diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2012-05-25 09:18:59 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2012-05-25 09:18:59 -0700 |
commit | d484864dd96e1830e7689510597707c1df8cd681 (patch) | |
tree | 51551708ba3f26d05575fa91daaf0c0d970a77c3 /arch/arm/mm/init.c | |
parent | be87cfb47c5c740f7b17929bcd7c480b228513e0 (diff) | |
parent | 0f51596bd39a5c928307ffcffc9ba07f90f42a8b (diff) | |
download | blackbird-op-linux-d484864dd96e1830e7689510597707c1df8cd681.tar.gz blackbird-op-linux-d484864dd96e1830e7689510597707c1df8cd681.zip |
Merge branch 'for-linus' of git://git.linaro.org/people/mszyprowski/linux-dma-mapping
Pull CMA and ARM DMA-mapping updates from Marek Szyprowski:
"These patches contain two major updates for DMA mapping subsystem
(mainly for ARM architecture). First one is Contiguous Memory
Allocator (CMA) which makes it possible for device drivers to allocate
big contiguous chunks of memory after the system has booted.
The main difference from the similar frameworks is the fact that CMA
allows to transparently reuse the memory region reserved for the big
chunk allocation as a system memory, so no memory is wasted when no
big chunk is allocated. Once the alloc request is issued, the
framework migrates system pages to create space for the required big
chunk of physically contiguous memory.
For more information one can refer to nice LWN articles:
- 'A reworked contiguous memory allocator':
http://lwn.net/Articles/447405/
- 'CMA and ARM':
http://lwn.net/Articles/450286/
- 'A deep dive into CMA':
http://lwn.net/Articles/486301/
- and the following thread with the patches and links to all previous
versions:
https://lkml.org/lkml/2012/4/3/204
The main client for this new framework is ARM DMA-mapping subsystem.
The second part provides a complete redesign in ARM DMA-mapping
subsystem. The core implementation has been changed to use common
struct dma_map_ops based infrastructure with the recent updates for
new dma attributes merged in v3.4-rc2. This allows to use more than
one implementation of dma-mapping calls and change/select them on the
struct device basis. The first client of this new infractructure is
dmabounce implementation which has been completely cut out of the
core, common code.
The last patch of this redesign update introduces a new, experimental
implementation of dma-mapping calls on top of generic IOMMU framework.
This lets ARM sub-platform to transparently use IOMMU for DMA-mapping
calls if one provides required IOMMU hardware.
For more information please refer to the following thread:
http://www.spinics.net/lists/arm-kernel/msg175729.html
The last patch merges changes from both updates and provides a
resolution for the conflicts which cannot be avoided when patches have
been applied on the same files (mainly arch/arm/mm/dma-mapping.c)."
Acked by Andrew Morton <akpm@linux-foundation.org>:
"Yup, this one please. It's had much work, plenty of review and I
think even Russell is happy with it."
* 'for-linus' of git://git.linaro.org/people/mszyprowski/linux-dma-mapping: (28 commits)
ARM: dma-mapping: use PMD size for section unmap
cma: fix migration mode
ARM: integrate CMA with DMA-mapping subsystem
X86: integrate CMA with DMA-mapping subsystem
drivers: add Contiguous Memory Allocator
mm: trigger page reclaim in alloc_contig_range() to stabilise watermarks
mm: extract reclaim code from __alloc_pages_direct_reclaim()
mm: Serialize access to min_free_kbytes
mm: page_isolation: MIGRATE_CMA isolation functions added
mm: mmzone: MIGRATE_CMA migration type added
mm: page_alloc: change fallbacks array handling
mm: page_alloc: introduce alloc_contig_range()
mm: compaction: export some of the functions
mm: compaction: introduce isolate_freepages_range()
mm: compaction: introduce map_pages()
mm: compaction: introduce isolate_migratepages_range()
mm: page_alloc: remove trailing whitespace
ARM: dma-mapping: add support for IOMMU mapper
ARM: dma-mapping: use alloc, mmap, free from dma_ops
ARM: dma-mapping: remove redundant code and do the cleanup
...
Conflicts:
arch/x86/include/asm/dma-mapping.h
Diffstat (limited to 'arch/arm/mm/init.c')
-rw-r--r-- | arch/arm/mm/init.c | 23 |
1 files changed, 19 insertions, 4 deletions
diff --git a/arch/arm/mm/init.c b/arch/arm/mm/init.c index 8f5813bbffb5..c21d06c7dd7e 100644 --- a/arch/arm/mm/init.c +++ b/arch/arm/mm/init.c @@ -20,6 +20,7 @@ #include <linux/highmem.h> #include <linux/gfp.h> #include <linux/memblock.h> +#include <linux/dma-contiguous.h> #include <asm/mach-types.h> #include <asm/memblock.h> @@ -226,6 +227,17 @@ static void __init arm_adjust_dma_zone(unsigned long *size, unsigned long *hole, } #endif +void __init setup_dma_zone(struct machine_desc *mdesc) +{ +#ifdef CONFIG_ZONE_DMA + if (mdesc->dma_zone_size) { + arm_dma_zone_size = mdesc->dma_zone_size; + arm_dma_limit = PHYS_OFFSET + arm_dma_zone_size - 1; + } else + arm_dma_limit = 0xffffffff; +#endif +} + static void __init arm_bootmem_free(unsigned long min, unsigned long max_low, unsigned long max_high) { @@ -273,12 +285,9 @@ static void __init arm_bootmem_free(unsigned long min, unsigned long max_low, * Adjust the sizes according to any special requirements for * this machine type. */ - if (arm_dma_zone_size) { + if (arm_dma_zone_size) arm_adjust_dma_zone(zone_size, zhole_size, arm_dma_zone_size >> PAGE_SHIFT); - arm_dma_limit = PHYS_OFFSET + arm_dma_zone_size - 1; - } else - arm_dma_limit = 0xffffffff; #endif free_area_init_node(0, zone_size, min, zhole_size); @@ -364,6 +373,12 @@ void __init arm_memblock_init(struct meminfo *mi, struct machine_desc *mdesc) if (mdesc->reserve) mdesc->reserve(); + /* + * reserve memory for DMA contigouos allocations, + * must come from DMA area inside low memory + */ + dma_contiguous_reserve(min(arm_dma_limit, arm_lowmem_limit)); + arm_memblock_steal_permitted = false; memblock_allow_resize(); memblock_dump_all(); |