diff options
author | Trond Myklebust <Trond.Myklebust@netapp.com> | 2005-10-18 13:50:52 -0700 |
---|---|---|
committer | Trond Myklebust <Trond.Myklebust@netapp.com> | 2005-10-18 13:50:52 -0700 |
commit | cff6bf970965c98c62007fc8a36527fd147fe233 (patch) | |
tree | 2791f2208b54ade86625af416ff5342f11282f0c /Documentation | |
parent | 6cd7525a00f3b926e8bd2e402954ed3e09a8e924 (diff) | |
parent | 39ca371c45b04cd50d0974030ae051906fc516b6 (diff) | |
download | blackbird-op-linux-cff6bf970965c98c62007fc8a36527fd147fe233.tar.gz blackbird-op-linux-cff6bf970965c98c62007fc8a36527fd147fe233.zip |
Merge /home/trondmy/scm/kernel/git/torvalds/linux-2.6
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/Changes | 10 | ||||
-rw-r--r-- | Documentation/SubmittingPatches | 86 | ||||
-rw-r--r-- | Documentation/connector/connector.txt | 44 | ||||
-rw-r--r-- | Documentation/dell_rbu.txt | 38 | ||||
-rw-r--r-- | Documentation/keys-request-key.txt | 161 | ||||
-rw-r--r-- | Documentation/keys.txt | 92 | ||||
-rw-r--r-- | Documentation/networking/ip-sysctl.txt | 10 | ||||
-rw-r--r-- | Documentation/sparse.txt | 4 |
8 files changed, 403 insertions, 42 deletions
diff --git a/Documentation/Changes b/Documentation/Changes index 5eaab0441d76..27232be26e1a 100644 --- a/Documentation/Changes +++ b/Documentation/Changes @@ -237,6 +237,12 @@ udev udev is a userspace application for populating /dev dynamically with only entries for devices actually present. udev replaces devfs. +FUSE +---- + +Needs libfuse 2.4.0 or later. Absolute minimum is 2.3.0 but mount +options 'direct_io' and 'kernel_cache' won't work. + Networking ========== @@ -390,6 +396,10 @@ udev ---- o <http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html> +FUSE +---- +o <http://sourceforge.net/projects/fuse> + Networking ********** diff --git a/Documentation/SubmittingPatches b/Documentation/SubmittingPatches index 7f43b040311e..237d54c44bc5 100644 --- a/Documentation/SubmittingPatches +++ b/Documentation/SubmittingPatches @@ -301,8 +301,84 @@ now, but you can do this to mark internal company procedures or just point out some special detail about the sign-off. +12) The canonical patch format -12) More references for submitting patches +The canonical patch subject line is: + + Subject: [PATCH 001/123] subsystem: summary phrase + +The canonical patch message body contains the following: + + - A "from" line specifying the patch author. + + - An empty line. + + - The body of the explanation, which will be copied to the + permanent changelog to describe this patch. + + - The "Signed-off-by:" lines, described above, which will + also go in the changelog. + + - A marker line containing simply "---". + + - Any additional comments not suitable for the changelog. + + - The actual patch (diff output). + +The Subject line format makes it very easy to sort the emails +alphabetically by subject line - pretty much any email reader will +support that - since because the sequence number is zero-padded, +the numerical and alphabetic sort is the same. + +The "subsystem" in the email's Subject should identify which +area or subsystem of the kernel is being patched. + +The "summary phrase" in the email's Subject should concisely +describe the patch which that email contains. The "summary +phrase" should not be a filename. Do not use the same "summary +phrase" for every patch in a whole patch series. + +Bear in mind that the "summary phrase" of your email becomes +a globally-unique identifier for that patch. It propagates +all the way into the git changelog. The "summary phrase" may +later be used in developer discussions which refer to the patch. +People will want to google for the "summary phrase" to read +discussion regarding that patch. + +A couple of example Subjects: + + Subject: [patch 2/5] ext2: improve scalability of bitmap searching + Subject: [PATCHv2 001/207] x86: fix eflags tracking + +The "from" line must be the very first line in the message body, +and has the form: + + From: Original Author <author@example.com> + +The "from" line specifies who will be credited as the author of the +patch in the permanent changelog. If the "from" line is missing, +then the "From:" line from the email header will be used to determine +the patch author in the changelog. + +The explanation body will be committed to the permanent source +changelog, so should make sense to a competent reader who has long +since forgotten the immediate details of the discussion that might +have led to this patch. + +The "---" marker line serves the essential purpose of marking for patch +handling tools where the changelog message ends. + +One good use for the additional comments after the "---" marker is for +a diffstat, to show what files have changed, and the number of inserted +and deleted lines per file. A diffstat is especially useful on bigger +patches. Other comments relevant only to the moment or the maintainer, +not suitable for the permanent changelog, should also go here. + +See more details on the proper patch format in the following +references. + + +13) More references for submitting patches Andrew Morton, "The perfect patch" (tpp). <http://www.zip.com.au/~akpm/linux/patches/stuff/tpp.txt> @@ -310,6 +386,14 @@ Andrew Morton, "The perfect patch" (tpp). Jeff Garzik, "Linux kernel patch submission format." <http://linux.yyz.us/patch-format.html> +Greg KH, "How to piss off a kernel subsystem maintainer" + <http://www.kroah.com/log/2005/03/31/> + +Kernel Documentation/CodingStyle + <http://sosdg.org/~coywolf/lxr/source/Documentation/CodingStyle> + +Linus Torvald's mail on the canonical patch format: + <http://lkml.org/lkml/2005/4/7/183> ----------------------------------- diff --git a/Documentation/connector/connector.txt b/Documentation/connector/connector.txt index 54a0a14bfbe3..57a314b14cf8 100644 --- a/Documentation/connector/connector.txt +++ b/Documentation/connector/connector.txt @@ -131,3 +131,47 @@ Netlink itself is not reliable protocol, that means that messages can be lost due to memory pressure or process' receiving queue overflowed, so caller is warned must be prepared. That is why struct cn_msg [main connector's message header] contains u32 seq and u32 ack fields. + +/*****************************************/ +Userspace usage. +/*****************************************/ +2.6.14 has a new netlink socket implementation, which by default does not +allow to send data to netlink groups other than 1. +So, if to use netlink socket (for example using connector) +with different group number userspace application must subscribe to +that group. It can be achieved by following pseudocode: + +s = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_CONNECTOR); + +l_local.nl_family = AF_NETLINK; +l_local.nl_groups = 12345; +l_local.nl_pid = 0; + +if (bind(s, (struct sockaddr *)&l_local, sizeof(struct sockaddr_nl)) == -1) { + perror("bind"); + close(s); + return -1; +} + +{ + int on = l_local.nl_groups; + setsockopt(s, 270, 1, &on, sizeof(on)); +} + +Where 270 above is SOL_NETLINK, and 1 is a NETLINK_ADD_MEMBERSHIP socket +option. To drop multicast subscription one should call above socket option +with NETLINK_DROP_MEMBERSHIP parameter which is defined as 0. + +2.6.14 netlink code only allows to select a group which is less or equal to +the maximum group number, which is used at netlink_kernel_create() time. +In case of connector it is CN_NETLINK_USERS + 0xf, so if you want to use +group number 12345, you must increment CN_NETLINK_USERS to that number. +Additional 0xf numbers are allocated to be used by non-in-kernel users. + +Due to this limitation, group 0xffffffff does not work now, so one can +not use add/remove connector's group notifications, but as far as I know, +only cn_test.c test module used it. + +Some work in netlink area is still being done, so things can be changed in +2.6.15 timeframe, if it will happen, documentation will be updated for that +kernel. diff --git a/Documentation/dell_rbu.txt b/Documentation/dell_rbu.txt index 95d7f62e4dbc..941343a7a265 100644 --- a/Documentation/dell_rbu.txt +++ b/Documentation/dell_rbu.txt @@ -35,6 +35,7 @@ The driver load creates the following directories under the /sys file system. /sys/class/firmware/dell_rbu/data /sys/devices/platform/dell_rbu/image_type /sys/devices/platform/dell_rbu/data +/sys/devices/platform/dell_rbu/packet_size The driver supports two types of update mechanism; monolithic and packetized. These update mechanism depends upon the BIOS currently running on the system. @@ -47,8 +48,26 @@ By default the driver uses monolithic memory for the update type. This can be changed to packets during the driver load time by specifying the load parameter image_type=packet. This can also be changed later as below echo packet > /sys/devices/platform/dell_rbu/image_type -Also echoing either mono ,packet or init in to image_type will free up the -memory allocated by the driver. + +In packet update mode the packet size has to be given before any packets can +be downloaded. It is done as below +echo XXXX > /sys/devices/platform/dell_rbu/packet_size +In the packet update mechanism, the user neesd to create a new file having +packets of data arranged back to back. It can be done as follows +The user creates packets header, gets the chunk of the BIOS image and +placs it next to the packetheader; now, the packetheader + BIOS image chunk +added to geather should match the specified packet_size. This makes one +packet, the user needs to create more such packets out of the entire BIOS +image file and then arrange all these packets back to back in to one single +file. +This file is then copied to /sys/class/firmware/dell_rbu/data. +Once this file gets to the driver, the driver extracts packet_size data from +the file and spreads it accross the physical memory in contiguous packet_sized +space. +This method makes sure that all the packets get to the driver in a single operation. + +In monolithic update the user simply get the BIOS image (.hdr file) and copies +to the data file as is without any change to the BIOS image itself. Do the steps below to download the BIOS image. 1) echo 1 > /sys/class/firmware/dell_rbu/loading @@ -58,7 +77,10 @@ Do the steps below to download the BIOS image. The /sys/class/firmware/dell_rbu/ entries will remain till the following is done. echo -1 > /sys/class/firmware/dell_rbu/loading. -Until this step is completed the drivr cannot be unloaded. +Until this step is completed the driver cannot be unloaded. +Also echoing either mono ,packet or init in to image_type will free up the +memory allocated by the driver. + If an user by accident executes steps 1 and 3 above without executing step 2; it will make the /sys/class/firmware/dell_rbu/ entries to disappear. The entries can be recreated by doing the following @@ -66,15 +88,11 @@ echo init > /sys/devices/platform/dell_rbu/image_type NOTE: echoing init in image_type does not change it original value. Also the driver provides /sys/devices/platform/dell_rbu/data readonly file to -read back the image downloaded. This is useful in case of packet update -mechanism where the above steps 1,2,3 will repeated for every packet. -By reading the /sys/devices/platform/dell_rbu/data file all packet data -downloaded can be verified in a single file. -The packets are arranged in this file one after the other in a FIFO order. +read back the image downloaded. NOTE: -This driver requires a patch for firmware_class.c which has the addition -of request_firmware_nowait_nohotplug function to wortk +This driver requires a patch for firmware_class.c which has the modified +request_firmware_nowait function. Also after updating the BIOS image an user mdoe application neeeds to execute code which message the BIOS update request to the BIOS. So on the next reboot the BIOS knows about the new image downloaded and it updates it self. diff --git a/Documentation/keys-request-key.txt b/Documentation/keys-request-key.txt new file mode 100644 index 000000000000..5f2b9c5edbb5 --- /dev/null +++ b/Documentation/keys-request-key.txt @@ -0,0 +1,161 @@ + =================== + KEY REQUEST SERVICE + =================== + +The key request service is part of the key retention service (refer to +Documentation/keys.txt). This document explains more fully how that the +requesting algorithm works. + +The process starts by either the kernel requesting a service by calling +request_key(): + + struct key *request_key(const struct key_type *type, + const char *description, + const char *callout_string); + +Or by userspace invoking the request_key system call: + + key_serial_t request_key(const char *type, + const char *description, + const char *callout_info, + key_serial_t dest_keyring); + +The main difference between the two access points is that the in-kernel +interface does not need to link the key to a keyring to prevent it from being +immediately destroyed. The kernel interface returns a pointer directly to the +key, and it's up to the caller to destroy the key. + +The userspace interface links the key to a keyring associated with the process +to prevent the key from going away, and returns the serial number of the key to +the caller. + + +=========== +THE PROCESS +=========== + +A request proceeds in the following manner: + + (1) Process A calls request_key() [the userspace syscall calls the kernel + interface]. + + (2) request_key() searches the process's subscribed keyrings to see if there's + a suitable key there. If there is, it returns the key. If there isn't, and + callout_info is not set, an error is returned. Otherwise the process + proceeds to the next step. + + (3) request_key() sees that A doesn't have the desired key yet, so it creates + two things: + + (a) An uninstantiated key U of requested type and description. + + (b) An authorisation key V that refers to key U and notes that process A + is the context in which key U should be instantiated and secured, and + from which associated key requests may be satisfied. + + (4) request_key() then forks and executes /sbin/request-key with a new session + keyring that contains a link to auth key V. + + (5) /sbin/request-key execs an appropriate program to perform the actual + instantiation. + + (6) The program may want to access another key from A's context (say a + Kerberos TGT key). It just requests the appropriate key, and the keyring + search notes that the session keyring has auth key V in its bottom level. + + This will permit it to then search the keyrings of process A with the + UID, GID, groups and security info of process A as if it was process A, + and come up with key W. + + (7) The program then does what it must to get the data with which to + instantiate key U, using key W as a reference (perhaps it contacts a + Kerberos server using the TGT) and then instantiates key U. + + (8) Upon instantiating key U, auth key V is automatically revoked so that it + may not be used again. + + (9) The program then exits 0 and request_key() deletes key V and returns key + U to the caller. + +This also extends further. If key W (step 5 above) didn't exist, key W would be +created uninstantiated, another auth key (X) would be created [as per step 3] +and another copy of /sbin/request-key spawned [as per step 4]; but the context +specified by auth key X will still be process A, as it was in auth key V. + +This is because process A's keyrings can't simply be attached to +/sbin/request-key at the appropriate places because (a) execve will discard two +of them, and (b) it requires the same UID/GID/Groups all the way through. + + +====================== +NEGATIVE INSTANTIATION +====================== + +Rather than instantiating a key, it is possible for the possessor of an +authorisation key to negatively instantiate a key that's under construction. +This is a short duration placeholder that causes any attempt at re-requesting +the key whilst it exists to fail with error ENOKEY. + +This is provided to prevent excessive repeated spawning of /sbin/request-key +processes for a key that will never be obtainable. + +Should the /sbin/request-key process exit anything other than 0 or die on a +signal, the key under construction will be automatically negatively +instantiated for a short amount of time. + + +==================== +THE SEARCH ALGORITHM +==================== + +A search of any particular keyring proceeds in the following fashion: + + (1) When the key management code searches for a key (keyring_search_aux) it + firstly calls key_permission(SEARCH) on the keyring it's starting with, + if this denies permission, it doesn't search further. + + (2) It considers all the non-keyring keys within that keyring and, if any key + matches the criteria specified, calls key_permission(SEARCH) on it to see + if the key is allowed to be found. If it is, that key is returned; if + not, the search continues, and the error code is retained if of higher + priority than the one currently set. + + (3) It then considers all the keyring-type keys in the keyring it's currently + searching. It calls key_permission(SEARCH) on each keyring, and if this + grants permission, it recurses, executing steps (2) and (3) on that + keyring. + +The process stops immediately a valid key is found with permission granted to +use it. Any error from a previous match attempt is discarded and the key is +returned. + +When search_process_keyrings() is invoked, it performs the following searches +until one succeeds: + + (1) If extant, the process's thread keyring is searched. + + (2) If extant, the process's process keyring is searched. + + (3) The process's session keyring is searched. + + (4) If the process has a request_key() authorisation key in its session + keyring then: + + (a) If extant, the calling process's thread keyring is searched. + + (b) If extant, the calling process's process keyring is searched. + + (c) The calling process's session keyring is searched. + +The moment one succeeds, all pending errors are discarded and the found key is +returned. + +Only if all these fail does the whole thing fail with the highest priority +error. Note that several errors may have come from LSM. + +The error priority is: + + EKEYREVOKED > EKEYEXPIRED > ENOKEY + +EACCES/EPERM are only returned on a direct search of a specific keyring where +the basal keyring does not grant Search permission. diff --git a/Documentation/keys.txt b/Documentation/keys.txt index 0321ded4b9ae..4afe03a58c5b 100644 --- a/Documentation/keys.txt +++ b/Documentation/keys.txt @@ -195,8 +195,8 @@ KEY ACCESS PERMISSIONS ====================== Keys have an owner user ID, a group access ID, and a permissions mask. The mask -has up to eight bits each for user, group and other access. Only five of each -set of eight bits are defined. These permissions granted are: +has up to eight bits each for possessor, user, group and other access. Only +five of each set of eight bits are defined. These permissions granted are: (*) View @@ -241,16 +241,16 @@ about the status of the key service: type, description and permissions. The payload of the key is not available this way: - SERIAL FLAGS USAGE EXPY PERM UID GID TYPE DESCRIPTION: SUMMARY - 00000001 I----- 39 perm 1f0000 0 0 keyring _uid_ses.0: 1/4 - 00000002 I----- 2 perm 1f0000 0 0 keyring _uid.0: empty - 00000007 I----- 1 perm 1f0000 0 0 keyring _pid.1: empty - 0000018d I----- 1 perm 1f0000 0 0 keyring _pid.412: empty - 000004d2 I--Q-- 1 perm 1f0000 32 -1 keyring _uid.32: 1/4 - 000004d3 I--Q-- 3 perm 1f0000 32 -1 keyring _uid_ses.32: empty - 00000892 I--QU- 1 perm 1f0000 0 0 user metal:copper: 0 - 00000893 I--Q-N 1 35s 1f0000 0 0 user metal:silver: 0 - 00000894 I--Q-- 1 10h 1f0000 0 0 user metal:gold: 0 + SERIAL FLAGS USAGE EXPY PERM UID GID TYPE DESCRIPTION: SUMMARY + 00000001 I----- 39 perm 1f1f0000 0 0 keyring _uid_ses.0: 1/4 + 00000002 I----- 2 perm 1f1f0000 0 0 keyring _uid.0: empty + 00000007 I----- 1 perm 1f1f0000 0 0 keyring _pid.1: empty + 0000018d I----- 1 perm 1f1f0000 0 0 keyring _pid.412: empty + 000004d2 I--Q-- 1 perm 1f1f0000 32 -1 keyring _uid.32: 1/4 + 000004d3 I--Q-- 3 perm 1f1f0000 32 -1 keyring _uid_ses.32: empty + 00000892 I--QU- 1 perm 1f000000 0 0 user metal:copper: 0 + 00000893 I--Q-N 1 35s 1f1f0000 0 0 user metal:silver: 0 + 00000894 I--Q-- 1 10h 001f0000 0 0 user metal:gold: 0 The flags are: @@ -361,6 +361,8 @@ The main syscalls are: /sbin/request-key will be invoked in an attempt to obtain a key. The callout_info string will be passed as an argument to the program. + See also Documentation/keys-request-key.txt. + The keyctl syscall functions are: @@ -533,8 +535,8 @@ The keyctl syscall functions are: (*) Read the payload data from a key: - key_serial_t keyctl(KEYCTL_READ, key_serial_t keyring, char *buffer, - size_t buflen); + long keyctl(KEYCTL_READ, key_serial_t keyring, char *buffer, + size_t buflen); This function attempts to read the payload data from the specified key into the buffer. The process must have read permission on the key to @@ -555,9 +557,9 @@ The keyctl syscall functions are: (*) Instantiate a partially constructed key. - key_serial_t keyctl(KEYCTL_INSTANTIATE, key_serial_t key, - const void *payload, size_t plen, - key_serial_t keyring); + long keyctl(KEYCTL_INSTANTIATE, key_serial_t key, + const void *payload, size_t plen, + key_serial_t keyring); If the kernel calls back to userspace to complete the instantiation of a key, userspace should use this call to supply data for the key before the @@ -576,8 +578,8 @@ The keyctl syscall functions are: (*) Negatively instantiate a partially constructed key. - key_serial_t keyctl(KEYCTL_NEGATE, key_serial_t key, - unsigned timeout, key_serial_t keyring); + long keyctl(KEYCTL_NEGATE, key_serial_t key, + unsigned timeout, key_serial_t keyring); If the kernel calls back to userspace to complete the instantiation of a key, userspace should use this call mark the key as negative before the @@ -637,6 +639,34 @@ call, and the key released upon close. How to deal with conflicting keys due to two different users opening the same file is left to the filesystem author to solve. +Note that there are two different types of pointers to keys that may be +encountered: + + (*) struct key * + + This simply points to the key structure itself. Key structures will be at + least four-byte aligned. + + (*) key_ref_t + + This is equivalent to a struct key *, but the least significant bit is set + if the caller "possesses" the key. By "possession" it is meant that the + calling processes has a searchable link to the key from one of its + keyrings. There are three functions for dealing with these: + + key_ref_t make_key_ref(const struct key *key, + unsigned long possession); + + struct key *key_ref_to_ptr(const key_ref_t key_ref); + + unsigned long is_key_possessed(const key_ref_t key_ref); + + The first function constructs a key reference from a key pointer and + possession information (which must be 0 or 1 and not any other value). + + The second function retrieves the key pointer from a reference and the + third retrieves the possession flag. + When accessing a key's payload contents, certain precautions must be taken to prevent access vs modification races. See the section "Notes on accessing payload contents" for more information. @@ -660,12 +690,18 @@ payload contents" for more information. If successful, the key will have been attached to the default keyring for implicitly obtained request-key keys, as set by KEYCTL_SET_REQKEY_KEYRING. + See also Documentation/keys-request-key.txt. + (*) When it is no longer required, the key should be released using: void key_put(struct key *key); - This can be called from interrupt context. If CONFIG_KEYS is not set then + Or: + + void key_ref_put(key_ref_t key_ref); + + These can be called from interrupt context. If CONFIG_KEYS is not set then the argument will not be parsed. @@ -689,13 +725,17 @@ payload contents" for more information. (*) If a keyring was found in the search, this can be further searched by: - struct key *keyring_search(struct key *keyring, - const struct key_type *type, - const char *description) + key_ref_t keyring_search(key_ref_t keyring_ref, + const struct key_type *type, + const char *description) This searches the keyring tree specified for a matching key. Error ENOKEY - is returned upon failure. If successful, the returned key will need to be - released. + is returned upon failure (use IS_ERR/PTR_ERR to determine). If successful, + the returned key will need to be released. + + The possession attribute from the keyring reference is used to control + access through the permissions mask and is propagated to the returned key + reference pointer if successful. (*) To check the validity of a key, this function can be called: @@ -732,7 +772,7 @@ More complex payload contents must be allocated and a pointer to them set in key->payload.data. One of the following ways must be selected to access the data: - (1) Unmodifyable key type. + (1) Unmodifiable key type. If the key type does not have a modify method, then the key's payload can be accessed without any form of locking, provided that it's known to be diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt index ab65714d95fc..b433c8a27e2d 100644 --- a/Documentation/networking/ip-sysctl.txt +++ b/Documentation/networking/ip-sysctl.txt @@ -355,10 +355,14 @@ ip_dynaddr - BOOLEAN Default: 0 icmp_echo_ignore_all - BOOLEAN + If set non-zero, then the kernel will ignore all ICMP ECHO + requests sent to it. + Default: 0 + icmp_echo_ignore_broadcasts - BOOLEAN - If either is set to true, then the kernel will ignore either all - ICMP ECHO requests sent to it or just those to broadcast/multicast - addresses, respectively. + If set non-zero, then the kernel will ignore all ICMP ECHO and + TIMESTAMP requests sent to it via broadcast/multicast. + Default: 1 icmp_ratelimit - INTEGER Limit the maximal rates for sending ICMP packets whose type matches diff --git a/Documentation/sparse.txt b/Documentation/sparse.txt index 5df44dc894e5..1829009db771 100644 --- a/Documentation/sparse.txt +++ b/Documentation/sparse.txt @@ -51,9 +51,9 @@ or you don't get any checking at all. Where to get sparse ~~~~~~~~~~~~~~~~~~~ -With BK, you can just get it from +With git, you can just get it from - bk://sparse.bkbits.net/sparse + rsync://rsync.kernel.org/pub/scm/devel/sparse/sparse.git and DaveJ has tar-balls at |