diff options
author | Liam Girdwood <liam.r.girdwood@linux.intel.com> | 2013-09-20 18:19:09 +0100 |
---|---|---|
committer | Mark Brown <broonie@linaro.org> | 2013-09-23 12:06:25 +0100 |
commit | 469b7bc4e6dbfdb173f0901f746e9277f6740ba7 (patch) | |
tree | f23b6526252df0ab64731342d9c6ef5972820c58 /Documentation/sound | |
parent | b5c47df974ddae44d4a1ff935cdda30b0795bc00 (diff) | |
download | blackbird-op-linux-469b7bc4e6dbfdb173f0901f746e9277f6740ba7.tar.gz blackbird-op-linux-469b7bc4e6dbfdb173f0901f746e9277f6740ba7.zip |
ASoC: Docs: Add documentation for Dynamic PCM
Add documentation describing DPCM with examples of a DSP based
smart phone.
Signed-off-by: Liam Girdwood <liam.r.girdwood@linux.intel.com>
Signed-off-by: Mark Brown <broonie@linaro.org>
Diffstat (limited to 'Documentation/sound')
-rw-r--r-- | Documentation/sound/alsa/soc/DPCM.txt | 380 |
1 files changed, 380 insertions, 0 deletions
diff --git a/Documentation/sound/alsa/soc/DPCM.txt b/Documentation/sound/alsa/soc/DPCM.txt new file mode 100644 index 000000000000..aa8546f2d144 --- /dev/null +++ b/Documentation/sound/alsa/soc/DPCM.txt @@ -0,0 +1,380 @@ +Dynamic PCM +=========== + +1. Description +============== + +Dynamic PCM allows an ALSA PCM device to digitally route its PCM audio to +various digital endpoints during the PCM stream runtime. e.g. PCM0 can route +digital audio to I2S DAI0, I2S DAI1 or PDM DAI2. This is useful for on SoC DSP +drivers that expose several ALSA PCMs and can route to multiple DAIs. + +The DPCM runtime routing is determined by the ALSA mixer settings in the same +way as the analog signal is routed in an ASoC codec driver. DPCM uses a DAPM +graph representing the DSP internal audio paths and uses the mixer settings to +determine the patch used by each ALSA PCM. + +DPCM re-uses all the existing component codec, platform and DAI drivers without +any modifications. + + +Phone Audio System with SoC based DSP +------------------------------------- + +Consider the following phone audio subsystem. This will be used in this +document for all examples :- + +| Front End PCMs | SoC DSP | Back End DAIs | Audio devices | + + ************* +PCM0 <------------> * * <----DAI0-----> Codec Headset + * * +PCM1 <------------> * * <----DAI1-----> Codec Speakers + * DSP * +PCM2 <------------> * * <----DAI2-----> MODEM + * * +PCM3 <------------> * * <----DAI3-----> BT + * * + * * <----DAI4-----> DMIC + * * + * * <----DAI5-----> FM + ************* + +This diagram shows a simple smart phone audio subsystem. It supports Bluetooth, +FM digital radio, Speakers, Headset Jack, digital microphones and cellular +modem. This sound card exposes 4 DSP front end (FE) ALSA PCM devices and +supports 6 back end (BE) DAIs. Each FE PCM can digitally route audio data to any +of the BE DAIs. The FE PCM devices can also route audio to more than 1 BE DAI. + + + +Example - DPCM Switching playback from DAI0 to DAI1 +--------------------------------------------------- + +Audio is being played to the Headset. After a while the user removes the headset +and audio continues playing on the speakers. + +Playback on PCM0 to Headset would look like :- + + ************* +PCM0 <============> * * <====DAI0=====> Codec Headset + * * +PCM1 <------------> * * <----DAI1-----> Codec Speakers + * DSP * +PCM2 <------------> * * <----DAI2-----> MODEM + * * +PCM3 <------------> * * <----DAI3-----> BT + * * + * * <----DAI4-----> DMIC + * * + * * <----DAI5-----> FM + ************* + +The headset is removed from the jack by user so the speakers must now be used :- + + ************* +PCM0 <============> * * <----DAI0-----> Codec Headset + * * +PCM1 <------------> * * <====DAI1=====> Codec Speakers + * DSP * +PCM2 <------------> * * <----DAI2-----> MODEM + * * +PCM3 <------------> * * <----DAI3-----> BT + * * + * * <----DAI4-----> DMIC + * * + * * <----DAI5-----> FM + ************* + +The audio driver processes this as follows :- + + 1) Machine driver receives Jack removal event. + + 2) Machine driver OR audio HAL disables the Headset path. + + 3) DPCM runs the PCM trigger(stop), hw_free(), shutdown() operations on DAI0 + for headset since the path is now disabled. + + 4) Machine driver or audio HAL enables the speaker path. + + 5) DPCM runs the PCM ops for startup(), hw_params(), prepapre() and + trigger(start) for DAI1 Speakers since the path is enabled. + +In this example, the machine driver or userspace audio HAL can alter the routing +and then DPCM will take care of managing the DAI PCM operations to either bring +the link up or down. Audio playback does not stop during this transition. + + + +DPCM machine driver +=================== + +The DPCM enabled ASoC machine driver is similar to normal machine drivers +except that we also have to :- + + 1) Define the FE and BE DAI links. + + 2) Define any FE/BE PCM operations. + + 3) Define widget graph connections. + + +1 FE and BE DAI links +--------------------- + +| Front End PCMs | SoC DSP | Back End DAIs | Audio devices | + + ************* +PCM0 <------------> * * <----DAI0-----> Codec Headset + * * +PCM1 <------------> * * <----DAI1-----> Codec Speakers + * DSP * +PCM2 <------------> * * <----DAI2-----> MODEM + * * +PCM3 <------------> * * <----DAI3-----> BT + * * + * * <----DAI4-----> DMIC + * * + * * <----DAI5-----> FM + ************* + +For the example above we have to define 4 FE DAI links and 6 BE DAI links. The +FE DAI links are defined as follows :- + +static struct snd_soc_dai_link machine_dais[] = { + { + .name = "PCM0 System", + .stream_name = "System Playback", + .cpu_dai_name = "System Pin", + .platform_name = "dsp-audio", + .codec_name = "snd-soc-dummy", + .codec_dai_name = "snd-soc-dummy-dai", + .dynamic = 1, + .trigger = {SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, + .dpcm_playback = 1, + }, + .....< other FE and BE DAI links here > +}; + +This FE DAI link is pretty similar to a regular DAI link except that we also +set the DAI link to a DPCM FE with the "dynamic = 1". The supported FE stream +directions should also be set with the "dpcm_playback" and "dpcm_capture" +flags. There is also an option to specify the ordering of the trigger call for +each FE. This allows the ASoC core to trigger the DSP before or after the other +components (as some DSPs have strong requirements for the ordering DAI/DSP +start and stop sequences). + +The FE DAI above sets the codec and code DAIs to dummy devices since the BE is +dynamic and will change depending on runtime config. + +The BE DAIs are configured as follows :- + +static struct snd_soc_dai_link machine_dais[] = { + .....< FE DAI links here > + { + .name = "Codec Headset", + .cpu_dai_name = "ssp-dai.0", + .platform_name = "snd-soc-dummy", + .no_pcm = 1, + .codec_name = "rt5640.0-001c", + .codec_dai_name = "rt5640-aif1", + .ignore_suspend = 1, + .ignore_pmdown_time = 1, + .be_hw_params_fixup = hswult_ssp0_fixup, + .ops = &haswell_ops, + .dpcm_playback = 1, + .dpcm_capture = 1, + }, + .....< other BE DAI links here > +}; + +This BE DAI link connects DAI0 to the codec (in this case RT5460 AIF1). It sets +the "no_pcm" flag to mark it has a BE and sets flags for supported stream +directions using "dpcm_playback" and "dpcm_capture" above. + +The BE has also flags set for ignoreing suspend and PM down time. This allows +the BE to work in a hostless mode where the host CPU is not transferring data +like a BT phone call :- + + ************* +PCM0 <------------> * * <----DAI0-----> Codec Headset + * * +PCM1 <------------> * * <----DAI1-----> Codec Speakers + * DSP * +PCM2 <------------> * * <====DAI2=====> MODEM + * * +PCM3 <------------> * * <====DAI3=====> BT + * * + * * <----DAI4-----> DMIC + * * + * * <----DAI5-----> FM + ************* + +This allows the host CPU to sleep whilst the DSP, MODEM DAI and the BT DAI are +still in operation. + +A BE DAI link can also set the codec to a dummy device if the code is a device +that is managed externally. + +Likewise a BE DAI can also set a dummy cpu DAI if the CPU DAI is managed by the +DSP firmware. + + +2 FE/BE PCM operations +---------------------- + +The BE above also exports some PCM operations and a "fixup" callback. The fixup +callback is used by the machine driver to (re)configure the DAI based upon the +FE hw params. i.e. the DSP may perform SRC or ASRC from the FE to BE. + +e.g. DSP converts all FE hw params to run at fixed rate of 48k, 16bit, stereo for +DAI0. This means all FE hw_params have to be fixed in the machine driver for +DAI0 so that the DAI is running at desired configuration regardless of the FE +configuration. + +static int dai0_fixup(struct snd_soc_pcm_runtime *rtd, + struct snd_pcm_hw_params *params) +{ + struct snd_interval *rate = hw_param_interval(params, + SNDRV_PCM_HW_PARAM_RATE); + struct snd_interval *channels = hw_param_interval(params, + SNDRV_PCM_HW_PARAM_CHANNELS); + + /* The DSP will covert the FE rate to 48k, stereo */ + rate->min = rate->max = 48000; + channels->min = channels->max = 2; + + /* set DAI0 to 16 bit */ + snd_mask_set(¶ms->masks[SNDRV_PCM_HW_PARAM_FORMAT - + SNDRV_PCM_HW_PARAM_FIRST_MASK], + SNDRV_PCM_FORMAT_S16_LE); + return 0; +} + +The other PCM operation are the same as for regular DAI links. Use as necessary. + + +3 Widget graph connections +-------------------------- + +The BE DAI links will normally be connected to the graph at initialisation time +by the ASoC DAPM core. However, if the BE codec or BE DAI is a dummy then this +has to be set explicitly in the driver :- + +/* BE for codec Headset - DAI0 is dummy and managed by DSP FW */ +{"DAI0 CODEC IN", NULL, "AIF1 Capture"}, +{"AIF1 Playback", NULL, "DAI0 CODEC OUT"}, + + +Writing a DPCM DSP driver +========================= + +The DPCM DSP driver looks much like a standard platform class ASoC driver +combined with elements from a codec class driver. A DSP platform driver must +implement :- + + 1) Front End PCM DAIs - i.e. struct snd_soc_dai_driver. + + 2) DAPM graph showing DSP audio routing from FE DAIs to BEs. + + 3) DAPM widgets from DSP graph. + + 4) Mixers for gains, routing, etc. + + 5) DMA configuration. + + 6) BE AIF widgets. + +Items 6 is important for routing the audio outside of the DSP. AIF need to be +defined for each BE and each stream direction. e.g for BE DAI0 above we would +have :- + +SND_SOC_DAPM_AIF_IN("DAI0 RX", NULL, 0, SND_SOC_NOPM, 0, 0), +SND_SOC_DAPM_AIF_OUT("DAI0 TX", NULL, 0, SND_SOC_NOPM, 0, 0), + +The BE AIF are used to connect the DSP graph to the graphs for the other +component drivers (e.g. codec graph). + + +Hostless PCM streams +==================== + +A hostless PCM stream is a stream that is not routed through the host CPU. An +example of this would be a phone call from handset to modem. + + + ************* +PCM0 <------------> * * <----DAI0-----> Codec Headset + * * +PCM1 <------------> * * <====DAI1=====> Codec Speakers/Mic + * DSP * +PCM2 <------------> * * <====DAI2=====> MODEM + * * +PCM3 <------------> * * <----DAI3-----> BT + * * + * * <----DAI4-----> DMIC + * * + * * <----DAI5-----> FM + ************* + +In this case the PCM data is routed via the DSP. The host CPU in this use case +is only used for control and can sleep during the runtime of the stream. + +The host can control the hostless link either by :- + + 1) Configuring the link as a CODEC <-> CODEC style link. In this case the link + is enabled or disabled by the state of the DAPM graph. This usually means + there is a mixer control that can be used to connect or disconnect the path + between both DAIs. + + 2) Hostless FE. This FE has a virtual connection to the BE DAI links on the DAPM + graph. Control is then carried out by the FE as regualar PCM operations. + This method gives more control over the DAI links, but requires much more + userspace code to control the link. Its recommended to use CODEC<->CODEC + unless your HW needs more fine grained sequencing of the PCM ops. + + +CODEC <-> CODEC link +-------------------- + +This DAI link is enabled when DAPM detects a valid path within the DAPM graph. +The machine driver sets some additional parameters to the DAI link i.e. + +static const struct snd_soc_pcm_stream dai_params = { + .formats = SNDRV_PCM_FMTBIT_S32_LE, + .rate_min = 8000, + .rate_max = 8000, + .channels_min = 2, + .channels_max = 2, +}; + +static struct snd_soc_dai_link dais[] = { + < ... more DAI links above ... > + { + .name = "MODEM", + .stream_name = "MODEM", + .cpu_dai_name = "dai2", + .codec_dai_name = "modem-aif1", + .codec_name = "modem", + .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF + | SND_SOC_DAIFMT_CBM_CFM, + .params = &dai_params, + } + < ... more DAI links here ... > + +These parameters are used to configure the DAI hw_params() when DAPM detects a +valid path and then calls the PCM operations to start the link. DAPM will also +call the appropriate PCM operations to disable the DAI when the path is no +longer valid. + + +Hostless FE +----------- + +The DAI link(s) are enabled by a FE that does not read or write any PCM data. +This means creating a new FE that is connected with a virtual path to both +DAI links. The DAI links will be started when the FE PCM is started and stopped +when the FE PCM is stopped. Note that the FE PCM cannot read or write data in +this configuration. + + |