) {
+ ATH_RSSI_LPF(an->an_chainmask_sel.tx_avgrssi,
+ info_priv->tx.ts_rssi);
+ }
+
+ /*
+ * If underrun error is seen assume it as an excessive retry only
+ * if prefetch trigger level have reached the max (0x3f for 5416)
+ * Adjust the long retry as if the frame was tried ATH_11N_TXMAXTRY
+ * times. This affects how ratectrl updates PER for the failed rate.
+ */
+ if (info_priv->tx.ts_flags &
+ (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) &&
+ ((sc->sc_ah->ah_txTrigLevel) >= tx_triglevel_max)) {
+ tx_status = 1;
+ is_underrun = 1;
+ }
+
+ if ((info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) ||
+ (info_priv->tx.ts_status & ATH9K_TXERR_FIFO))
+ tx_status = 1;
+
+ ath_rc_update(sc, rc_priv, info_priv, final_ts_idx, tx_status,
+ (is_underrun) ? ATH_11N_TXMAXTRY :
+ info_priv->tx.ts_longretry);
+}
+
+
+/*
+ * Update the SIB's rate control information
+ *
+ * This should be called when the supported rates change
+ * (e.g. SME operation, wireless mode change)
+ *
+ * It will determine which rates are valid for use.
+ */
+static void ath_rc_sib_update(struct ath_softc *sc,
+ struct ath_rate_node *ath_rc_priv,
+ u32 capflag, int keep_state,
+ struct ath_rateset *negotiated_rates,
+ struct ath_rateset *negotiated_htrates)
+{
+ struct ath_rate_table *rate_table = NULL;
+ struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
+ struct ath_rateset *rateset = negotiated_rates;
+ u8 *ht_mcs = (u8 *)negotiated_htrates;
+ struct ath_tx_ratectrl *rate_ctrl = (struct ath_tx_ratectrl *)
+ (ath_rc_priv);
+ u8 i, j, k, hi = 0, hthi = 0;
+
+ rate_table = (struct ath_rate_table *)
+ asc->hw_rate_table[sc->sc_curmode];
+
+ /* Initial rate table size. Will change depending
+ * on the working rate set */
+ rate_ctrl->rate_table_size = MAX_TX_RATE_TBL;
+
+ /* Initialize thresholds according to the global rate table */
+ for (i = 0 ; (i < rate_ctrl->rate_table_size) && (!keep_state); i++) {
+ rate_ctrl->state[i].rssi_thres =
+ rate_table->info[i].rssi_ack_validmin;
+ rate_ctrl->state[i].per = 0;
+ }
+
+ /* Determine the valid rates */
+ ath_rc_init_valid_txmask(rate_ctrl);
+
+ for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
+ for (j = 0; j < MAX_TX_RATE_PHY; j++)
+ rate_ctrl->valid_phy_rateidx[i][j] = 0;
+ rate_ctrl->valid_phy_ratecnt[i] = 0;
+ }
+ rate_ctrl->rc_phy_mode = (capflag & WLAN_RC_40_FLAG);
+
+ /* Set stream capability */
+ ath_rc_priv->single_stream = (capflag & WLAN_RC_DS_FLAG) ? 0 : 1;
+
+ if (!rateset->rs_nrates) {
+ /* No working rate, just initialize valid rates */
+ hi = ath_rc_sib_init_validrates(ath_rc_priv, rate_table,
+ capflag);
+ } else {
+ /* Use intersection of working rates and valid rates */
+ hi = ath_rc_sib_setvalid_rates(ath_rc_priv, rate_table,
+ rateset, capflag);
+ if (capflag & WLAN_RC_HT_FLAG) {
+ hthi = ath_rc_sib_setvalid_htrates(ath_rc_priv,
+ rate_table,
+ ht_mcs,
+ capflag);
+ }
+ hi = A_MAX(hi, hthi);
+ }
+
+ rate_ctrl->rate_table_size = hi + 1;
+ rate_ctrl->rate_max_phy = 0;
+ ASSERT(rate_ctrl->rate_table_size <= MAX_TX_RATE_TBL);
+
+ for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
+ for (j = 0; j < rate_ctrl->valid_phy_ratecnt[i]; j++) {
+ rate_ctrl->valid_rate_index[k++] =
+ rate_ctrl->valid_phy_rateidx[i][j];
+ }
+
+ if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, TRUE)
+ || !rate_ctrl->valid_phy_ratecnt[i])
+ continue;
+
+ rate_ctrl->rate_max_phy = rate_ctrl->valid_phy_rateidx[i][j-1];
+ }
+ ASSERT(rate_ctrl->rate_table_size <= MAX_TX_RATE_TBL);
+ ASSERT(k <= MAX_TX_RATE_TBL);
+
+ rate_ctrl->max_valid_rate = k;
+ /*
+ * Some third party vendors don't send the supported rate series in
+ * order. So sorting to make sure its in order, otherwise our RateFind
+ * Algo will select wrong rates
+ */
+ ath_rc_sort_validrates(rate_table, rate_ctrl);
+ rate_ctrl->rate_max_phy = rate_ctrl->valid_rate_index[k-4];
+}
+
+/*
+ * Update rate-control state on station associate/reassociate.
+ */
+static int ath_rate_newassoc(struct ath_softc *sc,
+ struct ath_rate_node *ath_rc_priv,
+ unsigned int capflag,
+ struct ath_rateset *negotiated_rates,
+ struct ath_rateset *negotiated_htrates)
+{
+
+
+ ath_rc_priv->ht_cap =
+ ((capflag & ATH_RC_DS_FLAG) ? WLAN_RC_DS_FLAG : 0) |
+ ((capflag & ATH_RC_SGI_FLAG) ? WLAN_RC_SGI_FLAG : 0) |
+ ((capflag & ATH_RC_HT_FLAG) ? WLAN_RC_HT_FLAG : 0) |
+ ((capflag & ATH_RC_CW40_FLAG) ? WLAN_RC_40_FLAG : 0);
+
+ ath_rc_sib_update(sc, ath_rc_priv, ath_rc_priv->ht_cap, 0,
+ negotiated_rates, negotiated_htrates);
+
+ return 0;
+}
+
+/*
+ * This routine is called to initialize the rate control parameters
+ * in the SIB. It is called initially during system initialization
+ * or when a station is associated with the AP.
+ */
+static void ath_rc_sib_init(struct ath_rate_node *ath_rc_priv)
+{
+ struct ath_tx_ratectrl *rate_ctrl;
+
+ rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv);
+ rate_ctrl->rssi_down_time = jiffies_to_msecs(jiffies);
+}
+
+
+static void ath_setup_rates(struct ieee80211_local *local, struct sta_info *sta)
+
+{
+ struct ieee80211_supported_band *sband;
+ struct ieee80211_hw *hw = local_to_hw(local);
+ struct ath_softc *sc = hw->priv;
+ struct ath_rate_node *rc_priv = sta->rate_ctrl_priv;
+ int i, j = 0;
+
+ DPRINTF(sc, ATH_DBG_RATE, "%s", __func__);
+ sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
+ for (i = 0; i < sband->n_bitrates; i++) {
+ if (sta->supp_rates[local->hw.conf.channel->band] & BIT(i)) {
+ rc_priv->neg_rates.rs_rates[j]
+ = (sband->bitrates[i].bitrate * 2) / 10;
+ j++;
+ }
+ }
+ rc_priv->neg_rates.rs_nrates = j;
+}
+
+void ath_rc_node_update(struct ieee80211_hw *hw, struct ath_rate_node *rc_priv)
+{
+ struct ath_softc *sc = hw->priv;
+ u32 capflag = 0;
+
+ if (hw->conf.ht_conf.ht_supported) {
+ capflag |= ATH_RC_HT_FLAG | ATH_RC_DS_FLAG;
+ if (sc->sc_ht_info.tx_chan_width == ATH9K_HT_MACMODE_2040)
+ capflag |= ATH_RC_CW40_FLAG;
+ }
+
+ ath_rate_newassoc(sc, rc_priv, capflag,
+ &rc_priv->neg_rates,
+ &rc_priv->neg_ht_rates);
+
+}
+
+/* Rate Control callbacks */
+static void ath_tx_status(void *priv, struct net_device *dev,
+ struct sk_buff *skb)
+{
+ struct ath_softc *sc = priv;
+ struct ath_tx_info_priv *tx_info_priv;
+ struct ath_node *an;
+ struct sta_info *sta;
+ struct ieee80211_local *local;
+ struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
+ struct ieee80211_hdr *hdr;
+ __le16 fc;
+
+ local = hw_to_local(sc->hw);
+ hdr = (struct ieee80211_hdr *)skb->data;
+ fc = hdr->frame_control;
+ tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
+
+ spin_lock_bh(&sc->node_lock);
+ an = ath_node_find(sc, hdr->addr1);
+ spin_unlock_bh(&sc->node_lock);
+
+ sta = sta_info_get(local, hdr->addr1);
+ if (!an || !sta || !ieee80211_is_data(fc)) {
+ if (tx_info->driver_data[0] != NULL) {
+ kfree(tx_info->driver_data[0]);
+ tx_info->driver_data[0] = NULL;
+ }
+ return;
+ }
+ if (tx_info->driver_data[0] != NULL) {
+ ath_rate_tx_complete(sc, an, sta->rate_ctrl_priv, tx_info_priv);
+ kfree(tx_info->driver_data[0]);
+ tx_info->driver_data[0] = NULL;
+ }
+}
+
+static void ath_tx_aggr_resp(struct ath_softc *sc,
+ struct sta_info *sta,
+ struct ath_node *an,
+ u8 tidno)
+{
+ struct ieee80211_hw *hw = sc->hw;
+ struct ieee80211_local *local;
+ struct ath_atx_tid *txtid;
+ struct ieee80211_supported_band *sband;
+ u16 buffersize = 0;
+ int state;
+ DECLARE_MAC_BUF(mac);
+
+ if (!sc->sc_txaggr)
+ return;
+
+ txtid = ATH_AN_2_TID(an, tidno);
+ if (!txtid->paused)
+ return;
+
+ local = hw_to_local(sc->hw);
+ sband = hw->wiphy->bands[hw->conf.channel->band];
+ buffersize = IEEE80211_MIN_AMPDU_BUF <<
+ sband->ht_info.ampdu_factor; /* FIXME */
+ state = sta->ampdu_mlme.tid_state_tx[tidno];
+
+ if (state & HT_ADDBA_RECEIVED_MSK) {
+ txtid->addba_exchangecomplete = 1;
+ txtid->addba_exchangeinprogress = 0;
+ txtid->baw_size = buffersize;
+
+ DPRINTF(sc, ATH_DBG_AGGR,
+ "%s: Resuming tid, buffersize: %d\n",
+ __func__,
+ buffersize);
+
+ ath_tx_resume_tid(sc, txtid);
+ }
+}
+
+static void ath_get_rate(void *priv, struct net_device *dev,
+ struct ieee80211_supported_band *sband,
+ struct sk_buff *skb,
+ struct rate_selection *sel)
+{
+ struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
+ struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
+ struct sta_info *sta;
+ struct ath_softc *sc = (struct ath_softc *)priv;
+ struct ieee80211_hw *hw = sc->hw;
+ struct ath_tx_info_priv *tx_info_priv;
+ struct ath_rate_node *ath_rc_priv;
+ struct ath_node *an;
+ struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
+ int is_probe, chk, ret;
+ s8 lowest_idx;
+ __le16 fc = hdr->frame_control;
+ u8 *qc, tid;
+ DECLARE_MAC_BUF(mac);
+
+ DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
+
+ /* allocate driver private area of tx_info */
+ tx_info->driver_data[0] = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC);
+ ASSERT(tx_info->driver_data[0] != NULL);
+ tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
+
+ sta = sta_info_get(local, hdr->addr1);
+ lowest_idx = rate_lowest_index(local, sband, sta);
+ tx_info_priv->min_rate = (sband->bitrates[lowest_idx].bitrate * 2) / 10;
+ /* lowest rate for management and multicast/broadcast frames */
+ if (!ieee80211_is_data(fc) ||
+ is_multicast_ether_addr(hdr->addr1) || !sta) {
+ sel->rate_idx = lowest_idx;
+ return;
+ }
+
+ ath_rc_priv = sta->rate_ctrl_priv;
+
+ /* Find tx rate for unicast frames */
+ ath_rate_findrate(sc, ath_rc_priv,
+ ATH_11N_TXMAXTRY, 4,
+ ATH_RC_PROBE_ALLOWED,
+ tx_info_priv->rcs,
+ &is_probe,
+ false);
+ if (is_probe)
+ sel->probe_idx = ((struct ath_tx_ratectrl *)
+ sta->rate_ctrl_priv)->probe_rate;
+
+ /* Ratecontrol sometimes returns invalid rate index */
+ if (tx_info_priv->rcs[0].rix != 0xff)
+ ath_rc_priv->prev_data_rix = tx_info_priv->rcs[0].rix;
+ else
+ tx_info_priv->rcs[0].rix = ath_rc_priv->prev_data_rix;
+
+ sel->rate_idx = tx_info_priv->rcs[0].rix;
+
+ /* Check if aggregation has to be enabled for this tid */
+
+ if (hw->conf.ht_conf.ht_supported) {
+ if (ieee80211_is_data_qos(fc)) {
+ qc = ieee80211_get_qos_ctl(hdr);
+ tid = qc[0] & 0xf;
+
+ spin_lock_bh(&sc->node_lock);
+ an = ath_node_find(sc, hdr->addr1);
+ spin_unlock_bh(&sc->node_lock);
+
+ if (!an) {
+ DPRINTF(sc, ATH_DBG_AGGR,
+ "%s: Node not found to "
+ "init/chk TX aggr\n", __func__);
+ return;
+ }
+
+ chk = ath_tx_aggr_check(sc, an, tid);
+ if (chk == AGGR_REQUIRED) {
+ ret = ieee80211_start_tx_ba_session(hw,
+ hdr->addr1, tid);
+ if (ret)
+ DPRINTF(sc, ATH_DBG_AGGR,
+ "%s: Unable to start tx "
+ "aggr for: %s\n",
+ __func__,
+ print_mac(mac, hdr->addr1));
+ else
+ DPRINTF(sc, ATH_DBG_AGGR,
+ "%s: Started tx aggr for: %s\n",
+ __func__,
+ print_mac(mac, hdr->addr1));
+ } else if (chk == AGGR_EXCHANGE_PROGRESS)
+ ath_tx_aggr_resp(sc, sta, an, tid);
+ }
+ }
+}
+
+static void ath_rate_init(void *priv, void *priv_sta,
+ struct ieee80211_local *local,
+ struct sta_info *sta)
+{
+ struct ieee80211_supported_band *sband;
+ struct ieee80211_hw *hw = local_to_hw(local);
+ struct ieee80211_conf *conf = &local->hw.conf;
+ struct ath_softc *sc = hw->priv;
+ int i, j = 0;
+
+ DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
+
+ sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
+ sta->txrate_idx = rate_lowest_index(local, sband, sta);
+
+ ath_setup_rates(local, sta);
+ if (conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
+ for (i = 0; i < MCS_SET_SIZE; i++) {
+ if (conf->ht_conf.supp_mcs_set[i/8] & (1<<(i%8)))
+ ((struct ath_rate_node *)
+ priv_sta)->neg_ht_rates.rs_rates[j++] = i;
+ if (j == ATH_RATE_MAX)
+ break;
+ }
+ ((struct ath_rate_node *)priv_sta)->neg_ht_rates.rs_nrates = j;
+ }
+ ath_rc_node_update(hw, priv_sta);
+}
+
+static void ath_rate_clear(void *priv)
+{
+ return;
+}
+
+static void *ath_rate_alloc(struct ieee80211_local *local)
+{
+ struct ieee80211_hw *hw = local_to_hw(local);
+ struct ath_softc *sc = hw->priv;
+
+ DPRINTF(sc, ATH_DBG_RATE, "%s", __func__);
+ return local->hw.priv;
+}
+
+static void ath_rate_free(void *priv)
+{
+ return;
+}
+
+static void *ath_rate_alloc_sta(void *priv, gfp_t gfp)
+{
+ struct ath_softc *sc = priv;
+ struct ath_vap *avp = sc->sc_vaps[0];
+ struct ath_rate_node *rate_priv;
+
+ DPRINTF(sc, ATH_DBG_RATE, "%s", __func__);
+ rate_priv = ath_rate_node_alloc(avp, sc->sc_rc, gfp);
+ if (!rate_priv) {
+ DPRINTF(sc, ATH_DBG_FATAL, "%s:Unable to allocate"
+ "private rate control structure", __func__);
+ return NULL;
+ }
+ ath_rc_sib_init(rate_priv);
+ return rate_priv;
+}
+
+static void ath_rate_free_sta(void *priv, void *priv_sta)
+{
+ struct ath_rate_node *rate_priv = priv_sta;
+ struct ath_softc *sc = priv;
+
+ DPRINTF(sc, ATH_DBG_RATE, "%s", __func__);
+ ath_rate_node_free(rate_priv);
+}
+
+static struct rate_control_ops ath_rate_ops = {
+ .module = NULL,
+ .name = "ath9k_rate_control",
+ .tx_status = ath_tx_status,
+ .get_rate = ath_get_rate,
+ .rate_init = ath_rate_init,
+ .clear = ath_rate_clear,
+ .alloc = ath_rate_alloc,
+ .free = ath_rate_free,
+ .alloc_sta = ath_rate_alloc_sta,
+ .free_sta = ath_rate_free_sta
+};
+
+int ath_rate_control_register(void)
+{
+ return ieee80211_rate_control_register(&ath_rate_ops);
+}
+
+void ath_rate_control_unregister(void)
+{
+ ieee80211_rate_control_unregister(&ath_rate_ops);
+}
+
OpenPOWER on IntegriCloud