summaryrefslogtreecommitdiffstats
path: root/Documentation/IRQ-domain.txt
diff options
context:
space:
mode:
authorJiang Liu <jiang.liu@linux.intel.com>2014-11-06 22:20:14 +0800
committerThomas Gleixner <tglx@linutronix.de>2014-11-23 13:01:45 +0100
commitf8264e34965aaf43203912ed8f7b543c00c8d70f (patch)
tree1b037da27ec42cd9a2120f0f6dfb645731fb89ec /Documentation/IRQ-domain.txt
parentd31eb342409b24e3d2e1989c775f3361e93acc08 (diff)
downloadblackbird-op-linux-f8264e34965aaf43203912ed8f7b543c00c8d70f.tar.gz
blackbird-op-linux-f8264e34965aaf43203912ed8f7b543c00c8d70f.zip
irqdomain: Introduce new interfaces to support hierarchy irqdomains
We plan to use hierarchy irqdomain to suppport CPU vector assignment, interrupt remapping controller, IO-APIC controller, MSI interrupt and hypertransport interrupt etc on x86 platforms. So extend irqdomain interfaces to support hierarchy irqdomain. There are already many clients of current irqdomain interfaces. To minimize the changes, we choose to introduce new version 2 interfaces to support hierarchy instead of extending existing irqdomain interfaces. According to Thomas's suggestion, the most important design decision is to build hierarchy struct irq_data to support hierarchy irqdomain, so hierarchy irqdomain related data could be saved in struct irq_data. With support of hierarchy irq_data, we could also support stacked irq_chips. This is most useful in case of set_affinity(). The new hierarchy irqdomain introduces following interfaces: 1) irq_domain_alloc_irqs()/irq_domain_free_irqs(): allocate/release IRQ and related resources. 2) __irq_domain_alloc_irqs(): a special version to support legacy IRQs. 3) irq_domain_activate_irq()/irq_domain_deactivate_irq(): program interrupt controllers to activate/deactivate interrupt. There are also several help functions to ease irqdomain implemenations: 1) irq_domain_get_irq_data(): get irq_data associated with a specific irqdomain. 2) irq_domain_set_hwirq_and_chip(): save irqdomain specific data into irq_data. 3) irq_domain_alloc_irqs_parent()/irq_domain_free_irqs_parent(): invoke parent irqdomain's alloc/free callbacks. We also changed irq_startup()/irq_shutdown() to invoke irq_domain_activate_irq()/irq_domain_deactivate_irq() to program interrupt controller when start/stop interrupts. [ tglx: Folded parts of the later patch series in ] Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Grant Likely <grant.likely@linaro.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Yingjoe Chen <yingjoe.chen@mediatek.com> Cc: Yijing Wang <wangyijing@huawei.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Diffstat (limited to 'Documentation/IRQ-domain.txt')
-rw-r--r--Documentation/IRQ-domain.txt71
1 files changed, 71 insertions, 0 deletions
diff --git a/Documentation/IRQ-domain.txt b/Documentation/IRQ-domain.txt
index 8a8b82c9ca53..39cfa72732ff 100644
--- a/Documentation/IRQ-domain.txt
+++ b/Documentation/IRQ-domain.txt
@@ -151,3 +151,74 @@ used and no descriptor gets allocated it is very important to make sure
that the driver using the simple domain call irq_create_mapping()
before any irq_find_mapping() since the latter will actually work
for the static IRQ assignment case.
+
+==== Hierarchy IRQ domain ====
+On some architectures, there may be multiple interrupt controllers
+involved in delivering an interrupt from the device to the target CPU.
+Let's look at a typical interrupt delivering path on x86 platforms:
+
+Device --> IOAPIC -> Interrupt remapping Controller -> Local APIC -> CPU
+
+There are three interrupt controllers involved:
+1) IOAPIC controller
+2) Interrupt remapping controller
+3) Local APIC controller
+
+To support such a hardware topology and make software architecture match
+hardware architecture, an irq_domain data structure is built for each
+interrupt controller and those irq_domains are organized into hierarchy.
+When building irq_domain hierarchy, the irq_domain near to the device is
+child and the irq_domain near to CPU is parent. So a hierarchy structure
+as below will be built for the example above.
+ CPU Vector irq_domain (root irq_domain to manage CPU vectors)
+ ^
+ |
+ Interrupt Remapping irq_domain (manage irq_remapping entries)
+ ^
+ |
+ IOAPIC irq_domain (manage IOAPIC delivery entries/pins)
+
+There are four major interfaces to use hierarchy irq_domain:
+1) irq_domain_alloc_irqs(): allocate IRQ descriptors and interrupt
+ controller related resources to deliver these interrupts.
+2) irq_domain_free_irqs(): free IRQ descriptors and interrupt controller
+ related resources associated with these interrupts.
+3) irq_domain_activate_irq(): activate interrupt controller hardware to
+ deliver the interrupt.
+3) irq_domain_deactivate_irq(): deactivate interrupt controller hardware
+ to stop delivering the interrupt.
+
+Following changes are needed to support hierarchy irq_domain.
+1) a new field 'parent' is added to struct irq_domain; it's used to
+ maintain irq_domain hierarchy information.
+2) a new field 'parent_data' is added to struct irq_data; it's used to
+ build hierarchy irq_data to match hierarchy irq_domains. The irq_data
+ is used to store irq_domain pointer and hardware irq number.
+3) new callbacks are added to struct irq_domain_ops to support hierarchy
+ irq_domain operations.
+
+With support of hierarchy irq_domain and hierarchy irq_data ready, an
+irq_domain structure is built for each interrupt controller, and an
+irq_data structure is allocated for each irq_domain associated with an
+IRQ. Now we could go one step further to support stacked(hierarchy)
+irq_chip. That is, an irq_chip is associated with each irq_data along
+the hierarchy. A child irq_chip may implement a required action by
+itself or by cooperating with its parent irq_chip.
+
+With stacked irq_chip, interrupt controller driver only needs to deal
+with the hardware managed by itself and may ask for services from its
+parent irq_chip when needed. So we could achieve a much cleaner
+software architecture.
+
+For an interrupt controller driver to support hierarchy irq_domain, it
+needs to:
+1) Implement irq_domain_ops.alloc and irq_domain_ops.free
+2) Optionally implement irq_domain_ops.activate and
+ irq_domain_ops.deactivate.
+3) Optionally implement an irq_chip to manage the interrupt controller
+ hardware.
+4) No need to implement irq_domain_ops.map and irq_domain_ops.unmap,
+ they are unused with hierarchy irq_domain.
+
+Hierarchy irq_domain may also be used to support other architectures,
+such as ARM, ARM64 etc.
OpenPOWER on IntegriCloud