diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2010-08-04 10:43:01 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2010-08-04 10:43:01 -0700 |
commit | 5e83f6fbdb020b70c0e413312801424d13c58d68 (patch) | |
tree | ca270178fa891813dbc47751c331fed975d3766c /Documentation | |
parent | fe445c6e2cb62a566e1a89f8798de11459975710 (diff) | |
parent | 3444d7da1839b851eefedd372978d8a982316c36 (diff) | |
download | blackbird-op-linux-5e83f6fbdb020b70c0e413312801424d13c58d68.tar.gz blackbird-op-linux-5e83f6fbdb020b70c0e413312801424d13c58d68.zip |
Merge branch 'kvm-updates/2.6.36' of git://git.kernel.org/pub/scm/virt/kvm/kvm
* 'kvm-updates/2.6.36' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (198 commits)
KVM: VMX: Fix host GDT.LIMIT corruption
KVM: MMU: using __xchg_spte more smarter
KVM: MMU: cleanup spte set and accssed/dirty tracking
KVM: MMU: don't atomicly set spte if it's not present
KVM: MMU: fix page dirty tracking lost while sync page
KVM: MMU: fix broken page accessed tracking with ept enabled
KVM: MMU: add missing reserved bits check in speculative path
KVM: MMU: fix mmu notifier invalidate handler for huge spte
KVM: x86 emulator: fix xchg instruction emulation
KVM: x86: Call mask notifiers from pic
KVM: x86: never re-execute instruction with enabled tdp
KVM: Document KVM_GET_SUPPORTED_CPUID2 ioctl
KVM: x86: emulator: inc/dec can have lock prefix
KVM: MMU: Eliminate redundant temporaries in FNAME(fetch)
KVM: MMU: Validate all gptes during fetch, not just those used for new pages
KVM: MMU: Simplify spte fetch() function
KVM: MMU: Add gpte_valid() helper
KVM: MMU: Add validate_direct_spte() helper
KVM: MMU: Add drop_large_spte() helper
KVM: MMU: Use __set_spte to link shadow pages
...
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/feature-removal-schedule.txt | 21 | ||||
-rw-r--r-- | Documentation/kvm/api.txt | 208 | ||||
-rw-r--r-- | Documentation/kvm/mmu.txt | 52 | ||||
-rw-r--r-- | Documentation/kvm/msr.txt | 153 | ||||
-rw-r--r-- | Documentation/kvm/review-checklist.txt | 38 |
5 files changed, 413 insertions, 59 deletions
diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt index 79cb554761af..b273d35039ed 100644 --- a/Documentation/feature-removal-schedule.txt +++ b/Documentation/feature-removal-schedule.txt @@ -487,17 +487,6 @@ Who: Jan Kiszka <jan.kiszka@web.de> ---------------------------- -What: KVM memory aliases support -When: July 2010 -Why: Memory aliasing support is used for speeding up guest vga access - through the vga windows. - - Modern userspace no longer uses this feature, so it's just bitrotted - code and can be removed with no impact. -Who: Avi Kivity <avi@redhat.com> - ----------------------------- - What: xtime, wall_to_monotonic When: 2.6.36+ Files: kernel/time/timekeeping.c include/linux/time.h @@ -508,16 +497,6 @@ Who: John Stultz <johnstul@us.ibm.com> ---------------------------- -What: KVM kernel-allocated memory slots -When: July 2010 -Why: Since 2.6.25, kvm supports user-allocated memory slots, which are - much more flexible than kernel-allocated slots. All current userspace - supports the newer interface and this code can be removed with no - impact. -Who: Avi Kivity <avi@redhat.com> - ----------------------------- - What: KVM paravirt mmu host support When: January 2011 Why: The paravirt mmu host support is slower than non-paravirt mmu, both diff --git a/Documentation/kvm/api.txt b/Documentation/kvm/api.txt index a237518e51b9..5f5b64982b1a 100644 --- a/Documentation/kvm/api.txt +++ b/Documentation/kvm/api.txt @@ -126,6 +126,10 @@ user fills in the size of the indices array in nmsrs, and in return kvm adjusts nmsrs to reflect the actual number of msrs and fills in the indices array with their numbers. +Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are +not returned in the MSR list, as different vcpus can have a different number +of banks, as set via the KVM_X86_SETUP_MCE ioctl. + 4.4 KVM_CHECK_EXTENSION Capability: basic @@ -160,29 +164,7 @@ Type: vm ioctl Parameters: struct kvm_memory_region (in) Returns: 0 on success, -1 on error -struct kvm_memory_region { - __u32 slot; - __u32 flags; - __u64 guest_phys_addr; - __u64 memory_size; /* bytes */ -}; - -/* for kvm_memory_region::flags */ -#define KVM_MEM_LOG_DIRTY_PAGES 1UL - -This ioctl allows the user to create or modify a guest physical memory -slot. When changing an existing slot, it may be moved in the guest -physical memory space, or its flags may be modified. It may not be -resized. Slots may not overlap. - -The flags field supports just one flag, KVM_MEM_LOG_DIRTY_PAGES, which -instructs kvm to keep track of writes to memory within the slot. See -the KVM_GET_DIRTY_LOG ioctl. - -It is recommended to use the KVM_SET_USER_MEMORY_REGION ioctl instead -of this API, if available. This newer API allows placing guest memory -at specified locations in the host address space, yielding better -control and easy access. +This ioctl is obsolete and has been removed. 4.6 KVM_CREATE_VCPU @@ -226,17 +208,7 @@ Type: vm ioctl Parameters: struct kvm_memory_alias (in) Returns: 0 (success), -1 (error) -struct kvm_memory_alias { - __u32 slot; /* this has a different namespace than memory slots */ - __u32 flags; - __u64 guest_phys_addr; - __u64 memory_size; - __u64 target_phys_addr; -}; - -Defines a guest physical address space region as an alias to another -region. Useful for aliased address, for example the VGA low memory -window. Should not be used with userspace memory. +This ioctl is obsolete and has been removed. 4.9 KVM_RUN @@ -892,6 +864,174 @@ arguments. This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel irqchip, the multiprocessing state must be maintained by userspace. +4.39 KVM_SET_IDENTITY_MAP_ADDR + +Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR +Architectures: x86 +Type: vm ioctl +Parameters: unsigned long identity (in) +Returns: 0 on success, -1 on error + +This ioctl defines the physical address of a one-page region in the guest +physical address space. The region must be within the first 4GB of the +guest physical address space and must not conflict with any memory slot +or any mmio address. The guest may malfunction if it accesses this memory +region. + +This ioctl is required on Intel-based hosts. This is needed on Intel hardware +because of a quirk in the virtualization implementation (see the internals +documentation when it pops into existence). + +4.40 KVM_SET_BOOT_CPU_ID + +Capability: KVM_CAP_SET_BOOT_CPU_ID +Architectures: x86, ia64 +Type: vm ioctl +Parameters: unsigned long vcpu_id +Returns: 0 on success, -1 on error + +Define which vcpu is the Bootstrap Processor (BSP). Values are the same +as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default +is vcpu 0. + +4.41 KVM_GET_XSAVE + +Capability: KVM_CAP_XSAVE +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_xsave (out) +Returns: 0 on success, -1 on error + +struct kvm_xsave { + __u32 region[1024]; +}; + +This ioctl would copy current vcpu's xsave struct to the userspace. + +4.42 KVM_SET_XSAVE + +Capability: KVM_CAP_XSAVE +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_xsave (in) +Returns: 0 on success, -1 on error + +struct kvm_xsave { + __u32 region[1024]; +}; + +This ioctl would copy userspace's xsave struct to the kernel. + +4.43 KVM_GET_XCRS + +Capability: KVM_CAP_XCRS +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_xcrs (out) +Returns: 0 on success, -1 on error + +struct kvm_xcr { + __u32 xcr; + __u32 reserved; + __u64 value; +}; + +struct kvm_xcrs { + __u32 nr_xcrs; + __u32 flags; + struct kvm_xcr xcrs[KVM_MAX_XCRS]; + __u64 padding[16]; +}; + +This ioctl would copy current vcpu's xcrs to the userspace. + +4.44 KVM_SET_XCRS + +Capability: KVM_CAP_XCRS +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_xcrs (in) +Returns: 0 on success, -1 on error + +struct kvm_xcr { + __u32 xcr; + __u32 reserved; + __u64 value; +}; + +struct kvm_xcrs { + __u32 nr_xcrs; + __u32 flags; + struct kvm_xcr xcrs[KVM_MAX_XCRS]; + __u64 padding[16]; +}; + +This ioctl would set vcpu's xcr to the value userspace specified. + +4.45 KVM_GET_SUPPORTED_CPUID + +Capability: KVM_CAP_EXT_CPUID +Architectures: x86 +Type: system ioctl +Parameters: struct kvm_cpuid2 (in/out) +Returns: 0 on success, -1 on error + +struct kvm_cpuid2 { + __u32 nent; + __u32 padding; + struct kvm_cpuid_entry2 entries[0]; +}; + +#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 1 +#define KVM_CPUID_FLAG_STATEFUL_FUNC 2 +#define KVM_CPUID_FLAG_STATE_READ_NEXT 4 + +struct kvm_cpuid_entry2 { + __u32 function; + __u32 index; + __u32 flags; + __u32 eax; + __u32 ebx; + __u32 ecx; + __u32 edx; + __u32 padding[3]; +}; + +This ioctl returns x86 cpuid features which are supported by both the hardware +and kvm. Userspace can use the information returned by this ioctl to +construct cpuid information (for KVM_SET_CPUID2) that is consistent with +hardware, kernel, and userspace capabilities, and with user requirements (for +example, the user may wish to constrain cpuid to emulate older hardware, +or for feature consistency across a cluster). + +Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure +with the 'nent' field indicating the number of entries in the variable-size +array 'entries'. If the number of entries is too low to describe the cpu +capabilities, an error (E2BIG) is returned. If the number is too high, +the 'nent' field is adjusted and an error (ENOMEM) is returned. If the +number is just right, the 'nent' field is adjusted to the number of valid +entries in the 'entries' array, which is then filled. + +The entries returned are the host cpuid as returned by the cpuid instruction, +with unknown or unsupported features masked out. The fields in each entry +are defined as follows: + + function: the eax value used to obtain the entry + index: the ecx value used to obtain the entry (for entries that are + affected by ecx) + flags: an OR of zero or more of the following: + KVM_CPUID_FLAG_SIGNIFCANT_INDEX: + if the index field is valid + KVM_CPUID_FLAG_STATEFUL_FUNC: + if cpuid for this function returns different values for successive + invocations; there will be several entries with the same function, + all with this flag set + KVM_CPUID_FLAG_STATE_READ_NEXT: + for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is + the first entry to be read by a cpu + eax, ebx, ecx, edx: the values returned by the cpuid instruction for + this function/index combination + 5. The kvm_run structure Application code obtains a pointer to the kvm_run structure by diff --git a/Documentation/kvm/mmu.txt b/Documentation/kvm/mmu.txt index aaed6ab9d7ab..142cc5136650 100644 --- a/Documentation/kvm/mmu.txt +++ b/Documentation/kvm/mmu.txt @@ -77,10 +77,10 @@ Memory Guest memory (gpa) is part of the user address space of the process that is using kvm. Userspace defines the translation between guest addresses and user -addresses (gpa->hva); note that two gpas may alias to the same gva, but not +addresses (gpa->hva); note that two gpas may alias to the same hva, but not vice versa. -These gvas may be backed using any method available to the host: anonymous +These hvas may be backed using any method available to the host: anonymous memory, file backed memory, and device memory. Memory might be paged by the host at any time. @@ -161,7 +161,7 @@ Shadow pages contain the following information: role.cr4_pae: Contains the value of cr4.pae for which the page is valid (e.g. whether 32-bit or 64-bit gptes are in use). - role.cr4_nxe: + role.nxe: Contains the value of efer.nxe for which the page is valid. role.cr0_wp: Contains the value of cr0.wp for which the page is valid. @@ -180,7 +180,9 @@ Shadow pages contain the following information: guest pages as leaves. gfns: An array of 512 guest frame numbers, one for each present pte. Used to - perform a reverse map from a pte to a gfn. + perform a reverse map from a pte to a gfn. When role.direct is set, any + element of this array can be calculated from the gfn field when used, in + this case, the array of gfns is not allocated. See role.direct and gfn. slot_bitmap: A bitmap containing one bit per memory slot. If the page contains a pte mapping a page from memory slot n, then bit n of slot_bitmap will be set @@ -296,6 +298,48 @@ Host translation updates: - look up affected sptes through reverse map - drop (or update) translations +Emulating cr0.wp +================ + +If tdp is not enabled, the host must keep cr0.wp=1 so page write protection +works for the guest kernel, not guest guest userspace. When the guest +cr0.wp=1, this does not present a problem. However when the guest cr0.wp=0, +we cannot map the permissions for gpte.u=1, gpte.w=0 to any spte (the +semantics require allowing any guest kernel access plus user read access). + +We handle this by mapping the permissions to two possible sptes, depending +on fault type: + +- kernel write fault: spte.u=0, spte.w=1 (allows full kernel access, + disallows user access) +- read fault: spte.u=1, spte.w=0 (allows full read access, disallows kernel + write access) + +(user write faults generate a #PF) + +Large pages +=========== + +The mmu supports all combinations of large and small guest and host pages. +Supported page sizes include 4k, 2M, 4M, and 1G. 4M pages are treated as +two separate 2M pages, on both guest and host, since the mmu always uses PAE +paging. + +To instantiate a large spte, four constraints must be satisfied: + +- the spte must point to a large host page +- the guest pte must be a large pte of at least equivalent size (if tdp is + enabled, there is no guest pte and this condition is satisified) +- if the spte will be writeable, the large page frame may not overlap any + write-protected pages +- the guest page must be wholly contained by a single memory slot + +To check the last two conditions, the mmu maintains a ->write_count set of +arrays for each memory slot and large page size. Every write protected page +causes its write_count to be incremented, thus preventing instantiation of +a large spte. The frames at the end of an unaligned memory slot have +artificically inflated ->write_counts so they can never be instantiated. + Further reading =============== diff --git a/Documentation/kvm/msr.txt b/Documentation/kvm/msr.txt new file mode 100644 index 000000000000..8ddcfe84c09a --- /dev/null +++ b/Documentation/kvm/msr.txt @@ -0,0 +1,153 @@ +KVM-specific MSRs. +Glauber Costa <glommer@redhat.com>, Red Hat Inc, 2010 +===================================================== + +KVM makes use of some custom MSRs to service some requests. +At present, this facility is only used by kvmclock. + +Custom MSRs have a range reserved for them, that goes from +0x4b564d00 to 0x4b564dff. There are MSRs outside this area, +but they are deprecated and their use is discouraged. + +Custom MSR list +-------- + +The current supported Custom MSR list is: + +MSR_KVM_WALL_CLOCK_NEW: 0x4b564d00 + + data: 4-byte alignment physical address of a memory area which must be + in guest RAM. This memory is expected to hold a copy of the following + structure: + + struct pvclock_wall_clock { + u32 version; + u32 sec; + u32 nsec; + } __attribute__((__packed__)); + + whose data will be filled in by the hypervisor. The hypervisor is only + guaranteed to update this data at the moment of MSR write. + Users that want to reliably query this information more than once have + to write more than once to this MSR. Fields have the following meanings: + + version: guest has to check version before and after grabbing + time information and check that they are both equal and even. + An odd version indicates an in-progress update. + + sec: number of seconds for wallclock. + + nsec: number of nanoseconds for wallclock. + + Note that although MSRs are per-CPU entities, the effect of this + particular MSR is global. + + Availability of this MSR must be checked via bit 3 in 0x4000001 cpuid + leaf prior to usage. + +MSR_KVM_SYSTEM_TIME_NEW: 0x4b564d01 + + data: 4-byte aligned physical address of a memory area which must be in + guest RAM, plus an enable bit in bit 0. This memory is expected to hold + a copy of the following structure: + + struct pvclock_vcpu_time_info { + u32 version; + u32 pad0; + u64 tsc_timestamp; + u64 system_time; + u32 tsc_to_system_mul; + s8 tsc_shift; + u8 flags; + u8 pad[2]; + } __attribute__((__packed__)); /* 32 bytes */ + + whose data will be filled in by the hypervisor periodically. Only one + write, or registration, is needed for each VCPU. The interval between + updates of this structure is arbitrary and implementation-dependent. + The hypervisor may update this structure at any time it sees fit until + anything with bit0 == 0 is written to it. + + Fields have the following meanings: + + version: guest has to check version before and after grabbing + time information and check that they are both equal and even. + An odd version indicates an in-progress update. + + tsc_timestamp: the tsc value at the current VCPU at the time + of the update of this structure. Guests can subtract this value + from current tsc to derive a notion of elapsed time since the + structure update. + + system_time: a host notion of monotonic time, including sleep + time at the time this structure was last updated. Unit is + nanoseconds. + + tsc_to_system_mul: a function of the tsc frequency. One has + to multiply any tsc-related quantity by this value to get + a value in nanoseconds, besides dividing by 2^tsc_shift + + tsc_shift: cycle to nanosecond divider, as a power of two, to + allow for shift rights. One has to shift right any tsc-related + quantity by this value to get a value in nanoseconds, besides + multiplying by tsc_to_system_mul. + + With this information, guests can derive per-CPU time by + doing: + + time = (current_tsc - tsc_timestamp) + time = (time * tsc_to_system_mul) >> tsc_shift + time = time + system_time + + flags: bits in this field indicate extended capabilities + coordinated between the guest and the hypervisor. Availability + of specific flags has to be checked in 0x40000001 cpuid leaf. + Current flags are: + + flag bit | cpuid bit | meaning + ------------------------------------------------------------- + | | time measures taken across + 0 | 24 | multiple cpus are guaranteed to + | | be monotonic + ------------------------------------------------------------- + + Availability of this MSR must be checked via bit 3 in 0x4000001 cpuid + leaf prior to usage. + + +MSR_KVM_WALL_CLOCK: 0x11 + + data and functioning: same as MSR_KVM_WALL_CLOCK_NEW. Use that instead. + + This MSR falls outside the reserved KVM range and may be removed in the + future. Its usage is deprecated. + + Availability of this MSR must be checked via bit 0 in 0x4000001 cpuid + leaf prior to usage. + +MSR_KVM_SYSTEM_TIME: 0x12 + + data and functioning: same as MSR_KVM_SYSTEM_TIME_NEW. Use that instead. + + This MSR falls outside the reserved KVM range and may be removed in the + future. Its usage is deprecated. + + Availability of this MSR must be checked via bit 0 in 0x4000001 cpuid + leaf prior to usage. + + The suggested algorithm for detecting kvmclock presence is then: + + if (!kvm_para_available()) /* refer to cpuid.txt */ + return NON_PRESENT; + + flags = cpuid_eax(0x40000001); + if (flags & 3) { + msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW; + msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW; + return PRESENT; + } else if (flags & 0) { + msr_kvm_system_time = MSR_KVM_SYSTEM_TIME; + msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK; + return PRESENT; + } else + return NON_PRESENT; diff --git a/Documentation/kvm/review-checklist.txt b/Documentation/kvm/review-checklist.txt new file mode 100644 index 000000000000..730475ae1b8d --- /dev/null +++ b/Documentation/kvm/review-checklist.txt @@ -0,0 +1,38 @@ +Review checklist for kvm patches +================================ + +1. The patch must follow Documentation/CodingStyle and + Documentation/SubmittingPatches. + +2. Patches should be against kvm.git master branch. + +3. If the patch introduces or modifies a new userspace API: + - the API must be documented in Documentation/kvm/api.txt + - the API must be discoverable using KVM_CHECK_EXTENSION + +4. New state must include support for save/restore. + +5. New features must default to off (userspace should explicitly request them). + Performance improvements can and should default to on. + +6. New cpu features should be exposed via KVM_GET_SUPPORTED_CPUID2 + +7. Emulator changes should be accompanied by unit tests for qemu-kvm.git + kvm/test directory. + +8. Changes should be vendor neutral when possible. Changes to common code + are better than duplicating changes to vendor code. + +9. Similarly, prefer changes to arch independent code than to arch dependent + code. + +10. User/kernel interfaces and guest/host interfaces must be 64-bit clean + (all variables and sizes naturally aligned on 64-bit; use specific types + only - u64 rather than ulong). + +11. New guest visible features must either be documented in a hardware manual + or be accompanied by documentation. + +12. Features must be robust against reset and kexec - for example, shared + host/guest memory must be unshared to prevent the host from writing to + guest memory that the guest has not reserved for this purpose. |