summaryrefslogtreecommitdiffstats
path: root/arch/parisc/lib/io.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/parisc/lib/io.c
downloadblackbird-op-linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.gz
blackbird-op-linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.zip
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'arch/parisc/lib/io.c')
-rw-r--r--arch/parisc/lib/io.c488
1 files changed, 488 insertions, 0 deletions
diff --git a/arch/parisc/lib/io.c b/arch/parisc/lib/io.c
new file mode 100644
index 000000000000..7c1406ff825e
--- /dev/null
+++ b/arch/parisc/lib/io.c
@@ -0,0 +1,488 @@
+/*
+ * arch/parisc/lib/io.c
+ *
+ * Copyright (c) Matthew Wilcox 2001 for Hewlett-Packard
+ * Copyright (c) Randolph Chung 2001 <tausq@debian.org>
+ *
+ * IO accessing functions which shouldn't be inlined because they're too big
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <asm/io.h>
+
+/* Copies a block of memory to a device in an efficient manner.
+ * Assumes the device can cope with 32-bit transfers. If it can't,
+ * don't use this function.
+ */
+void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
+{
+ if (((unsigned long)dst & 3) != ((unsigned long)src & 3))
+ goto bytecopy;
+ while ((unsigned long)dst & 3) {
+ writeb(*(char *)src, dst++);
+ src++;
+ count--;
+ }
+ while (count > 3) {
+ __raw_writel(*(u32 *)src, dst);
+ src += 4;
+ dst += 4;
+ count -= 4;
+ }
+ bytecopy:
+ while (count--) {
+ writeb(*(char *)src, dst++);
+ src++;
+ }
+}
+
+/*
+** Copies a block of memory from a device in an efficient manner.
+** Assumes the device can cope with 32-bit transfers. If it can't,
+** don't use this function.
+**
+** CR16 counts on C3000 reading 256 bytes from Symbios 896 RAM:
+** 27341/64 = 427 cyc per int
+** 61311/128 = 478 cyc per short
+** 122637/256 = 479 cyc per byte
+** Ergo bus latencies dominant (not transfer size).
+** Minimize total number of transfers at cost of CPU cycles.
+** TODO: only look at src alignment and adjust the stores to dest.
+*/
+void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
+{
+ /* first compare alignment of src/dst */
+ if ( (((unsigned long)dst ^ (unsigned long)src) & 1) || (count < 2) )
+ goto bytecopy;
+
+ if ( (((unsigned long)dst ^ (unsigned long)src) & 2) || (count < 4) )
+ goto shortcopy;
+
+ /* Then check for misaligned start address */
+ if ((unsigned long)src & 1) {
+ *(u8 *)dst = readb(src);
+ src++;
+ dst++;
+ count--;
+ if (count < 2) goto bytecopy;
+ }
+
+ if ((unsigned long)src & 2) {
+ *(u16 *)dst = __raw_readw(src);
+ src += 2;
+ dst += 2;
+ count -= 2;
+ }
+
+ while (count > 3) {
+ *(u32 *)dst = __raw_readl(src);
+ dst += 4;
+ src += 4;
+ count -= 4;
+ }
+
+ shortcopy:
+ while (count > 1) {
+ *(u16 *)dst = __raw_readw(src);
+ src += 2;
+ dst += 2;
+ count -= 2;
+ }
+
+ bytecopy:
+ while (count--) {
+ *(char *)dst = readb(src);
+ src++;
+ dst++;
+ }
+}
+
+/* Sets a block of memory on a device to a given value.
+ * Assumes the device can cope with 32-bit transfers. If it can't,
+ * don't use this function.
+ */
+void memset_io(volatile void __iomem *addr, unsigned char val, int count)
+{
+ u32 val32 = (val << 24) | (val << 16) | (val << 8) | val;
+ while ((unsigned long)addr & 3) {
+ writeb(val, addr++);
+ count--;
+ }
+ while (count > 3) {
+ __raw_writel(val32, addr);
+ addr += 4;
+ count -= 4;
+ }
+ while (count--) {
+ writeb(val, addr++);
+ }
+}
+
+/*
+ * Read COUNT 8-bit bytes from port PORT into memory starting at
+ * SRC.
+ */
+void insb (unsigned long port, void *dst, unsigned long count)
+{
+ unsigned char *p;
+
+ p = (unsigned char *)dst;
+
+ while (((unsigned long)p) & 0x3) {
+ if (!count)
+ return;
+ count--;
+ *p = inb(port);
+ p++;
+ }
+
+ while (count >= 4) {
+ unsigned int w;
+ count -= 4;
+ w = inb(port) << 24;
+ w |= inb(port) << 16;
+ w |= inb(port) << 8;
+ w |= inb(port);
+ *(unsigned int *) p = w;
+ p += 4;
+ }
+
+ while (count) {
+ --count;
+ *p = inb(port);
+ p++;
+ }
+}
+
+
+/*
+ * Read COUNT 16-bit words from port PORT into memory starting at
+ * SRC. SRC must be at least short aligned. This is used by the
+ * IDE driver to read disk sectors. Performance is important, but
+ * the interfaces seems to be slow: just using the inlined version
+ * of the inw() breaks things.
+ */
+void insw (unsigned long port, void *dst, unsigned long count)
+{
+ unsigned int l = 0, l2;
+ unsigned char *p;
+
+ p = (unsigned char *)dst;
+
+ if (!count)
+ return;
+
+ switch (((unsigned long)p) & 0x3)
+ {
+ case 0x00: /* Buffer 32-bit aligned */
+ while (count>=2) {
+
+ count -= 2;
+ l = cpu_to_le16(inw(port)) << 16;
+ l |= cpu_to_le16(inw(port));
+ *(unsigned int *)p = l;
+ p += 4;
+ }
+ if (count) {
+ *(unsigned short *)p = cpu_to_le16(inw(port));
+ }
+ break;
+
+ case 0x02: /* Buffer 16-bit aligned */
+ *(unsigned short *)p = cpu_to_le16(inw(port));
+ p += 2;
+ count--;
+ while (count>=2) {
+
+ count -= 2;
+ l = cpu_to_le16(inw(port)) << 16;
+ l |= cpu_to_le16(inw(port));
+ *(unsigned int *)p = l;
+ p += 4;
+ }
+ if (count) {
+ *(unsigned short *)p = cpu_to_le16(inw(port));
+ }
+ break;
+
+ case 0x01: /* Buffer 8-bit aligned */
+ case 0x03:
+ /* I don't bother with 32bit transfers
+ * in this case, 16bit will have to do -- DE */
+ --count;
+
+ l = cpu_to_le16(inw(port));
+ *p = l >> 8;
+ p++;
+ while (count--)
+ {
+ l2 = cpu_to_le16(inw(port));
+ *(unsigned short *)p = (l & 0xff) << 8 | (l2 >> 8);
+ p += 2;
+ l = l2;
+ }
+ *p = l & 0xff;
+ break;
+ }
+}
+
+
+
+/*
+ * Read COUNT 32-bit words from port PORT into memory starting at
+ * SRC. Now works with any alignment in SRC. Performance is important,
+ * but the interfaces seems to be slow: just using the inlined version
+ * of the inl() breaks things.
+ */
+void insl (unsigned long port, void *dst, unsigned long count)
+{
+ unsigned int l = 0, l2;
+ unsigned char *p;
+
+ p = (unsigned char *)dst;
+
+ if (!count)
+ return;
+
+ switch (((unsigned long) dst) & 0x3)
+ {
+ case 0x00: /* Buffer 32-bit aligned */
+ while (count--)
+ {
+ *(unsigned int *)p = cpu_to_le32(inl(port));
+ p += 4;
+ }
+ break;
+
+ case 0x02: /* Buffer 16-bit aligned */
+ --count;
+
+ l = cpu_to_le32(inl(port));
+ *(unsigned short *)p = l >> 16;
+ p += 2;
+
+ while (count--)
+ {
+ l2 = cpu_to_le32(inl(port));
+ *(unsigned int *)p = (l & 0xffff) << 16 | (l2 >> 16);
+ p += 4;
+ l = l2;
+ }
+ *(unsigned short *)p = l & 0xffff;
+ break;
+ case 0x01: /* Buffer 8-bit aligned */
+ --count;
+
+ l = cpu_to_le32(inl(port));
+ *(unsigned char *)p = l >> 24;
+ p++;
+ *(unsigned short *)p = (l >> 8) & 0xffff;
+ p += 2;
+ while (count--)
+ {
+ l2 = cpu_to_le32(inl(port));
+ *(unsigned int *)p = (l & 0xff) << 24 | (l2 >> 8);
+ p += 4;
+ l = l2;
+ }
+ *p = l & 0xff;
+ break;
+ case 0x03: /* Buffer 8-bit aligned */
+ --count;
+
+ l = cpu_to_le32(inl(port));
+ *p = l >> 24;
+ p++;
+ while (count--)
+ {
+ l2 = cpu_to_le32(inl(port));
+ *(unsigned int *)p = (l & 0xffffff) << 8 | l2 >> 24;
+ p += 4;
+ l = l2;
+ }
+ *(unsigned short *)p = (l >> 8) & 0xffff;
+ p += 2;
+ *p = l & 0xff;
+ break;
+ }
+}
+
+
+/*
+ * Like insb but in the opposite direction.
+ * Don't worry as much about doing aligned memory transfers:
+ * doing byte reads the "slow" way isn't nearly as slow as
+ * doing byte writes the slow way (no r-m-w cycle).
+ */
+void outsb(unsigned long port, const void * src, unsigned long count)
+{
+ const unsigned char *p;
+
+ p = (const unsigned char *)src;
+ while (count) {
+ count--;
+ outb(*p, port);
+ p++;
+ }
+}
+
+/*
+ * Like insw but in the opposite direction. This is used by the IDE
+ * driver to write disk sectors. Performance is important, but the
+ * interfaces seems to be slow: just using the inlined version of the
+ * outw() breaks things.
+ */
+void outsw (unsigned long port, const void *src, unsigned long count)
+{
+ unsigned int l = 0, l2;
+ const unsigned char *p;
+
+ p = (const unsigned char *)src;
+
+ if (!count)
+ return;
+
+ switch (((unsigned long)p) & 0x3)
+ {
+ case 0x00: /* Buffer 32-bit aligned */
+ while (count>=2) {
+ count -= 2;
+ l = *(unsigned int *)p;
+ p += 4;
+ outw(le16_to_cpu(l >> 16), port);
+ outw(le16_to_cpu(l & 0xffff), port);
+ }
+ if (count) {
+ outw(le16_to_cpu(*(unsigned short*)p), port);
+ }
+ break;
+
+ case 0x02: /* Buffer 16-bit aligned */
+
+ outw(le16_to_cpu(*(unsigned short*)p), port);
+ p += 2;
+ count--;
+
+ while (count>=2) {
+ count -= 2;
+ l = *(unsigned int *)p;
+ p += 4;
+ outw(le16_to_cpu(l >> 16), port);
+ outw(le16_to_cpu(l & 0xffff), port);
+ }
+ if (count) {
+ outw(le16_to_cpu(*(unsigned short *)p), port);
+ }
+ break;
+
+ case 0x01: /* Buffer 8-bit aligned */
+ /* I don't bother with 32bit transfers
+ * in this case, 16bit will have to do -- DE */
+
+ l = *p << 8;
+ p++;
+ count--;
+ while (count)
+ {
+ count--;
+ l2 = *(unsigned short *)p;
+ p += 2;
+ outw(le16_to_cpu(l | l2 >> 8), port);
+ l = l2 << 8;
+ }
+ l2 = *(unsigned char *)p;
+ outw (le16_to_cpu(l | l2>>8), port);
+ break;
+
+ }
+}
+
+
+/*
+ * Like insl but in the opposite direction. This is used by the IDE
+ * driver to write disk sectors. Works with any alignment in SRC.
+ * Performance is important, but the interfaces seems to be slow:
+ * just using the inlined version of the outl() breaks things.
+ */
+void outsl (unsigned long port, const void *src, unsigned long count)
+{
+ unsigned int l = 0, l2;
+ const unsigned char *p;
+
+ p = (const unsigned char *)src;
+
+ if (!count)
+ return;
+
+ switch (((unsigned long)p) & 0x3)
+ {
+ case 0x00: /* Buffer 32-bit aligned */
+ while (count--)
+ {
+ outl(le32_to_cpu(*(unsigned int *)p), port);
+ p += 4;
+ }
+ break;
+
+ case 0x02: /* Buffer 16-bit aligned */
+ --count;
+
+ l = *(unsigned short *)p;
+ p += 2;
+
+ while (count--)
+ {
+ l2 = *(unsigned int *)p;
+ p += 4;
+ outl (le32_to_cpu(l << 16 | l2 >> 16), port);
+ l = l2;
+ }
+ l2 = *(unsigned short *)p;
+ outl (le32_to_cpu(l << 16 | l2), port);
+ break;
+ case 0x01: /* Buffer 8-bit aligned */
+ --count;
+
+ l = *p << 24;
+ p++;
+ l |= *(unsigned short *)p << 8;
+ p += 2;
+
+ while (count--)
+ {
+ l2 = *(unsigned int *)p;
+ p += 4;
+ outl (le32_to_cpu(l | l2 >> 24), port);
+ l = l2 << 8;
+ }
+ l2 = *p;
+ outl (le32_to_cpu(l | l2), port);
+ break;
+ case 0x03: /* Buffer 8-bit aligned */
+ --count;
+
+ l = *p << 24;
+ p++;
+
+ while (count--)
+ {
+ l2 = *(unsigned int *)p;
+ p += 4;
+ outl (le32_to_cpu(l | l2 >> 8), port);
+ l = l2 << 24;
+ }
+ l2 = *(unsigned short *)p << 16;
+ p += 2;
+ l2 |= *p;
+ outl (le32_to_cpu(l | l2), port);
+ break;
+ }
+}
+
+EXPORT_SYMBOL(insb);
+EXPORT_SYMBOL(insw);
+EXPORT_SYMBOL(insl);
+EXPORT_SYMBOL(outsb);
+EXPORT_SYMBOL(outsw);
+EXPORT_SYMBOL(outsl);
OpenPOWER on IntegriCloud