summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
authorGrant Likely <grant.likely@secretlab.ca>2012-07-11 16:08:35 +0100
committerGrant Likely <grant.likely@secretlab.ca>2012-07-11 16:08:35 +0100
commit80c1834fc86c2bbacb54a8fc3c04a8b0066b0996 (patch)
tree8200248706960af8b779e9144f5b51c670602228 /Documentation
parent22076c7712be29a602de45b1c573f31adbd428a9 (diff)
parentbd0a521e88aa7a06ae7aabaed7ae196ed4ad867a (diff)
downloadblackbird-op-linux-80c1834fc86c2bbacb54a8fc3c04a8b0066b0996.tar.gz
blackbird-op-linux-80c1834fc86c2bbacb54a8fc3c04a8b0066b0996.zip
Merge tag 'v3.5-rc6' into irqdomain/next
Linux 3.5-rc6
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/testing/sysfs-block-rssd21
-rw-r--r--Documentation/ABI/testing/sysfs-bus-iio31
-rw-r--r--Documentation/DocBook/media/v4l/pixfmt.xml4
-rw-r--r--Documentation/DocBook/media/v4l/v4l2.xml2
-rw-r--r--Documentation/DocBook/media/v4l/vidioc-create-bufs.xml5
-rw-r--r--Documentation/DocBook/media/v4l/vidioc-dqevent.xml2
-rw-r--r--Documentation/arm/SPEAr/overview.txt2
-rw-r--r--Documentation/device-mapper/verity.txt131
-rw-r--r--Documentation/devicetree/bindings/input/fsl-mma8450.txt1
-rw-r--r--Documentation/devicetree/bindings/mfd/mc13xxx.txt4
-rw-r--r--Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt4
-rw-r--r--Documentation/devicetree/bindings/net/fsl-fec.txt2
-rw-r--r--Documentation/devicetree/bindings/spi/fsl-imx-cspi.txt4
-rw-r--r--Documentation/devicetree/bindings/vendor-prefixes.txt1
-rw-r--r--Documentation/hwmon/coretemp22
-rw-r--r--Documentation/networking/stmmac.txt44
-rw-r--r--Documentation/prctl/no_new_privs.txt57
-rw-r--r--Documentation/stable_kernel_rules.txt6
-rw-r--r--Documentation/virtual/kvm/api.txt17
19 files changed, 219 insertions, 141 deletions
diff --git a/Documentation/ABI/testing/sysfs-block-rssd b/Documentation/ABI/testing/sysfs-block-rssd
index 679ce3543122..beef30c046b0 100644
--- a/Documentation/ABI/testing/sysfs-block-rssd
+++ b/Documentation/ABI/testing/sysfs-block-rssd
@@ -1,26 +1,5 @@
-What: /sys/block/rssd*/registers
-Date: March 2012
-KernelVersion: 3.3
-Contact: Asai Thambi S P <asamymuthupa@micron.com>
-Description: This is a read-only file. Dumps below driver information and
- hardware registers.
- - S ACTive
- - Command Issue
- - Completed
- - PORT IRQ STAT
- - HOST IRQ STAT
- - Allocated
- - Commands in Q
-
What: /sys/block/rssd*/status
Date: April 2012
KernelVersion: 3.4
Contact: Asai Thambi S P <asamymuthupa@micron.com>
Description: This is a read-only file. Indicates the status of the device.
-
-What: /sys/block/rssd*/flags
-Date: May 2012
-KernelVersion: 3.5
-Contact: Asai Thambi S P <asamymuthupa@micron.com>
-Description: This is a read-only file. Dumps the flags in port and driver
- data structure
diff --git a/Documentation/ABI/testing/sysfs-bus-iio b/Documentation/ABI/testing/sysfs-bus-iio
index 5bc8a476c15e..cfedf63cce15 100644
--- a/Documentation/ABI/testing/sysfs-bus-iio
+++ b/Documentation/ABI/testing/sysfs-bus-iio
@@ -219,6 +219,7 @@ What: /sys/bus/iio/devices/iio:deviceX/in_voltageY_scale
What: /sys/bus/iio/devices/iio:deviceX/in_voltageY_supply_scale
What: /sys/bus/iio/devices/iio:deviceX/in_voltage_scale
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_scale
+What: /sys/bus/iio/devices/iio:deviceX/out_altvoltageY_scale
What: /sys/bus/iio/devices/iio:deviceX/in_accel_scale
What: /sys/bus/iio/devices/iio:deviceX/in_accel_peak_scale
What: /sys/bus/iio/devices/iio:deviceX/in_anglvel_scale
@@ -273,6 +274,7 @@ What: /sys/bus/iio/devices/iio:deviceX/in_accel_scale_available
What: /sys/.../iio:deviceX/in_voltageX_scale_available
What: /sys/.../iio:deviceX/in_voltage-voltage_scale_available
What: /sys/.../iio:deviceX/out_voltageX_scale_available
+What: /sys/.../iio:deviceX/out_altvoltageX_scale_available
What: /sys/.../iio:deviceX/in_capacitance_scale_available
KernelVersion: 2.635
Contact: linux-iio@vger.kernel.org
@@ -298,14 +300,19 @@ Description:
gives the 3dB frequency of the filter in Hz.
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_raw
+What: /sys/bus/iio/devices/iio:deviceX/out_altvoltageY_raw
KernelVersion: 2.6.37
Contact: linux-iio@vger.kernel.org
Description:
Raw (unscaled, no bias etc.) output voltage for
channel Y. The number must always be specified and
unique if the output corresponds to a single channel.
+ While DAC like devices typically use out_voltage,
+ a continuous frequency generating device, such as
+ a DDS or PLL should use out_altvoltage.
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY&Z_raw
+What: /sys/bus/iio/devices/iio:deviceX/out_altvoltageY&Z_raw
KernelVersion: 2.6.37
Contact: linux-iio@vger.kernel.org
Description:
@@ -316,6 +323,8 @@ Description:
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_powerdown_mode
What: /sys/bus/iio/devices/iio:deviceX/out_voltage_powerdown_mode
+What: /sys/bus/iio/devices/iio:deviceX/out_altvoltageY_powerdown_mode
+What: /sys/bus/iio/devices/iio:deviceX/out_altvoltage_powerdown_mode
KernelVersion: 2.6.38
Contact: linux-iio@vger.kernel.org
Description:
@@ -330,6 +339,8 @@ Description:
What: /sys/.../iio:deviceX/out_votlageY_powerdown_mode_available
What: /sys/.../iio:deviceX/out_voltage_powerdown_mode_available
+What: /sys/.../iio:deviceX/out_altvotlageY_powerdown_mode_available
+What: /sys/.../iio:deviceX/out_altvoltage_powerdown_mode_available
KernelVersion: 2.6.38
Contact: linux-iio@vger.kernel.org
Description:
@@ -338,6 +349,8 @@ Description:
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_powerdown
What: /sys/bus/iio/devices/iio:deviceX/out_voltage_powerdown
+What: /sys/bus/iio/devices/iio:deviceX/out_altvoltageY_powerdown
+What: /sys/bus/iio/devices/iio:deviceX/out_altvoltage_powerdown
KernelVersion: 2.6.38
Contact: linux-iio@vger.kernel.org
Description:
@@ -346,6 +359,24 @@ Description:
normal operation. Y may be suppressed if all outputs are
controlled together.
+What: /sys/bus/iio/devices/iio:deviceX/out_altvoltageY_frequency
+KernelVersion: 3.4.0
+Contact: linux-iio@vger.kernel.org
+Description:
+ Output frequency for channel Y in Hz. The number must always be
+ specified and unique if the output corresponds to a single
+ channel.
+
+What: /sys/bus/iio/devices/iio:deviceX/out_altvoltageY_phase
+KernelVersion: 3.4.0
+Contact: linux-iio@vger.kernel.org
+Description:
+ Phase in radians of one frequency/clock output Y
+ (out_altvoltageY) relative to another frequency/clock output
+ (out_altvoltageZ) of the device X. The number must always be
+ specified and unique if the output corresponds to a single
+ channel.
+
What: /sys/bus/iio/devices/iio:deviceX/events
KernelVersion: 2.6.35
Contact: linux-iio@vger.kernel.org
diff --git a/Documentation/DocBook/media/v4l/pixfmt.xml b/Documentation/DocBook/media/v4l/pixfmt.xml
index f5ac15ed0549..e58934c92895 100644
--- a/Documentation/DocBook/media/v4l/pixfmt.xml
+++ b/Documentation/DocBook/media/v4l/pixfmt.xml
@@ -986,13 +986,13 @@ http://www.thedirks.org/winnov/</ulink></para></entry>
<row id="V4L2-PIX-FMT-Y4">
<entry><constant>V4L2_PIX_FMT_Y4</constant></entry>
<entry>'Y04 '</entry>
- <entry>Old 4-bit greyscale format. Only the least significant 4 bits of each byte are used,
+ <entry>Old 4-bit greyscale format. Only the most significant 4 bits of each byte are used,
the other bits are set to 0.</entry>
</row>
<row id="V4L2-PIX-FMT-Y6">
<entry><constant>V4L2_PIX_FMT_Y6</constant></entry>
<entry>'Y06 '</entry>
- <entry>Old 6-bit greyscale format. Only the least significant 6 bits of each byte are used,
+ <entry>Old 6-bit greyscale format. Only the most significant 6 bits of each byte are used,
the other bits are set to 0.</entry>
</row>
</tbody>
diff --git a/Documentation/DocBook/media/v4l/v4l2.xml b/Documentation/DocBook/media/v4l/v4l2.xml
index 015c561754b7..008c2d73a484 100644
--- a/Documentation/DocBook/media/v4l/v4l2.xml
+++ b/Documentation/DocBook/media/v4l/v4l2.xml
@@ -560,6 +560,7 @@ and discussions on the V4L mailing list.</revremark>
&sub-g-tuner;
&sub-log-status;
&sub-overlay;
+ &sub-prepare-buf;
&sub-qbuf;
&sub-querybuf;
&sub-querycap;
@@ -567,7 +568,6 @@ and discussions on the V4L mailing list.</revremark>
&sub-query-dv-preset;
&sub-query-dv-timings;
&sub-querystd;
- &sub-prepare-buf;
&sub-reqbufs;
&sub-s-hw-freq-seek;
&sub-streamon;
diff --git a/Documentation/DocBook/media/v4l/vidioc-create-bufs.xml b/Documentation/DocBook/media/v4l/vidioc-create-bufs.xml
index 765549ff8a71..a2474ecb574a 100644
--- a/Documentation/DocBook/media/v4l/vidioc-create-bufs.xml
+++ b/Documentation/DocBook/media/v4l/vidioc-create-bufs.xml
@@ -108,10 +108,9 @@ information.</para>
/></entry>
</row>
<row>
- <entry>__u32</entry>
+ <entry>struct&nbsp;v4l2_format</entry>
<entry><structfield>format</structfield></entry>
- <entry>Filled in by the application, preserved by the driver.
- See <xref linkend="v4l2-format" />.</entry>
+ <entry>Filled in by the application, preserved by the driver.</entry>
</row>
<row>
<entry>__u32</entry>
diff --git a/Documentation/DocBook/media/v4l/vidioc-dqevent.xml b/Documentation/DocBook/media/v4l/vidioc-dqevent.xml
index e8714aa16433..98a856f9ec30 100644
--- a/Documentation/DocBook/media/v4l/vidioc-dqevent.xml
+++ b/Documentation/DocBook/media/v4l/vidioc-dqevent.xml
@@ -89,7 +89,7 @@
<row>
<entry></entry>
<entry>&v4l2-event-frame-sync;</entry>
- <entry><structfield>frame</structfield></entry>
+ <entry><structfield>frame_sync</structfield></entry>
<entry>Event data for event V4L2_EVENT_FRAME_SYNC.</entry>
</row>
<row>
diff --git a/Documentation/arm/SPEAr/overview.txt b/Documentation/arm/SPEAr/overview.txt
index 57aae7765c74..65610bf52ebf 100644
--- a/Documentation/arm/SPEAr/overview.txt
+++ b/Documentation/arm/SPEAr/overview.txt
@@ -60,4 +60,4 @@ Introduction
Document Author
---------------
- Viresh Kumar <viresh.kumar@st.com>, (c) 2010-2012 ST Microelectronics
+ Viresh Kumar <viresh.linux@gmail.com>, (c) 2010-2012 ST Microelectronics
diff --git a/Documentation/device-mapper/verity.txt b/Documentation/device-mapper/verity.txt
index 32e48797a14f..9884681535ee 100644
--- a/Documentation/device-mapper/verity.txt
+++ b/Documentation/device-mapper/verity.txt
@@ -7,39 +7,39 @@ This target is read-only.
Construction Parameters
=======================
- <version> <dev> <hash_dev> <hash_start>
+ <version> <dev> <hash_dev>
<data_block_size> <hash_block_size>
<num_data_blocks> <hash_start_block>
<algorithm> <digest> <salt>
<version>
- This is the version number of the on-disk format.
+ This is the type of the on-disk hash format.
0 is the original format used in the Chromium OS.
- The salt is appended when hashing, digests are stored continuously and
- the rest of the block is padded with zeros.
+ The salt is appended when hashing, digests are stored continuously and
+ the rest of the block is padded with zeros.
1 is the current format that should be used for new devices.
- The salt is prepended when hashing and each digest is
- padded with zeros to the power of two.
+ The salt is prepended when hashing and each digest is
+ padded with zeros to the power of two.
<dev>
- This is the device containing the data the integrity of which needs to be
+ This is the device containing data, the integrity of which needs to be
checked. It may be specified as a path, like /dev/sdaX, or a device number,
<major>:<minor>.
<hash_dev>
- This is the device that that supplies the hash tree data. It may be
+ This is the device that supplies the hash tree data. It may be
specified similarly to the device path and may be the same device. If the
- same device is used, the hash_start should be outside of the dm-verity
- configured device size.
+ same device is used, the hash_start should be outside the configured
+ dm-verity device.
<data_block_size>
- The block size on a data device. Each block corresponds to one digest on
- the hash device.
+ The block size on a data device in bytes.
+ Each block corresponds to one digest on the hash device.
<hash_block_size>
- The size of a hash block.
+ The size of a hash block in bytes.
<num_data_blocks>
The number of data blocks on the data device. Additional blocks are
@@ -65,7 +65,7 @@ Construction Parameters
Theory of operation
===================
-dm-verity is meant to be setup as part of a verified boot path. This
+dm-verity is meant to be set up as part of a verified boot path. This
may be anything ranging from a boot using tboot or trustedgrub to just
booting from a known-good device (like a USB drive or CD).
@@ -73,20 +73,20 @@ When a dm-verity device is configured, it is expected that the caller
has been authenticated in some way (cryptographic signatures, etc).
After instantiation, all hashes will be verified on-demand during
disk access. If they cannot be verified up to the root node of the
-tree, the root hash, then the I/O will fail. This should identify
+tree, the root hash, then the I/O will fail. This should detect
tampering with any data on the device and the hash data.
Cryptographic hashes are used to assert the integrity of the device on a
-per-block basis. This allows for a lightweight hash computation on first read
-into the page cache. Block hashes are stored linearly-aligned to the nearest
-block the size of a page.
+per-block basis. This allows for a lightweight hash computation on first read
+into the page cache. Block hashes are stored linearly, aligned to the nearest
+block size.
Hash Tree
---------
Each node in the tree is a cryptographic hash. If it is a leaf node, the hash
-is of some block data on disk. If it is an intermediary node, then the hash is
-of a number of child nodes.
+of some data block on disk is calculated. If it is an intermediary node,
+the hash of a number of child nodes is calculated.
Each entry in the tree is a collection of neighboring nodes that fit in one
block. The number is determined based on block_size and the size of the
@@ -110,63 +110,23 @@ alg = sha256, num_blocks = 32768, block_size = 4096
On-disk format
==============
-Below is the recommended on-disk format. The verity kernel code does not
-read the on-disk header. It only reads the hash blocks which directly
-follow the header. It is expected that a user-space tool will verify the
-integrity of the verity_header and then call dmsetup with the correct
-parameters. Alternatively, the header can be omitted and the dmsetup
-parameters can be passed via the kernel command-line in a rooted chain
-of trust where the command-line is verified.
+The verity kernel code does not read the verity metadata on-disk header.
+It only reads the hash blocks which directly follow the header.
+It is expected that a user-space tool will verify the integrity of the
+verity header.
-The on-disk format is especially useful in cases where the hash blocks
-are on a separate partition. The magic number allows easy identification
-of the partition contents. Alternatively, the hash blocks can be stored
-in the same partition as the data to be verified. In such a configuration
-the filesystem on the partition would be sized a little smaller than
-the full-partition, leaving room for the hash blocks.
-
-struct superblock {
- uint8_t signature[8]
- "verity\0\0";
-
- uint8_t version;
- 1 - current format
-
- uint8_t data_block_bits;
- log2(data block size)
-
- uint8_t hash_block_bits;
- log2(hash block size)
-
- uint8_t pad1[1];
- zero padding
-
- uint16_t salt_size;
- big-endian salt size
-
- uint8_t pad2[2];
- zero padding
-
- uint32_t data_blocks_hi;
- big-endian high 32 bits of the 64-bit number of data blocks
-
- uint32_t data_blocks_lo;
- big-endian low 32 bits of the 64-bit number of data blocks
-
- uint8_t algorithm[16];
- cryptographic algorithm
-
- uint8_t salt[384];
- salt (the salt size is specified above)
-
- uint8_t pad3[88];
- zero padding to 512-byte boundary
-}
+Alternatively, the header can be omitted and the dmsetup parameters can
+be passed via the kernel command-line in a rooted chain of trust where
+the command-line is verified.
Directly following the header (and with sector number padded to the next hash
block boundary) are the hash blocks which are stored a depth at a time
(starting from the root), sorted in order of increasing index.
+The full specification of kernel parameters and on-disk metadata format
+is available at the cryptsetup project's wiki page
+ http://code.google.com/p/cryptsetup/wiki/DMVerity
+
Status
======
V (for Valid) is returned if every check performed so far was valid.
@@ -174,21 +134,22 @@ If any check failed, C (for Corruption) is returned.
Example
=======
-
-Setup a device:
- dmsetup create vroot --table \
- "0 2097152 "\
- "verity 1 /dev/sda1 /dev/sda2 4096 4096 2097152 1 "\
+Set up a device:
+ # dmsetup create vroot --readonly --table \
+ "0 2097152 verity 1 /dev/sda1 /dev/sda2 4096 4096 262144 1 sha256 "\
"4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076 "\
"1234000000000000000000000000000000000000000000000000000000000000"
A command line tool veritysetup is available to compute or verify
-the hash tree or activate the kernel driver. This is available from
-the LVM2 upstream repository and may be supplied as a package called
-device-mapper-verity-tools:
- git://sources.redhat.com/git/lvm2
- http://sourceware.org/git/?p=lvm2.git
- http://sourceware.org/cgi-bin/cvsweb.cgi/LVM2/verity?cvsroot=lvm2
-
-veritysetup -a vroot /dev/sda1 /dev/sda2 \
- 4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076
+the hash tree or activate the kernel device. This is available from
+the cryptsetup upstream repository http://code.google.com/p/cryptsetup/
+(as a libcryptsetup extension).
+
+Create hash on the device:
+ # veritysetup format /dev/sda1 /dev/sda2
+ ...
+ Root hash: 4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076
+
+Activate the device:
+ # veritysetup create vroot /dev/sda1 /dev/sda2 \
+ 4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076
diff --git a/Documentation/devicetree/bindings/input/fsl-mma8450.txt b/Documentation/devicetree/bindings/input/fsl-mma8450.txt
index a00c94ccbdee..0b96e5737d3a 100644
--- a/Documentation/devicetree/bindings/input/fsl-mma8450.txt
+++ b/Documentation/devicetree/bindings/input/fsl-mma8450.txt
@@ -2,6 +2,7 @@
Required properties:
- compatible : "fsl,mma8450".
+- reg: the I2C address of MMA8450
Example:
diff --git a/Documentation/devicetree/bindings/mfd/mc13xxx.txt b/Documentation/devicetree/bindings/mfd/mc13xxx.txt
index 19f6af47a792..baf07987ae68 100644
--- a/Documentation/devicetree/bindings/mfd/mc13xxx.txt
+++ b/Documentation/devicetree/bindings/mfd/mc13xxx.txt
@@ -46,8 +46,8 @@ Examples:
ecspi@70010000 { /* ECSPI1 */
fsl,spi-num-chipselects = <2>;
- cs-gpios = <&gpio3 24 0>, /* GPIO4_24 */
- <&gpio3 25 0>; /* GPIO4_25 */
+ cs-gpios = <&gpio4 24 0>, /* GPIO4_24 */
+ <&gpio4 25 0>; /* GPIO4_25 */
status = "okay";
pmic: mc13892@0 {
diff --git a/Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt b/Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt
index c7e404b3ef05..fea541ee8b34 100644
--- a/Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt
+++ b/Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt
@@ -29,6 +29,6 @@ esdhc@70008000 {
compatible = "fsl,imx51-esdhc";
reg = <0x70008000 0x4000>;
interrupts = <2>;
- cd-gpios = <&gpio0 6 0>; /* GPIO1_6 */
- wp-gpios = <&gpio0 5 0>; /* GPIO1_5 */
+ cd-gpios = <&gpio1 6 0>; /* GPIO1_6 */
+ wp-gpios = <&gpio1 5 0>; /* GPIO1_5 */
};
diff --git a/Documentation/devicetree/bindings/net/fsl-fec.txt b/Documentation/devicetree/bindings/net/fsl-fec.txt
index 7ab9e1a2d8be..4616fc28ee86 100644
--- a/Documentation/devicetree/bindings/net/fsl-fec.txt
+++ b/Documentation/devicetree/bindings/net/fsl-fec.txt
@@ -19,6 +19,6 @@ ethernet@83fec000 {
reg = <0x83fec000 0x4000>;
interrupts = <87>;
phy-mode = "mii";
- phy-reset-gpios = <&gpio1 14 0>; /* GPIO2_14 */
+ phy-reset-gpios = <&gpio2 14 0>; /* GPIO2_14 */
local-mac-address = [00 04 9F 01 1B B9];
};
diff --git a/Documentation/devicetree/bindings/spi/fsl-imx-cspi.txt b/Documentation/devicetree/bindings/spi/fsl-imx-cspi.txt
index 9841057d112b..4256a6df9b79 100644
--- a/Documentation/devicetree/bindings/spi/fsl-imx-cspi.txt
+++ b/Documentation/devicetree/bindings/spi/fsl-imx-cspi.txt
@@ -17,6 +17,6 @@ ecspi@70010000 {
reg = <0x70010000 0x4000>;
interrupts = <36>;
fsl,spi-num-chipselects = <2>;
- cs-gpios = <&gpio3 24 0>, /* GPIO4_24 */
- <&gpio3 25 0>; /* GPIO4_25 */
+ cs-gpios = <&gpio3 24 0>, /* GPIO3_24 */
+ <&gpio3 25 0>; /* GPIO3_25 */
};
diff --git a/Documentation/devicetree/bindings/vendor-prefixes.txt b/Documentation/devicetree/bindings/vendor-prefixes.txt
index 6eab91747a86..db4d3af3643c 100644
--- a/Documentation/devicetree/bindings/vendor-prefixes.txt
+++ b/Documentation/devicetree/bindings/vendor-prefixes.txt
@@ -3,6 +3,7 @@ Device tree binding vendor prefix registry. Keep list in alphabetical order.
This isn't an exhaustive list, but you should add new prefixes to it before
using them to avoid name-space collisions.
+ad Avionic Design GmbH
adi Analog Devices, Inc.
amcc Applied Micro Circuits Corporation (APM, formally AMCC)
apm Applied Micro Circuits Corporation (APM)
diff --git a/Documentation/hwmon/coretemp b/Documentation/hwmon/coretemp
index 84d46c0c71a3..c86b50c03ea8 100644
--- a/Documentation/hwmon/coretemp
+++ b/Documentation/hwmon/coretemp
@@ -6,7 +6,9 @@ Supported chips:
Prefix: 'coretemp'
CPUID: family 0x6, models 0xe (Pentium M DC), 0xf (Core 2 DC 65nm),
0x16 (Core 2 SC 65nm), 0x17 (Penryn 45nm),
- 0x1a (Nehalem), 0x1c (Atom), 0x1e (Lynnfield)
+ 0x1a (Nehalem), 0x1c (Atom), 0x1e (Lynnfield),
+ 0x26 (Tunnel Creek Atom), 0x27 (Medfield Atom),
+ 0x36 (Cedar Trail Atom)
Datasheet: Intel 64 and IA-32 Architectures Software Developer's Manual
Volume 3A: System Programming Guide
http://softwarecommunity.intel.com/Wiki/Mobility/720.htm
@@ -52,6 +54,17 @@ Some information comes from ark.intel.com
Process Processor TjMax(C)
+22nm Core i5/i7 Processors
+ i7 3920XM, 3820QM, 3720QM, 3667U, 3520M 105
+ i5 3427U, 3360M/3320M 105
+ i7 3770/3770K 105
+ i5 3570/3570K, 3550, 3470/3450 105
+ i7 3770S 103
+ i5 3570S/3550S, 3475S/3470S/3450S 103
+ i7 3770T 94
+ i5 3570T 94
+ i5 3470T 91
+
32nm Core i3/i5/i7 Processors
i7 660UM/640/620, 640LM/620, 620M, 610E 105
i5 540UM/520/430, 540M/520/450/430 105
@@ -65,6 +78,11 @@ Process Processor TjMax(C)
U3400 105
P4505/P4500 90
+32nm Atom Processors
+ Z2460 90
+ D2700/2550/2500 100
+ N2850/2800/2650/2600 100
+
45nm Xeon Processors 5400 Quad-Core
X5492, X5482, X5472, X5470, X5460, X5450 85
E5472, E5462, E5450/40/30/20/10/05 85
@@ -85,6 +103,8 @@ Process Processor TjMax(C)
N475/470/455/450 100
N280/270 90
330/230 125
+ E680/660/640/620 90
+ E680T/660T/640T/620T 110
45nm Core2 Processors
Solo ULV SU3500/3300 100
diff --git a/Documentation/networking/stmmac.txt b/Documentation/networking/stmmac.txt
index ab1e8d7004c5..5cb9a1972460 100644
--- a/Documentation/networking/stmmac.txt
+++ b/Documentation/networking/stmmac.txt
@@ -10,8 +10,8 @@ Currently this network device driver is for all STM embedded MAC/GMAC
(i.e. 7xxx/5xxx SoCs), SPEAr (arm), Loongson1B (mips) and XLINX XC2V3000
FF1152AMT0221 D1215994A VIRTEX FPGA board.
-DWC Ether MAC 10/100/1000 Universal version 3.60a (and older) and DWC Ether MAC 10/100
-Universal version 4.0 have been used for developing this driver.
+DWC Ether MAC 10/100/1000 Universal version 3.60a (and older) and DWC Ether
+MAC 10/100 Universal version 4.0 have been used for developing this driver.
This driver supports both the platform bus and PCI.
@@ -54,27 +54,27 @@ net_device structure enabling the scatter/gather feature.
When one or more packets are received, an interrupt happens. The interrupts
are not queued so the driver has to scan all the descriptors in the ring during
the receive process.
-This is based on NAPI so the interrupt handler signals only if there is work to be
-done, and it exits.
+This is based on NAPI so the interrupt handler signals only if there is work
+to be done, and it exits.
Then the poll method will be scheduled at some future point.
The incoming packets are stored, by the DMA, in a list of pre-allocated socket
buffers in order to avoid the memcpy (Zero-copy).
4.3) Timer-Driver Interrupt
-Instead of having the device that asynchronously notifies the frame receptions, the
-driver configures a timer to generate an interrupt at regular intervals.
-Based on the granularity of the timer, the frames that are received by the device
-will experience different levels of latency. Some NICs have dedicated timer
-device to perform this task. STMMAC can use either the RTC device or the TMU
-channel 2 on STLinux platforms.
+Instead of having the device that asynchronously notifies the frame receptions,
+the driver configures a timer to generate an interrupt at regular intervals.
+Based on the granularity of the timer, the frames that are received by the
+device will experience different levels of latency. Some NICs have dedicated
+timer device to perform this task. STMMAC can use either the RTC device or the
+TMU channel 2 on STLinux platforms.
The timers frequency can be passed to the driver as parameter; when change it,
take care of both hardware capability and network stability/performance impact.
-Several performance tests on STM platforms showed this optimisation allows to spare
-the CPU while having the maximum throughput.
+Several performance tests on STM platforms showed this optimisation allows to
+spare the CPU while having the maximum throughput.
4.4) WOL
-Wake up on Lan feature through Magic and Unicast frames are supported for the GMAC
-core.
+Wake up on Lan feature through Magic and Unicast frames are supported for the
+GMAC core.
4.5) DMA descriptors
Driver handles both normal and enhanced descriptors. The latter has been only
@@ -106,7 +106,8 @@ Several driver's information can be passed through the platform
These are included in the include/linux/stmmac.h header file
and detailed below as well:
- struct plat_stmmacenet_data {
+struct plat_stmmacenet_data {
+ char *phy_bus_name;
int bus_id;
int phy_addr;
int interface;
@@ -124,19 +125,24 @@ and detailed below as well:
void (*bus_setup)(void __iomem *ioaddr);
int (*init)(struct platform_device *pdev);
void (*exit)(struct platform_device *pdev);
+ void *custom_cfg;
+ void *custom_data;
void *bsp_priv;
};
Where:
+ o phy_bus_name: phy bus name to attach to the stmmac.
o bus_id: bus identifier.
o phy_addr: the physical address can be passed from the platform.
If it is set to -1 the driver will automatically
detect it at run-time by probing all the 32 addresses.
o interface: PHY device's interface.
o mdio_bus_data: specific platform fields for the MDIO bus.
- o pbl: the Programmable Burst Length is maximum number of beats to
+ o dma_cfg: internal DMA parameters
+ o pbl: the Programmable Burst Length is maximum number of beats to
be transferred in one DMA transaction.
GMAC also enables the 4xPBL by default.
+ o fixed_burst/mixed_burst/burst_len
o clk_csr: fixed CSR Clock range selection.
o has_gmac: uses the GMAC core.
o enh_desc: if sets the MAC will use the enhanced descriptor structure.
@@ -160,8 +166,9 @@ Where:
this is sometime necessary on some platforms (e.g. ST boxes)
where the HW needs to have set some PIO lines or system cfg
registers.
- o custom_cfg: this is a custom configuration that can be passed while
- initialising the resources.
+ o custom_cfg/custom_data: this is a custom configuration that can be passed
+ while initialising the resources.
+ o bsp_priv: another private poiter.
For MDIO bus The we have:
@@ -180,7 +187,6 @@ Where:
o irqs: list of IRQs, one per PHY.
o probed_phy_irq: if irqs is NULL, use this for probed PHY.
-
For DMA engine we have the following internal fields that should be
tuned according to the HW capabilities.
diff --git a/Documentation/prctl/no_new_privs.txt b/Documentation/prctl/no_new_privs.txt
new file mode 100644
index 000000000000..f7be84fba910
--- /dev/null
+++ b/Documentation/prctl/no_new_privs.txt
@@ -0,0 +1,57 @@
+The execve system call can grant a newly-started program privileges that
+its parent did not have. The most obvious examples are setuid/setgid
+programs and file capabilities. To prevent the parent program from
+gaining these privileges as well, the kernel and user code must be
+careful to prevent the parent from doing anything that could subvert the
+child. For example:
+
+ - The dynamic loader handles LD_* environment variables differently if
+ a program is setuid.
+
+ - chroot is disallowed to unprivileged processes, since it would allow
+ /etc/passwd to be replaced from the point of view of a process that
+ inherited chroot.
+
+ - The exec code has special handling for ptrace.
+
+These are all ad-hoc fixes. The no_new_privs bit (since Linux 3.5) is a
+new, generic mechanism to make it safe for a process to modify its
+execution environment in a manner that persists across execve. Any task
+can set no_new_privs. Once the bit is set, it is inherited across fork,
+clone, and execve and cannot be unset. With no_new_privs set, execve
+promises not to grant the privilege to do anything that could not have
+been done without the execve call. For example, the setuid and setgid
+bits will no longer change the uid or gid; file capabilities will not
+add to the permitted set, and LSMs will not relax constraints after
+execve.
+
+To set no_new_privs, use prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0).
+
+Be careful, though: LSMs might also not tighten constraints on exec
+in no_new_privs mode. (This means that setting up a general-purpose
+service launcher to set no_new_privs before execing daemons may
+interfere with LSM-based sandboxing.)
+
+Note that no_new_privs does not prevent privilege changes that do not
+involve execve. An appropriately privileged task can still call
+setuid(2) and receive SCM_RIGHTS datagrams.
+
+There are two main use cases for no_new_privs so far:
+
+ - Filters installed for the seccomp mode 2 sandbox persist across
+ execve and can change the behavior of newly-executed programs.
+ Unprivileged users are therefore only allowed to install such filters
+ if no_new_privs is set.
+
+ - By itself, no_new_privs can be used to reduce the attack surface
+ available to an unprivileged user. If everything running with a
+ given uid has no_new_privs set, then that uid will be unable to
+ escalate its privileges by directly attacking setuid, setgid, and
+ fcap-using binaries; it will need to compromise something without the
+ no_new_privs bit set first.
+
+In the future, other potentially dangerous kernel features could become
+available to unprivileged tasks if no_new_privs is set. In principle,
+several options to unshare(2) and clone(2) would be safe when
+no_new_privs is set, and no_new_privs + chroot is considerable less
+dangerous than chroot by itself.
diff --git a/Documentation/stable_kernel_rules.txt b/Documentation/stable_kernel_rules.txt
index f0ab5cf28fca..4a7b54bd37e8 100644
--- a/Documentation/stable_kernel_rules.txt
+++ b/Documentation/stable_kernel_rules.txt
@@ -12,6 +12,12 @@ Rules on what kind of patches are accepted, and which ones are not, into the
marked CONFIG_BROKEN), an oops, a hang, data corruption, a real
security issue, or some "oh, that's not good" issue. In short, something
critical.
+ - Serious issues as reported by a user of a distribution kernel may also
+ be considered if they fix a notable performance or interactivity issue.
+ As these fixes are not as obvious and have a higher risk of a subtle
+ regression they should only be submitted by a distribution kernel
+ maintainer and include an addendum linking to a bugzilla entry if it
+ exists and additional information on the user-visible impact.
- New device IDs and quirks are also accepted.
- No "theoretical race condition" issues, unless an explanation of how the
race can be exploited is also provided.
diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt
index 930126698a0f..2c9948379469 100644
--- a/Documentation/virtual/kvm/api.txt
+++ b/Documentation/virtual/kvm/api.txt
@@ -1930,6 +1930,23 @@ The "pte_enc" field provides a value that can OR'ed into the hash
PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
into the hash PTE second double word).
+4.75 KVM_IRQFD
+
+Capability: KVM_CAP_IRQFD
+Architectures: x86
+Type: vm ioctl
+Parameters: struct kvm_irqfd (in)
+Returns: 0 on success, -1 on error
+
+Allows setting an eventfd to directly trigger a guest interrupt.
+kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
+kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
+an event is tiggered on the eventfd, an interrupt is injected into
+the guest using the specified gsi pin. The irqfd is removed using
+the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
+and kvm_irqfd.gsi.
+
+
5. The kvm_run structure
------------------------
OpenPOWER on IntegriCloud