summaryrefslogtreecommitdiffstats
path: root/drivers/i2c/mxs_i2c.c
blob: 46106b7712e6216c17822faa4cd8f5caa4dc8a52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/*
 * Freescale i.MX28 I2C Driver
 *
 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
 * on behalf of DENX Software Engineering GmbH
 *
 * Partly based on Linux kernel i2c-mxs.c driver:
 * Copyright (C) 2011 Wolfram Sang, Pengutronix e.K.
 *
 * Which was based on a (non-working) driver which was:
 * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <malloc.h>
#include <i2c.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/sys_proto.h>

#define	MXS_I2C_MAX_TIMEOUT	1000000

static void mxs_i2c_reset(void)
{
	struct mxs_i2c_regs *i2c_regs = (struct mxs_i2c_regs *)MXS_I2C0_BASE;
	int ret;
	int speed = i2c_get_bus_speed();

	ret = mxs_reset_block(&i2c_regs->hw_i2c_ctrl0_reg);
	if (ret) {
		debug("MXS I2C: Block reset timeout\n");
		return;
	}

	writel(I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | I2C_CTRL1_NO_SLAVE_ACK_IRQ |
		I2C_CTRL1_EARLY_TERM_IRQ | I2C_CTRL1_MASTER_LOSS_IRQ |
		I2C_CTRL1_SLAVE_STOP_IRQ | I2C_CTRL1_SLAVE_IRQ,
		&i2c_regs->hw_i2c_ctrl1_clr);

	writel(I2C_QUEUECTRL_PIO_QUEUE_MODE, &i2c_regs->hw_i2c_queuectrl_set);

	i2c_set_bus_speed(speed);
}

static void mxs_i2c_setup_read(uint8_t chip, int len)
{
	struct mxs_i2c_regs *i2c_regs = (struct mxs_i2c_regs *)MXS_I2C0_BASE;

	writel(I2C_QUEUECMD_RETAIN_CLOCK | I2C_QUEUECMD_PRE_SEND_START |
		I2C_QUEUECMD_MASTER_MODE | I2C_QUEUECMD_DIRECTION |
		(1 << I2C_QUEUECMD_XFER_COUNT_OFFSET),
		&i2c_regs->hw_i2c_queuecmd);

	writel((chip << 1) | 1, &i2c_regs->hw_i2c_data);

	writel(I2C_QUEUECMD_SEND_NAK_ON_LAST | I2C_QUEUECMD_MASTER_MODE |
		(len << I2C_QUEUECMD_XFER_COUNT_OFFSET) |
		I2C_QUEUECMD_POST_SEND_STOP, &i2c_regs->hw_i2c_queuecmd);

	writel(I2C_QUEUECTRL_QUEUE_RUN, &i2c_regs->hw_i2c_queuectrl_set);
}

static void mxs_i2c_write(uchar chip, uint addr, int alen,
			uchar *buf, int blen, int stop)
{
	struct mxs_i2c_regs *i2c_regs = (struct mxs_i2c_regs *)MXS_I2C0_BASE;
	uint32_t data;
	int i, remain, off;

	if ((alen > 4) || (alen == 0)) {
		debug("MXS I2C: Invalid address length\n");
		return;
	}

	if (stop)
		stop = I2C_QUEUECMD_POST_SEND_STOP;

	writel(I2C_QUEUECMD_PRE_SEND_START |
		I2C_QUEUECMD_MASTER_MODE | I2C_QUEUECMD_DIRECTION |
		((blen + alen + 1) << I2C_QUEUECMD_XFER_COUNT_OFFSET) | stop,
		&i2c_regs->hw_i2c_queuecmd);

	data = (chip << 1) << 24;

	for (i = 0; i < alen; i++) {
		data >>= 8;
		data |= ((char *)&addr)[alen - i - 1] << 24;
		if ((i & 3) == 2)
			writel(data, &i2c_regs->hw_i2c_data);
	}

	off = i;
	for (; i < off + blen; i++) {
		data >>= 8;
		data |= buf[i - off] << 24;
		if ((i & 3) == 2)
			writel(data, &i2c_regs->hw_i2c_data);
	}

	remain = 24 - ((i & 3) * 8);
	if (remain)
		writel(data >> remain, &i2c_regs->hw_i2c_data);

	writel(I2C_QUEUECTRL_QUEUE_RUN, &i2c_regs->hw_i2c_queuectrl_set);
}

static int mxs_i2c_wait_for_ack(void)
{
	struct mxs_i2c_regs *i2c_regs = (struct mxs_i2c_regs *)MXS_I2C0_BASE;
	uint32_t tmp;
	int timeout = MXS_I2C_MAX_TIMEOUT;

	for (;;) {
		tmp = readl(&i2c_regs->hw_i2c_ctrl1);
		if (tmp & I2C_CTRL1_NO_SLAVE_ACK_IRQ) {
			debug("MXS I2C: No slave ACK\n");
			goto err;
		}

		if (tmp & (
			I2C_CTRL1_EARLY_TERM_IRQ | I2C_CTRL1_MASTER_LOSS_IRQ |
			I2C_CTRL1_SLAVE_STOP_IRQ | I2C_CTRL1_SLAVE_IRQ)) {
			debug("MXS I2C: Error (CTRL1 = %08x)\n", tmp);
			goto err;
		}

		if (tmp & I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ)
			break;

		if (!timeout--) {
			debug("MXS I2C: Operation timed out\n");
			goto err;
		}

		udelay(1);
	}

	return 0;

err:
	mxs_i2c_reset();
	return 1;
}

int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
{
	struct mxs_i2c_regs *i2c_regs = (struct mxs_i2c_regs *)MXS_I2C0_BASE;
	uint32_t tmp = 0;
	int ret;
	int i;

	mxs_i2c_write(chip, addr, alen, NULL, 0, 0);
	ret = mxs_i2c_wait_for_ack();
	if (ret) {
		debug("MXS I2C: Failed writing address\n");
		return ret;
	}

	mxs_i2c_setup_read(chip, len);
	ret = mxs_i2c_wait_for_ack();
	if (ret) {
		debug("MXS I2C: Failed reading address\n");
		return ret;
	}

	for (i = 0; i < len; i++) {
		if (!(i & 3)) {
			while (readl(&i2c_regs->hw_i2c_queuestat) &
				I2C_QUEUESTAT_RD_QUEUE_EMPTY)
				;
			tmp = readl(&i2c_regs->hw_i2c_queuedata);
		}
		buffer[i] = tmp & 0xff;
		tmp >>= 8;
	}

	return 0;
}

int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
{
	int ret;
	mxs_i2c_write(chip, addr, alen, buffer, len, 1);
	ret = mxs_i2c_wait_for_ack();
	if (ret)
		debug("MXS I2C: Failed writing address\n");

	return ret;
}

int i2c_probe(uchar chip)
{
	int ret;
	mxs_i2c_write(chip, 0, 1, NULL, 0, 1);
	ret = mxs_i2c_wait_for_ack();
	mxs_i2c_reset();
	return ret;
}

int i2c_set_bus_speed(unsigned int speed)
{
	struct mxs_i2c_regs *i2c_regs = (struct mxs_i2c_regs *)MXS_I2C0_BASE;
	/*
	 * The timing derivation algorithm. There is no documentation for this
	 * algorithm available, it was derived by using the scope and fiddling
	 * with constants until the result observed on the scope was good enough
	 * for 20kHz, 50kHz, 100kHz, 200kHz, 300kHz and 400kHz. It should be
	 * possible to assume the algorithm works for other frequencies as well.
	 *
	 * Note it was necessary to cap the frequency on both ends as it's not
	 * possible to configure completely arbitrary frequency for the I2C bus
	 * clock.
	 */
	uint32_t clk = mxc_get_clock(MXC_XTAL_CLK);
	uint32_t base = ((clk / speed) - 38) / 2;
	uint16_t high_count = base + 3;
	uint16_t low_count = base - 3;
	uint16_t rcv_count = (high_count * 3) / 4;
	uint16_t xmit_count = low_count / 4;

	if (speed > 540000) {
		printf("MXS I2C: Speed too high (%d Hz)\n", speed);
		return -EINVAL;
	}

	if (speed < 12000) {
		printf("MXS I2C: Speed too low (%d Hz)\n", speed);
		return -EINVAL;
	}

	writel((high_count << 16) | rcv_count, &i2c_regs->hw_i2c_timing0);
	writel((low_count << 16) | xmit_count, &i2c_regs->hw_i2c_timing1);

	writel((0x0030 << I2C_TIMING2_BUS_FREE_OFFSET) |
		(0x0030 << I2C_TIMING2_LEADIN_COUNT_OFFSET),
		&i2c_regs->hw_i2c_timing2);

	return 0;
}

unsigned int i2c_get_bus_speed(void)
{
	struct mxs_i2c_regs *i2c_regs = (struct mxs_i2c_regs *)MXS_I2C0_BASE;
	uint32_t clk = mxc_get_clock(MXC_XTAL_CLK);
	uint32_t timing0;

	timing0 = readl(&i2c_regs->hw_i2c_timing0);
	/*
	 * This is a reverse version of the algorithm presented in
	 * i2c_set_bus_speed(). Please refer there for details.
	 */
	return clk / ((((timing0 >> 16) - 3) * 2) + 38);
}

void i2c_init(int speed, int slaveadd)
{
	mxs_i2c_reset();
	i2c_set_bus_speed(speed);

	return;
}
OpenPOWER on IntegriCloud