diff options
author | J. Bruce Fields <bfields@redhat.com> | 2012-10-09 18:35:22 -0400 |
---|---|---|
committer | J. Bruce Fields <bfields@redhat.com> | 2012-10-09 18:35:22 -0400 |
commit | f474af7051212b4efc8267583fad9c4ebf33ccff (patch) | |
tree | 1aa46ebc8065a341f247c2a2d9af2f624ad1d4f8 /Documentation/networking | |
parent | 0d22f68f02c10d5d10ec5712917e5828b001a822 (diff) | |
parent | e3dd9a52cb5552c46c2a4ca7ccdfb4dab5c72457 (diff) | |
download | blackbird-op-linux-f474af7051212b4efc8267583fad9c4ebf33ccff.tar.gz blackbird-op-linux-f474af7051212b4efc8267583fad9c4ebf33ccff.zip |
nfs: disintegrate UAPI for nfs
This is to complete part of the Userspace API (UAPI) disintegration for which
the preparatory patches were pulled recently. After these patches, userspace
headers will be segregated into:
include/uapi/linux/.../foo.h
for the userspace interface stuff, and:
include/linux/.../foo.h
for the strictly kernel internal stuff.
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Diffstat (limited to 'Documentation/networking')
-rw-r--r-- | Documentation/networking/batman-adv.txt | 7 | ||||
-rw-r--r-- | Documentation/networking/bonding.txt | 30 | ||||
-rw-r--r-- | Documentation/networking/ip-sysctl.txt | 37 | ||||
-rw-r--r-- | Documentation/networking/netconsole.txt | 19 | ||||
-rw-r--r-- | Documentation/networking/stmmac.txt | 5 | ||||
-rw-r--r-- | Documentation/networking/vxlan.txt | 47 |
6 files changed, 121 insertions, 24 deletions
diff --git a/Documentation/networking/batman-adv.txt b/Documentation/networking/batman-adv.txt index 8f3ae4a6147e..a173d2a879f5 100644 --- a/Documentation/networking/batman-adv.txt +++ b/Documentation/networking/batman-adv.txt @@ -75,9 +75,10 @@ folder: There is a special folder for debugging information: -# ls /sys/kernel/debug/batman_adv/bat0/ -# bla_claim_table log socket transtable_local -# gateways originators transtable_global vis_data +# ls /sys/kernel/debug/batman_adv/bat0/ +# bla_backbone_table log transtable_global +# bla_claim_table originators transtable_local +# gateways socket vis_data Some of the files contain all sort of status information regard- ing the mesh network. For example, you can view the table of diff --git a/Documentation/networking/bonding.txt b/Documentation/networking/bonding.txt index 6b1c7110534e..10a015c384b8 100644 --- a/Documentation/networking/bonding.txt +++ b/Documentation/networking/bonding.txt @@ -752,12 +752,22 @@ xmit_hash_policy protocol information to generate the hash. Uses XOR of hardware MAC addresses and IP addresses to - generate the hash. The formula is + generate the hash. The IPv4 formula is (((source IP XOR dest IP) AND 0xffff) XOR ( source MAC XOR destination MAC )) modulo slave count + The IPv6 formula is + + hash = (source ip quad 2 XOR dest IP quad 2) XOR + (source ip quad 3 XOR dest IP quad 3) XOR + (source ip quad 4 XOR dest IP quad 4) + + (((hash >> 24) XOR (hash >> 16) XOR (hash >> 8) XOR hash) + XOR (source MAC XOR destination MAC)) + modulo slave count + This algorithm will place all traffic to a particular network peer on the same slave. For non-IP traffic, the formula is the same as for the layer2 transmit @@ -778,19 +788,29 @@ xmit_hash_policy slaves, although a single connection will not span multiple slaves. - The formula for unfragmented TCP and UDP packets is + The formula for unfragmented IPv4 TCP and UDP packets is ((source port XOR dest port) XOR ((source IP XOR dest IP) AND 0xffff) modulo slave count - For fragmented TCP or UDP packets and all other IP - protocol traffic, the source and destination port + The formula for unfragmented IPv6 TCP and UDP packets is + + hash = (source port XOR dest port) XOR + ((source ip quad 2 XOR dest IP quad 2) XOR + (source ip quad 3 XOR dest IP quad 3) XOR + (source ip quad 4 XOR dest IP quad 4)) + + ((hash >> 24) XOR (hash >> 16) XOR (hash >> 8) XOR hash) + modulo slave count + + For fragmented TCP or UDP packets and all other IPv4 and + IPv6 protocol traffic, the source and destination port information is omitted. For non-IP traffic, the formula is the same as for the layer2 transmit hash policy. - This policy is intended to mimic the behavior of + The IPv4 policy is intended to mimic the behavior of certain switches, notably Cisco switches with PFC2 as well as some Foundry and IBM products. diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt index ca447b35b833..c7fc10724948 100644 --- a/Documentation/networking/ip-sysctl.txt +++ b/Documentation/networking/ip-sysctl.txt @@ -439,7 +439,9 @@ tcp_stdurg - BOOLEAN tcp_synack_retries - INTEGER Number of times SYNACKs for a passive TCP connection attempt will be retransmitted. Should not be higher than 255. Default value - is 5, which corresponds to ~180seconds. + is 5, which corresponds to 31seconds till the last retransmission + with the current initial RTO of 1second. With this the final timeout + for a passive TCP connection will happen after 63seconds. tcp_syncookies - BOOLEAN Only valid when the kernel was compiled with CONFIG_SYNCOOKIES @@ -465,20 +467,37 @@ tcp_syncookies - BOOLEAN tcp_fastopen - INTEGER Enable TCP Fast Open feature (draft-ietf-tcpm-fastopen) to send data in the opening SYN packet. To use this feature, the client application - must not use connect(). Instead, it should use sendmsg() or sendto() - with MSG_FASTOPEN flag which performs a TCP handshake automatically. - - The values (bitmap) are: - 1: Enables sending data in the opening SYN on the client - 5: Enables sending data in the opening SYN on the client regardless - of cookie availability. + must use sendmsg() or sendto() with MSG_FASTOPEN flag rather than + connect() to perform a TCP handshake automatically. + + The values (bitmap) are + 1: Enables sending data in the opening SYN on the client. + 2: Enables TCP Fast Open on the server side, i.e., allowing data in + a SYN packet to be accepted and passed to the application before + 3-way hand shake finishes. + 4: Send data in the opening SYN regardless of cookie availability and + without a cookie option. + 0x100: Accept SYN data w/o validating the cookie. + 0x200: Accept data-in-SYN w/o any cookie option present. + 0x400/0x800: Enable Fast Open on all listeners regardless of the + TCP_FASTOPEN socket option. The two different flags designate two + different ways of setting max_qlen without the TCP_FASTOPEN socket + option. Default: 0 + Note that the client & server side Fast Open flags (1 and 2 + respectively) must be also enabled before the rest of flags can take + effect. + + See include/net/tcp.h and the code for more details. + tcp_syn_retries - INTEGER Number of times initial SYNs for an active TCP connection attempt will be retransmitted. Should not be higher than 255. Default value - is 5, which corresponds to ~180seconds. + is 6, which corresponds to 63seconds till the last restransmission + with the current initial RTO of 1second. With this the final timeout + for an active TCP connection attempt will happen after 127seconds. tcp_timestamps - BOOLEAN Enable timestamps as defined in RFC1323. diff --git a/Documentation/networking/netconsole.txt b/Documentation/networking/netconsole.txt index 8d022073e3ef..2e9e0ae2cd45 100644 --- a/Documentation/networking/netconsole.txt +++ b/Documentation/networking/netconsole.txt @@ -51,8 +51,23 @@ Built-in netconsole starts immediately after the TCP stack is initialized and attempts to bring up the supplied dev at the supplied address. -The remote host can run either 'netcat -u -l -p <port>', -'nc -l -u <port>' or syslogd. +The remote host has several options to receive the kernel messages, +for example: + +1) syslogd + +2) netcat + + On distributions using a BSD-based netcat version (e.g. Fedora, + openSUSE and Ubuntu) the listening port must be specified without + the -p switch: + + 'nc -u -l -p <port>' / 'nc -u -l <port>' or + 'netcat -u -l -p <port>' / 'netcat -u -l <port>' + +3) socat + + 'socat udp-recv:<port> -' Dynamic reconfiguration: ======================== diff --git a/Documentation/networking/stmmac.txt b/Documentation/networking/stmmac.txt index c676b9cedbd0..ef9ee71b4d7f 100644 --- a/Documentation/networking/stmmac.txt +++ b/Documentation/networking/stmmac.txt @@ -173,7 +173,6 @@ Where: For MDIO bus The we have: struct stmmac_mdio_bus_data { - int bus_id; int (*phy_reset)(void *priv); unsigned int phy_mask; int *irqs; @@ -181,7 +180,6 @@ For MDIO bus The we have: }; Where: - o bus_id: bus identifier; o phy_reset: hook to reset the phy device attached to the bus. o phy_mask: phy mask passed when register the MDIO bus within the driver. o irqs: list of IRQs, one per PHY. @@ -230,9 +228,6 @@ there are two MAC cores: one MAC is for MDIO Bus/PHY emulation with fixed_link support. static struct stmmac_mdio_bus_data stmmac1_mdio_bus = { - .bus_id = 1, - | - |-> phy device on the bus_id 1 .phy_reset = phy_reset; | |-> function to provide the phy_reset on this board diff --git a/Documentation/networking/vxlan.txt b/Documentation/networking/vxlan.txt new file mode 100644 index 000000000000..5b34b762d7d5 --- /dev/null +++ b/Documentation/networking/vxlan.txt @@ -0,0 +1,47 @@ +Virtual eXtensible Local Area Networking documentation +====================================================== + +The VXLAN protocol is a tunnelling protocol that is designed to +solve the problem of limited number of available VLAN's (4096). +With VXLAN identifier is expanded to 24 bits. + +It is a draft RFC standard, that is implemented by Cisco Nexus, +Vmware and Brocade. The protocol runs over UDP using a single +destination port (still not standardized by IANA). +This document describes the Linux kernel tunnel device, +there is also an implantation of VXLAN for Openvswitch. + +Unlike most tunnels, a VXLAN is a 1 to N network, not just point +to point. A VXLAN device can either dynamically learn the IP address +of the other end, in a manner similar to a learning bridge, or the +forwarding entries can be configured statically. + +The management of vxlan is done in a similar fashion to it's +too closest neighbors GRE and VLAN. Configuring VXLAN requires +the version of iproute2 that matches the kernel release +where VXLAN was first merged upstream. + +1. Create vxlan device + # ip li add vxlan0 type vxlan id 42 group 239.1.1.1 dev eth1 + +This creates a new device (vxlan0). The device uses the +the multicast group 239.1.1.1 over eth1 to handle packets where +no entry is in the forwarding table. + +2. Delete vxlan device + # ip link delete vxlan0 + +3. Show vxlan info + # ip -d show vxlan0 + +It is possible to create, destroy and display the vxlan +forwarding table using the new bridge command. + +1. Create forwarding table entry + # bridge fdb add to 00:17:42:8a:b4:05 dst 192.19.0.2 dev vxlan0 + +2. Delete forwarding table entry + # bridge fdb delete 00:17:42:8a:b4:05 + +3. Show forwarding table + # bridge fdb show dev vxlan0 |