/* ------------------------------------------------------------------------- * Filename: jffs2.c * Version: $Id: jffs2_1pass.c,v 1.7 2002/01/25 01:56:47 nyet Exp $ * Copyright: Copyright (C) 2001, Russ Dill * Author: Russ Dill * Description: Module to load kernel from jffs2 *-----------------------------------------------------------------------*/ /* * some portions of this code are taken from jffs2, and as such, the * following copyright notice is included. * * JFFS2 -- Journalling Flash File System, Version 2. * * Copyright (C) 2001 Red Hat, Inc. * * Created by David Woodhouse * * The original JFFS, from which the design for JFFS2 was derived, * was designed and implemented by Axis Communications AB. * * The contents of this file are subject to the Red Hat eCos Public * License Version 1.1 (the "Licence"); you may not use this file * except in compliance with the Licence. You may obtain a copy of * the Licence at http://www.redhat.com/ * * Software distributed under the Licence is distributed on an "AS IS" * basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. * See the Licence for the specific language governing rights and * limitations under the Licence. * * The Original Code is JFFS2 - Journalling Flash File System, version 2 * * Alternatively, the contents of this file may be used under the * terms of the GNU General Public License version 2 (the "GPL"), in * which case the provisions of the GPL are applicable instead of the * above. If you wish to allow the use of your version of this file * only under the terms of the GPL and not to allow others to use your * version of this file under the RHEPL, indicate your decision by * deleting the provisions above and replace them with the notice and * other provisions required by the GPL. If you do not delete the * provisions above, a recipient may use your version of this file * under either the RHEPL or the GPL. * * $Id: jffs2_1pass.c,v 1.7 2002/01/25 01:56:47 nyet Exp $ * */ /* Ok, so anyone who knows the jffs2 code will probably want to get a papar * bag to throw up into before reading this code. I looked through the jffs2 * code, the caching scheme is very elegant. I tried to keep the version * for a bootloader as small and simple as possible. Instead of worring about * unneccesary data copies, node scans, etc, I just optimized for the known * common case, a kernel, which looks like: * (1) most pages are 4096 bytes * (2) version numbers are somewhat sorted in acsending order * (3) multiple compressed blocks making up one page is uncommon * * So I create a linked list of decending version numbers (insertions at the * head), and then for each page, walk down the list, until a matching page * with 4096 bytes is found, and then decompress the watching pages in * reverse order. * */ /* * Adapted by Nye Liu and * Rex Feany * on Jan/2002 for U-Boot. * * Clipped out all the non-1pass functions, cleaned up warnings, * wrappers, etc. No major changes to the code. * Please, he really means it when he said have a paper bag * handy. We needed it ;). * */ /* * Bugfixing by Kai-Uwe Bloem , (C) Mar/2003 * * - overhaul of the memory management. Removed much of the "paper-bagging" * in that part of the code, fixed several bugs, now frees memory when * partition is changed. * It's still ugly :-( * - fixed a bug in jffs2_1pass_read_inode where the file length calculation * was incorrect. Removed a bit of the paper-bagging as well. * - removed double crc calculation for fragment headers in jffs2_private.h * for speedup. * - scan_empty rewritten in a more "standard" manner (non-paperbag, that is). * - spinning wheel now spins depending on how much memory has been scanned * - lots of small changes all over the place to "improve" readability. * - implemented fragment sorting to ensure that the newest data is copied * if there are multiple copies of fragments for a certain file offset. * * The fragment sorting feature must be enabled by CONFIG_SYS_JFFS2_SORT_FRAGMENTS. * Sorting is done while adding fragments to the lists, which is more or less a * bubble sort. This takes a lot of time, and is most probably not an issue if * the boot filesystem is always mounted readonly. * * You should define it if the boot filesystem is mounted writable, and updates * to the boot files are done by copying files to that filesystem. * * * There's a big issue left: endianess is completely ignored in this code. Duh! * * * You still should have paper bags at hand :-(. The code lacks more or less * any comment, and is still arcane and difficult to read in places. As this * might be incompatible with any new code from the jffs2 maintainers anyway, * it should probably be dumped and replaced by something like jffs2reader! */ #include #include #include #include #include #include #include #include #include #include #include "jffs2_private.h" #define NODE_CHUNK 1024 /* size of memory allocation chunk in b_nodes */ #define SPIN_BLKSIZE 18 /* spin after having scanned 1< /* * Support for jffs2 on top of NAND-flash * * NAND memory isn't mapped in processor's address space, * so data should be fetched from flash before * being processed. This is exactly what functions declared * here do. * */ #define NAND_PAGE_SIZE 512 #define NAND_PAGE_SHIFT 9 #define NAND_PAGE_MASK (~(NAND_PAGE_SIZE-1)) #ifndef NAND_CACHE_PAGES #define NAND_CACHE_PAGES 16 #endif #define NAND_CACHE_SIZE (NAND_CACHE_PAGES*NAND_PAGE_SIZE) static u8* nand_cache = NULL; static u32 nand_cache_off = (u32)-1; static int read_nand_cached(u32 off, u32 size, u_char *buf) { struct mtdids *id = current_part->dev->id; u32 bytes_read = 0; size_t retlen; int cpy_bytes; while (bytes_read < size) { if ((off + bytes_read < nand_cache_off) || (off + bytes_read >= nand_cache_off+NAND_CACHE_SIZE)) { nand_cache_off = (off + bytes_read) & NAND_PAGE_MASK; if (!nand_cache) { /* This memory never gets freed but 'cause it's a bootloader, nobody cares */ nand_cache = malloc(NAND_CACHE_SIZE); if (!nand_cache) { printf("read_nand_cached: can't alloc cache size %d bytes\n", NAND_CACHE_SIZE); return -1; } } retlen = NAND_CACHE_SIZE; if (nand_read(&nand_info[id->num], nand_cache_off, &retlen, nand_cache) != 0 || retlen != NAND_CACHE_SIZE) { printf("read_nand_cached: error reading nand off %#x size %d bytes\n", nand_cache_off, NAND_CACHE_SIZE); return -1; } } cpy_bytes = nand_cache_off + NAND_CACHE_SIZE - (off + bytes_read); if (cpy_bytes > size - bytes_read) cpy_bytes = size - bytes_read; memcpy(buf + bytes_read, nand_cache + off + bytes_read - nand_cache_off, cpy_bytes); bytes_read += cpy_bytes; } return bytes_read; } static void *get_fl_mem_nand(u32 off, u32 size, void *ext_buf) { u_char *buf = ext_buf ? (u_char*)ext_buf : (u_char*)malloc(size); if (NULL == buf) { printf("get_fl_mem_nand: can't alloc %d bytes\n", size); return NULL; } if (read_nand_cached(off, size, buf) < 0) { if (!ext_buf) free(buf); return NULL; } return buf; } static void *get_node_mem_nand(u32 off, void *ext_buf) { struct jffs2_unknown_node node; void *ret = NULL; if (NULL == get_fl_mem_nand(off, sizeof(node), &node)) return NULL; if (!(ret = get_fl_mem_nand(off, node.magic == JFFS2_MAGIC_BITMASK ? node.totlen : sizeof(node), ext_buf))) { printf("off = %#x magic %#x type %#x node.totlen = %d\n", off, node.magic, node.nodetype, node.totlen); } return ret; } static void put_fl_mem_nand(void *buf) { free(buf); } #endif #if defined(CONFIG_CMD_ONENAND) #include #include #include #define ONENAND_PAGE_SIZE 2048 #define ONENAND_PAGE_SHIFT 11 #define ONENAND_PAGE_MASK (~(ONENAND_PAGE_SIZE-1)) #ifndef ONENAND_CACHE_PAGES #define ONENAND_CACHE_PAGES 4 #endif #define ONENAND_CACHE_SIZE (ONENAND_CACHE_PAGES*ONENAND_PAGE_SIZE) static u8* onenand_cache; static u32 onenand_cache_off = (u32)-1; static int read_onenand_cached(u32 off, u32 size, u_char *buf) { u32 bytes_read = 0; size_t retlen; int cpy_bytes; while (bytes_read < size) { if ((off + bytes_read < onenand_cache_off) || (off + bytes_read >= onenand_cache_off + ONENAND_CACHE_SIZE)) { onenand_cache_off = (off + bytes_read) & ONENAND_PAGE_MASK; if (!onenand_cache) { /* This memory never gets freed but 'cause it's a bootloader, nobody cares */ onenand_cache = malloc(ONENAND_CACHE_SIZE); if (!onenand_cache) { printf("read_onenand_cached: can't alloc cache size %d bytes\n", ONENAND_CACHE_SIZE); return -1; } } retlen = ONENAND_CACHE_SIZE; if (onenand_read(&onenand_mtd, onenand_cache_off, retlen, &retlen, onenand_cache) != 0 || retlen != ONENAND_CACHE_SIZE) { printf("read_onenand_cached: error reading nand off %#x size %d bytes\n", onenand_cache_off, ONENAND_CACHE_SIZE); return -1; } } cpy_bytes = onenand_cache_off + ONENAND_CACHE_SIZE - (off + bytes_read); if (cpy_bytes > size - bytes_read) cpy_bytes = size - bytes_read; memcpy(buf + bytes_read, onenand_cache + off + bytes_read - onenand_cache_off, cpy_bytes); bytes_read += cpy_bytes; } return bytes_read; } static void *get_fl_mem_onenand(u32 off, u32 size, void *ext_buf) { u_char *buf = ext_buf ? (u_char *)ext_buf : (u_char *)malloc(size); if (NULL == buf) { printf("get_fl_mem_onenand: can't alloc %d bytes\n", size); return NULL; } if (read_onenand_cached(off, size, buf) < 0) { if (!ext_buf) free(buf); return NULL; } return buf; } static void *get_node_mem_onenand(u32 off, void *ext_buf) { struct jffs2_unknown_node node; void *ret = NULL; if (NULL == get_fl_mem_onenand(off, sizeof(node), &node)) return NULL; ret = get_fl_mem_onenand(off, node.magic == JFFS2_MAGIC_BITMASK ? node.totlen : sizeof(node), ext_buf); if (!ret) { printf("off = %#x magic %#x type %#x node.totlen = %d\n", off, node.magic, node.nodetype, node.totlen); } return ret; } static void put_fl_mem_onenand(void *buf) { free(buf); } #endif #if defined(CONFIG_CMD_FLASH) /* * Support for jffs2 on top of NOR-flash * * NOR flash memory is mapped in processor's address space, * just return address. */ static inline void *get_fl_mem_nor(u32 off, u32 size, void *ext_buf) { u32 addr = off; struct mtdids *id = current_part->dev->id; extern flash_info_t flash_info[]; flash_info_t *flash = &flash_info[id->num]; addr += flash->start[0]; if (ext_buf) { memcpy(ext_buf, (void *)addr, size); return ext_buf; } return (void*)addr; } static inline void *get_node_mem_nor(u32 off, void *ext_buf) { struct jffs2_unknown_node *pNode; /* pNode will point directly to flash - don't provide external buffer and don't care about size */ pNode = get_fl_mem_nor(off, 0, NULL); return (void *)get_fl_mem_nor(off, pNode->magic == JFFS2_MAGIC_BITMASK ? pNode->totlen : sizeof(*pNode), ext_buf); } #endif /* * Generic jffs2 raw memory and node read routines. * */ static inline void *get_fl_mem(u32 off, u32 size, void *ext_buf) { struct mtdids *id = current_part->dev->id; switch(id->type) { #if defined(CONFIG_CMD_FLASH) case MTD_DEV_TYPE_NOR: return get_fl_mem_nor(off, size, ext_buf); break; #endif #if defined(CONFIG_JFFS2_NAND) && defined(CONFIG_CMD_NAND) case MTD_DEV_TYPE_NAND: return get_fl_mem_nand(off, size, ext_buf); break; #endif #if defined(CONFIG_CMD_ONENAND) case MTD_DEV_TYPE_ONENAND: return get_fl_mem_onenand(off, size, ext_buf); break; #endif default: printf("get_fl_mem: unknown device type, " \ "using raw offset!\n"); } return (void*)off; } static inline void *get_node_mem(u32 off, void *ext_buf) { struct mtdids *id = current_part->dev->id; switch(id->type) { #if defined(CONFIG_CMD_FLASH) case MTD_DEV_TYPE_NOR: return get_node_mem_nor(off, ext_buf); break; #endif #if defined(CONFIG_JFFS2_NAND) && \ defined(CONFIG_CMD_NAND) case MTD_DEV_TYPE_NAND: return get_node_mem_nand(off, ext_buf); break; #endif #if defined(CONFIG_CMD_ONENAND) case MTD_DEV_TYPE_ONENAND: return get_node_mem_onenand(off, ext_buf); break; #endif default: printf("get_fl_mem: unknown device type, " \ "using raw offset!\n"); } return (void*)off; } static inline void put_fl_mem(void *buf, void *ext_buf) { struct mtdids *id = current_part->dev->id; /* If buf is the same as ext_buf, it was provided by the caller - we shouldn't free it then. */ if (buf == ext_buf) return; switch (id->type) { #if defined(CONFIG_JFFS2_NAND) && defined(CONFIG_CMD_NAND) case MTD_DEV_TYPE_NAND: return put_fl_mem_nand(buf); #endif #if defined(CONFIG_CMD_ONENAND) case MTD_DEV_TYPE_ONENAND: return put_fl_mem_onenand(buf); #endif } } /* Compression names */ static char *compr_names[] = { "NONE", "ZERO", "RTIME", "RUBINMIPS", "COPY", "DYNRUBIN", "ZLIB", #if defined(CONFIG_JFFS2_LZO) "LZO", #endif }; /* Memory management */ struct mem_block { u32 index; struct mem_block *next; struct b_node nodes[NODE_CHUNK]; }; static void free_nodes(struct b_list *list) { while (list->listMemBase != NULL) { struct mem_block *next = list->listMemBase->next; free( list->listMemBase ); list->listMemBase = next; } } static struct b_node * add_node(struct b_list *list) { u32 index = 0; struct mem_block *memBase; struct b_node *b; memBase = list->listMemBase; if (memBase != NULL) index = memBase->index; #if 0 putLabeledWord("add_node: index = ", index); putLabeledWord("add_node: memBase = ", list->listMemBase); #endif if (memBase == NULL || index >= NODE_CHUNK) { /* we need more space before we continue */ memBase = mmalloc(sizeof(struct mem_block)); if (memBase == NULL) { putstr("add_node: malloc failed\n"); return NULL; } memBase->next = list->listMemBase; index = 0; #if 0 putLabeledWord("add_node: alloced a new membase at ", *memBase); #endif } /* now we have room to add it. */ b = &memBase->nodes[index]; index ++; memBase->index = index; list->listMemBase = memBase; list->listCount++; return b; } static struct b_node * insert_node(struct b_list *list, u32 offset) { struct b_node *new; #ifdef CONFIG_SYS_JFFS2_SORT_FRAGMENTS struct b_node *b, *prev; #endif if (!(new = add_node(list))) { putstr("add_node failed!\r\n"); return NULL; } new->offset = offset; #ifdef CONFIG_SYS_JFFS2_SORT_FRAGMENTS if (list->listTail != NULL && list->listCompare(new, list->listTail)) prev = list->listTail; else if (list->listLast != NULL && list->listCompare(new, list->listLast)) prev = list->listLast; else prev = NULL; for (b = (prev ? prev->next : list->listHead); b != NULL && list->listCompare(new, b); prev = b, b = b->next) { list->listLoops++; } if (b != NULL) list->listLast = prev; if (b != NULL) { new->next = b; if (prev != NULL) prev->next = new; else list->listHead = new; } else #endif { new->next = (struct b_node *) NULL; if (list->listTail != NULL) { list->listTail->next = new; list->listTail = new; } else { list->listTail = list->listHead = new; } } return new; } #ifdef CONFIG_SYS_JFFS2_SORT_FRAGMENTS /* Sort data entries with the latest version last, so that if there * is overlapping data the latest version will be used. */ static int compare_inodes(struct b_node *new, struct b_node *old) { struct jffs2_raw_inode ojNew; struct jffs2_raw_inode ojOld; struct jffs2_raw_inode *jNew = (struct jffs2_raw_inode *)get_fl_mem(new->offset, sizeof(ojNew), &ojNew); struct jffs2_raw_inode *jOld = (struct jffs2_raw_inode *)get_fl_mem(old->offset, sizeof(ojOld), &ojOld); return jNew->version > jOld->version; } /* Sort directory entries so all entries in the same directory * with the same name are grouped together, with the latest version * last. This makes it easy to eliminate all but the latest version * by marking the previous version dead by setting the inode to 0. */ static int compare_dirents(struct b_node *new, struct b_node *old) { struct jffs2_raw_dirent ojNew; struct jffs2_raw_dirent ojOld; struct jffs2_raw_dirent *jNew = (struct jffs2_raw_dirent *)get_fl_mem(new->offset, sizeof(ojNew), &ojNew); struct jffs2_raw_dirent *jOld = (struct jffs2_raw_dirent *)get_fl_mem(old->offset, sizeof(ojOld), &ojOld); int cmp; /* ascending sort by pino */ if (jNew->pino != jOld->pino) return jNew->pino > jOld->pino; /* pino is the same, so use ascending sort by nsize, so * we don't do strncmp unless we really must. */ if (jNew->nsize != jOld->nsize) return jNew->nsize > jOld->nsize; /* length is also the same, so use ascending sort by name */ cmp = strncmp((char *)jNew->name, (char *)jOld->name, jNew->nsize); if (cmp != 0) return cmp > 0; /* we have duplicate names in this directory, so use ascending * sort by version */ if (jNew->version > jOld->version) { /* since jNew is newer, we know jOld is not valid, so * mark it with inode 0 and it will not be used */ jOld->ino = 0; return 1; } return 0; } #endif void jffs2_free_cache(struct part_info *part) { struct b_lists *pL; if (part->jffs2_priv != NULL) { pL = (struct b_lists *)part->jffs2_priv; free_nodes(&pL->frag); free_nodes(&pL->dir); free(pL->readbuf); free(pL); } } static u32 jffs_init_1pass_list(struct part_info *part) { struct b_lists *pL; jffs2_free_cache(part); if (NULL != (part->jffs2_priv = malloc(sizeof(struct b_lists)))) { pL = (struct b_lists *)part->jffs2_priv; memset(pL, 0, sizeof(*pL)); #ifdef CONFIG_SYS_JFFS2_SORT_FRAGMENTS pL->dir.listCompare = compare_dirents; pL->frag.listCompare = compare_inodes; #endif } return 0; } /* find the inode from the slashless name given a parent */ static long jffs2_1pass_read_inode(struct b_lists *pL, u32 inode, char *dest) { struct b_node *b; struct jffs2_raw_inode *jNode; u32 totalSize = 0; u32 latestVersion = 0; uchar *lDest; uchar *src; int i; u32 counter = 0; #ifdef CONFIG_SYS_JFFS2_SORT_FRAGMENTS /* Find file size before loading any data, so fragments that * start past the end of file can be ignored. A fragment * that is partially in the file is loaded, so extra data may * be loaded up to the next 4K boundary above the file size. * This shouldn't cause trouble when loading kernel images, so * we will live with it. */ for (b = pL->frag.listHead; b != NULL; b = b->next) { jNode = (struct jffs2_raw_inode *) get_fl_mem(b->offset, sizeof(struct jffs2_raw_inode), pL->readbuf); if ((inode == jNode->ino)) { /* get actual file length from the newest node */ if (jNode->version >= latestVersion) { totalSize = jNode->isize; latestVersion = jNode->version; } } put_fl_mem(jNode, pL->readbuf); } #endif for (b = pL->frag.listHead; b != NULL; b = b->next) { jNode = (struct jffs2_raw_inode *) get_node_mem(b->offset, pL->readbuf); if ((inode == jNode->ino)) { #if 0 putLabeledWord("\r\n\r\nread_inode: totlen = ", jNode->totlen); putLabeledWord("read_inode: inode = ", jNode->ino); putLabeledWord("read_inode: version = ", jNode->version); putLabeledWord("read_inode: isize = ", jNode->isize); putLabeledWord("read_inode: offset = ", jNode->offset); putLabeledWord("read_inode: csize = ", jNode->csize); putLabeledWord("read_inode: dsize = ", jNode->dsize); putLabeledWord("read_inode: compr = ", jNode->compr); putLabeledWord("read_inode: usercompr = ", jNode->usercompr); putLabeledWord("read_inode: flags = ", jNode->flags); #endif #ifndef CONFIG_SYS_JFFS2_SORT_FRAGMENTS /* get actual file length from the newest node */ if (jNode->version >= latestVersion) { totalSize = jNode->isize; latestVersion = jNode->version; } #endif if(dest) { src = ((uchar *) jNode) + sizeof(struct jffs2_raw_inode); /* ignore data behind latest known EOF */ if (jNode->offset > totalSize) { put_fl_mem(jNode, pL->readbuf); continue; } if (b->datacrc == CRC_UNKNOWN) b->datacrc = data_crc(jNode) ? CRC_OK : CRC_BAD; if (b->datacrc == CRC_BAD) { put_fl_mem(jNode, pL->readbuf); continue; } lDest = (uchar *) (dest + jNode->offset); #if 0 putLabeledWord("read_inode: src = ", src); putLabeledWord("read_inode: dest = ", lDest); #endif switch (jNode->compr) { case JFFS2_COMPR_NONE: ldr_memcpy(lDest, src, jNode->dsize); break; case JFFS2_COMPR_ZERO: for (i = 0; i < jNode->dsize; i++) *(lDest++) = 0; break; case JFFS2_COMPR_RTIME: rtime_decompress(src, lDest, jNode->csize, jNode->dsize); break; case JFFS2_COMPR_DYNRUBIN: /* this is slow but it works */ dynrubin_decompress(src, lDest, jNode->csize, jNode->dsize); break; case JFFS2_COMPR_ZLIB: zlib_decompress(src, lDest, jNode->csize, jNode->dsize); break; #if defined(CONFIG_JFFS2_LZO) case JFFS2_COMPR_LZO: lzo_decompress(src, lDest, jNode->csize, jNode->dsize); break; #endif default: /* unknown */ putLabeledWord("UNKNOWN COMPRESSION METHOD = ", jNode->compr); put_fl_mem(jNode, pL->readbuf); return -1; break; } } #if 0 putLabeledWord("read_inode: totalSize = ", totalSize); #endif } counter++; put_fl_mem(jNode, pL->readbuf); } #if 0 putLabeledWord("read_inode: returning = ", totalSize); #endif return totalSize; } /* find the inode from the slashless name given a parent */ static u32 jffs2_1pass_find_inode(struct b_lists * pL, const char *name, u32 pino) { struct b_node *b; struct jffs2_raw_dirent *jDir; int len; u32 counter; u32 version = 0; u32 inode = 0; /* name is assumed slash free */ len = strlen(name); counter = 0; /* we need to search all and return the inode with the highest version */ for(b = pL->dir.listHead; b; b = b->next, counter++) { jDir = (struct jffs2_raw_dirent *) get_node_mem(b->offset, pL->readbuf); if ((pino == jDir->pino) && (len == jDir->nsize) && (jDir->ino) && /* 0 for unlink */ (!strncmp((char *)jDir->name, name, len))) { /* a match */ if (jDir->version < version) { put_fl_mem(jDir, pL->readbuf); continue; } if (jDir->version == version && inode != 0) { /* I'm pretty sure this isn't legal */ putstr(" ** ERROR ** "); putnstr(jDir->name, jDir->nsize); putLabeledWord(" has dup version =", version); } inode = jDir->ino; version = jDir->version; } #if 0 putstr("\r\nfind_inode:p&l ->"); putnstr(jDir->name, jDir->nsize); putstr("\r\n"); putLabeledWord("pino = ", jDir->pino); putLabeledWord("nsize = ", jDir->nsize); putLabeledWord("b = ", (u32) b); putLabeledWord("counter = ", counter); #endif put_fl_mem(jDir, pL->readbuf); } return inode; } char *mkmodestr(unsigned long mode, char *str) { static const char *l = "xwr"; int mask = 1, i; char c; switch (mode & S_IFMT) { case S_IFDIR: str[0] = 'd'; break; case S_IFBLK: str[0] = 'b'; break; case S_IFCHR: str[0] = 'c'; break; case S_IFIFO: str[0] = 'f'; break; case S_IFLNK: str[0] = 'l'; break; case S_IFSOCK: str[0] = 's'; break; case S_IFREG: str[0] = '-'; break; default: str[0] = '?'; } for(i = 0; i < 9; i++) { c = l[i%3]; str[9-i] = (mode & mask)?c:'-'; mask = mask<<1; } if(mode & S_ISUID) str[3] = (mode & S_IXUSR)?'s':'S'; if(mode & S_ISGID) str[6] = (mode & S_IXGRP)?'s':'S'; if(mode & S_ISVTX) str[9] = (mode & S_IXOTH)?'t':'T'; str[10] = '\0'; return str; } static inline void dump_stat(struct stat *st, const char *name) { char str[20]; char s[64], *p; if (st->st_mtime == (time_t)(-1)) /* some ctimes really hate -1 */ st->st_mtime = 1; ctime_r((time_t *)&st->st_mtime, s/*,64*/); /* newlib ctime doesn't have buflen */ if ((p = strchr(s,'\n')) != NULL) *p = '\0'; if ((p = strchr(s,'\r')) != NULL) *p = '\0'; /* printf("%6lo %s %8ld %s %s\n", st->st_mode, mkmodestr(st->st_mode, str), st->st_size, s, name); */ printf(" %s %8ld %s %s", mkmodestr(st->st_mode,str), st->st_size, s, name); } static inline u32 dump_inode(struct b_lists * pL, struct jffs2_raw_dirent *d, struct jffs2_raw_inode *i) { char fname[256]; struct stat st; if(!d || !i) return -1; strncpy(fname, (char *)d->name, d->nsize); fname[d->nsize] = '\0'; memset(&st,0,sizeof(st)); st.st_mtime = i->mtime; st.st_mode = i->mode; st.st_ino = i->ino; st.st_size = i->isize; dump_stat(&st, fname); if (d->type == DT_LNK) { unsigned char *src = (unsigned char *) (&i[1]); putstr(" -> "); putnstr(src, (int)i->dsize); } putstr("\r\n"); return 0; } /* list inodes with the given pino */ static u32 jffs2_1pass_list_inodes(struct b_lists * pL, u32 pino) { struct b_node *b; struct jffs2_raw_dirent *jDir; for (b = pL->dir.listHead; b; b = b->next) { jDir = (struct jffs2_raw_dirent *) get_node_mem(b->offset, pL->readbuf); if ((pino == jDir->pino) && (jDir->ino)) { /* ino=0 -> unlink */ u32 i_version = 0; struct jffs2_raw_inode ojNode; struct jffs2_raw_inode *jNode, *i = NULL; struct b_node *b2 = pL->frag.listHead; while (b2) { jNode = (struct jffs2_raw_inode *) get_fl_mem(b2->offset, sizeof(ojNode), &ojNode); if (jNode->ino == jDir->ino && jNode->version >= i_version) { i_version = jNode->version; if (i) put_fl_mem(i, NULL); if (jDir->type == DT_LNK) i = get_node_mem(b2->offset, NULL); else i = get_fl_mem(b2->offset, sizeof(*i), NULL); } b2 = b2->next; } dump_inode(pL, jDir, i); put_fl_mem(i, NULL); } put_fl_mem(jDir, pL->readbuf); } return pino; } static u32 jffs2_1pass_search_inode(struct b_lists * pL, const char *fname, u32 pino) { int i; char tmp[256]; char working_tmp[256]; char *c; /* discard any leading slash */ i = 0; while (fname[i] == '/') i++; strcpy(tmp, &fname[i]); while ((c = (char *) strchr(tmp, '/'))) /* we are still dired searching */ { strncpy(working_tmp, tmp, c - tmp); working_tmp[c - tmp] = '\0'; #if 0 putstr("search_inode: tmp = "); putstr(tmp); putstr("\r\n"); putstr("search_inode: wtmp = "); putstr(working_tmp); putstr("\r\n"); putstr("search_inode: c = "); putstr(c); putstr("\r\n"); #endif for (i = 0; i < strlen(c) - 1; i++) tmp[i] = c[i + 1]; tmp[i] = '\0'; #if 0 putstr("search_inode: post tmp = "); putstr(tmp); putstr("\r\n"); #endif if (!(pino = jffs2_1pass_find_inode(pL, working_tmp, pino))) { putstr("find_inode failed for name="); putstr(working_tmp); putstr("\r\n"); return 0; } } /* this is for the bare filename, directories have already been mapped */ if (!(pino = jffs2_1pass_find_inode(pL, tmp, pino))) { putstr("find_inode failed for name="); putstr(tmp); putstr("\r\n"); return 0; } return pino; } static u32 jffs2_1pass_resolve_inode(struct b_lists * pL, u32 ino) { struct b_node *b; struct b_node *b2; struct jffs2_raw_dirent *jDir; struct jffs2_raw_inode *jNode; u8 jDirFoundType = 0; u32 jDirFoundIno = 0; u32 jDirFoundPino = 0; char tmp[256]; u32 version = 0; u32 pino; unsigned char *src; /* we need to search all and return the inode with the highest version */ for(b = pL->dir.listHead; b; b = b->next) { jDir = (struct jffs2_raw_dirent *) get_node_mem(b->offset, pL->readbuf); if (ino == jDir->ino) { if (jDir->version < version) { put_fl_mem(jDir, pL->readbuf); continue; } if (jDir->version == version && jDirFoundType) { /* I'm pretty sure this isn't legal */ putstr(" ** ERROR ** "); putnstr(jDir->name, jDir->nsize); putLabeledWord(" has dup version (resolve) = ", version); } jDirFoundType = jDir->type; jDirFoundIno = jDir->ino; jDirFoundPino = jDir->pino; version = jDir->version; } put_fl_mem(jDir, pL->readbuf); } /* now we found the right entry again. (shoulda returned inode*) */ if (jDirFoundType != DT_LNK) return jDirFoundIno; /* it's a soft link so we follow it again. */ b2 = pL->frag.listHead; while (b2) { jNode = (struct jffs2_raw_inode *) get_node_mem(b2->offset, pL->readbuf); if (jNode->ino == jDirFoundIno) { src = (unsigned char *)jNode + sizeof(struct jffs2_raw_inode); #if 0 putLabeledWord("\t\t dsize = ", jNode->dsize); putstr("\t\t target = "); putnstr(src, jNode->dsize); putstr("\r\n"); #endif strncpy(tmp, (char *)src, jNode->dsize); tmp[jNode->dsize] = '\0'; put_fl_mem(jNode, pL->readbuf); break; } b2 = b2->next; put_fl_mem(jNode, pL->readbuf); } /* ok so the name of the new file to find is in tmp */ /* if it starts with a slash it is root based else shared dirs */ if (tmp[0] == '/') pino = 1; else pino = jDirFoundPino; return jffs2_1pass_search_inode(pL, tmp, pino); } static u32 jffs2_1pass_search_list_inodes(struct b_lists * pL, const char *fname, u32 pino) { int i; char tmp[256]; char working_tmp[256]; char *c; /* discard any leading slash */ i = 0; while (fname[i] == '/') i++; strcpy(tmp, &fname[i]); working_tmp[0] = '\0'; while ((c = (char *) strchr(tmp, '/'))) /* we are still dired searching */ { strncpy(working_tmp, tmp, c - tmp); working_tmp[c - tmp] = '\0'; for (i = 0; i < strlen(c) - 1; i++) tmp[i] = c[i + 1]; tmp[i] = '\0'; /* only a failure if we arent looking at top level */ if (!(pino = jffs2_1pass_find_inode(pL, working_tmp, pino)) && (working_tmp[0])) { putstr("find_inode failed for name="); putstr(working_tmp); putstr("\r\n"); return 0; } } if (tmp[0] && !(pino = jffs2_1pass_find_inode(pL, tmp, pino))) { putstr("find_inode failed for name="); putstr(tmp); putstr("\r\n"); return 0; } /* this is for the bare filename, directories have already been mapped */ if (!(pino = jffs2_1pass_list_inodes(pL, pino))) { putstr("find_inode failed for name="); putstr(tmp); putstr("\r\n"); return 0; } return pino; } unsigned char jffs2_1pass_rescan_needed(struct part_info *part) { struct b_node *b; struct jffs2_unknown_node onode; struct jffs2_unknown_node *node; struct b_lists *pL = (struct b_lists *)part->jffs2_priv; if (part->jffs2_priv == 0){ DEBUGF ("rescan: First time in use\n"); return 1; } /* if we have no list, we need to rescan */ if (pL->frag.listCount == 0) { DEBUGF ("rescan: fraglist zero\n"); return 1; } /* but suppose someone reflashed a partition at the same offset... */ b = pL->dir.listHead; while (b) { node = (struct jffs2_unknown_node *) get_fl_mem(b->offset, sizeof(onode), &onode); if (node->nodetype != JFFS2_NODETYPE_DIRENT) { DEBUGF ("rescan: fs changed beneath me? (%lx)\n", (unsigned long) b->offset); return 1; } b = b->next; } return 0; } #ifdef CONFIG_JFFS2_SUMMARY static u32 sum_get_unaligned32(u32 *ptr) { u32 val; u8 *p = (u8 *)ptr; val = *p | (*(p + 1) << 8) | (*(p + 2) << 16) | (*(p + 3) << 24); return __le32_to_cpu(val); } static u16 sum_get_unaligned16(u16 *ptr) { u16 val; u8 *p = (u8 *)ptr; val = *p | (*(p + 1) << 8); return __le16_to_cpu(val); } #define dbg_summary(...) do {} while (0); /* * Process the stored summary information - helper function for * jffs2_sum_scan_sumnode() */ static int jffs2_sum_process_sum_data(struct part_info *part, uint32_t offset, struct jffs2_raw_summary *summary, struct b_lists *pL) { void *sp; int i, pass; void *ret; for (pass = 0; pass < 2; pass++) { sp = summary->sum; for (i = 0; i < summary->sum_num; i++) { struct jffs2_sum_unknown_flash *spu = sp; dbg_summary("processing summary index %d\n", i); switch (sum_get_unaligned16(&spu->nodetype)) { case JFFS2_NODETYPE_INODE: { struct jffs2_sum_inode_flash *spi; if (pass) { spi = sp; ret = insert_node(&pL->frag, (u32)part->offset + offset + sum_get_unaligned32( &spi->offset)); if (ret == NULL) return -1; } sp += JFFS2_SUMMARY_INODE_SIZE; break; } case JFFS2_NODETYPE_DIRENT: { struct jffs2_sum_dirent_flash *spd; spd = sp; if (pass) { ret = insert_node(&pL->dir, (u32) part->offset + offset + sum_get_unaligned32( &spd->offset)); if (ret == NULL) return -1; } sp += JFFS2_SUMMARY_DIRENT_SIZE( spd->nsize); break; } default : { uint16_t nodetype = sum_get_unaligned16( &spu->nodetype); printf("Unsupported node type %x found" " in summary!\n", nodetype); if ((nodetype & JFFS2_COMPAT_MASK) == JFFS2_FEATURE_INCOMPAT) return -EIO; return -EBADMSG; } } } } return 0; } /* Process the summary node - called from jffs2_scan_eraseblock() */ int jffs2_sum_scan_sumnode(struct part_info *part, uint32_t offset, struct jffs2_raw_summary *summary, uint32_t sumsize, struct b_lists *pL) { struct jffs2_unknown_node crcnode; int ret, ofs; uint32_t crc; ofs = part->sector_size - sumsize; dbg_summary("summary found for 0x%08x at 0x%08x (0x%x bytes)\n", offset, offset + ofs, sumsize); /* OK, now check for node validity and CRC */ crcnode.magic = JFFS2_MAGIC_BITMASK; crcnode.nodetype = JFFS2_NODETYPE_SUMMARY; crcnode.totlen = summary->totlen; crc = crc32_no_comp(0, (uchar *)&crcnode, sizeof(crcnode)-4); if (summary->hdr_crc != crc) { dbg_summary("Summary node header is corrupt (bad CRC or " "no summary at all)\n"); goto crc_err; } if (summary->totlen != sumsize) { dbg_summary("Summary node is corrupt (wrong erasesize?)\n"); goto crc_err; } crc = crc32_no_comp(0, (uchar *)summary, sizeof(struct jffs2_raw_summary)-8); if (summary->node_crc != crc) { dbg_summary("Summary node is corrupt (bad CRC)\n"); goto crc_err; } crc = crc32_no_comp(0, (uchar *)summary->sum, sumsize - sizeof(struct jffs2_raw_summary)); if (summary->sum_crc != crc) { dbg_summary("Summary node data is corrupt (bad CRC)\n"); goto crc_err; } if (summary->cln_mkr) dbg_summary("Summary : CLEANMARKER node \n"); ret = jffs2_sum_process_sum_data(part, offset, summary, pL); if (ret == -EBADMSG) return 0; if (ret) return ret; /* real error */ return 1; crc_err: putstr("Summary node crc error, skipping summary information.\n"); return 0; } #endif /* CONFIG_JFFS2_SUMMARY */ #ifdef DEBUG_FRAGMENTS static void dump_fragments(struct b_lists *pL) { struct b_node *b; struct jffs2_raw_inode ojNode; struct jffs2_raw_inode *jNode; putstr("\r\n\r\n******The fragment Entries******\r\n"); b = pL->frag.listHead; while (b) { jNode = (struct jffs2_raw_inode *) get_fl_mem(b->offset, sizeof(ojNode), &ojNode); putLabeledWord("\r\n\tbuild_list: FLASH_OFFSET = ", b->offset); putLabeledWord("\tbuild_list: totlen = ", jNode->totlen); putLabeledWord("\tbuild_list: inode = ", jNode->ino); putLabeledWord("\tbuild_list: version = ", jNode->version); putLabeledWord("\tbuild_list: isize = ", jNode->isize); putLabeledWord("\tbuild_list: atime = ", jNode->atime); putLabeledWord("\tbuild_list: offset = ", jNode->offset); putLabeledWord("\tbuild_list: csize = ", jNode->csize); putLabeledWord("\tbuild_list: dsize = ", jNode->dsize); putLabeledWord("\tbuild_list: compr = ", jNode->compr); putLabeledWord("\tbuild_list: usercompr = ", jNode->usercompr); putLabeledWord("\tbuild_list: flags = ", jNode->flags); putLabeledWord("\tbuild_list: offset = ", b->offset); /* FIXME: ? [RS] */ b = b->next; } } #endif #ifdef DEBUG_DIRENTS static void dump_dirents(struct b_lists *pL) { struct b_node *b; struct jffs2_raw_dirent *jDir; putstr("\r\n\r\n******The directory Entries******\r\n"); b = pL->dir.listHead; while (b) { jDir = (struct jffs2_raw_dirent *) get_node_mem(b->offset, pL->readbuf); putstr("\r\n"); putnstr(jDir->name, jDir->nsize); putLabeledWord("\r\n\tbuild_list: magic = ", jDir->magic); putLabeledWord("\tbuild_list: nodetype = ", jDir->nodetype); putLabeledWord("\tbuild_list: hdr_crc = ", jDir->hdr_crc); putLabeledWord("\tbuild_list: pino = ", jDir->pino); putLabeledWord("\tbuild_list: version = ", jDir->version); putLabeledWord("\tbuild_list: ino = ", jDir->ino); putLabeledWord("\tbuild_list: mctime = ", jDir->mctime); putLabeledWord("\tbuild_list: nsize = ", jDir->nsize); putLabeledWord("\tbuild_list: type = ", jDir->type); putLabeledWord("\tbuild_list: node_crc = ", jDir->node_crc); putLabeledWord("\tbuild_list: name_crc = ", jDir->name_crc); putLabeledWord("\tbuild_list: offset = ", b->offset); /* FIXME: ? [RS] */ b = b->next; put_fl_mem(jDir, pL->readbuf); } } #endif #define DEFAULT_EMPTY_SCAN_SIZE 4096 static inline uint32_t EMPTY_SCAN_SIZE(uint32_t sector_size) { if (sector_size < DEFAULT_EMPTY_SCAN_SIZE) return sector_size; else return DEFAULT_EMPTY_SCAN_SIZE; } static u32 jffs2_1pass_build_lists(struct part_info * part) { struct b_lists *pL; struct jffs2_unknown_node *node; u32 nr_sectors = part->size/part->sector_size; u32 i; u32 counter4 = 0; u32 counterF = 0; u32 counterN = 0; u32 max_totlen = 0; u32 buf_size = DEFAULT_EMPTY_SCAN_SIZE; char *buf; /* turn off the lcd. Refreshing the lcd adds 50% overhead to the */ /* jffs2 list building enterprise nope. in newer versions the overhead is */ /* only about 5 %. not enough to inconvenience people for. */ /* lcd_off(); */ /* if we are building a list we need to refresh the cache. */ jffs_init_1pass_list(part); pL = (struct b_lists *)part->jffs2_priv; buf = malloc(buf_size); puts ("Scanning JFFS2 FS: "); /* start at the beginning of the partition */ for (i = 0; i < nr_sectors; i++) { uint32_t sector_ofs = i * part->sector_size; uint32_t buf_ofs = sector_ofs; uint32_t buf_len; uint32_t ofs, prevofs; #ifdef CONFIG_JFFS2_SUMMARY struct jffs2_sum_marker *sm; void *sumptr = NULL; uint32_t sumlen; int ret; #endif WATCHDOG_RESET(); #ifdef CONFIG_JFFS2_SUMMARY buf_len = sizeof(*sm); /* Read as much as we want into the _end_ of the preallocated * buffer */ get_fl_mem(part->offset + sector_ofs + part->sector_size - buf_len, buf_len, buf + buf_size - buf_len); sm = (void *)buf + buf_size - sizeof(*sm); if (sm->magic == JFFS2_SUM_MAGIC) { sumlen = part->sector_size - sm->offset; sumptr = buf + buf_size - sumlen; /* Now, make sure the summary itself is available */ if (sumlen > buf_size) { /* Need to kmalloc for this. */ sumptr = malloc(sumlen); if (!sumptr) { putstr("Can't get memory for summary " "node!\n"); free(buf); jffs2_free_cache(part); return 0; } memcpy(sumptr + sumlen - buf_len, buf + buf_size - buf_len, buf_len); } if (buf_len < sumlen) { /* Need to read more so that the entire summary * node is present */ get_fl_mem(part->offset + sector_ofs + part->sector_size - sumlen, sumlen - buf_len, sumptr); } } if (sumptr) { ret = jffs2_sum_scan_sumnode(part, sector_ofs, sumptr, sumlen, pL); if (buf_size && sumlen > buf_size) free(sumptr); if (ret < 0) { free(buf); jffs2_free_cache(part); return 0; } if (ret) continue; } #endif /* CONFIG_JFFS2_SUMMARY */ buf_len = EMPTY_SCAN_SIZE(part->sector_size); get_fl_mem((u32)part->offset + buf_ofs, buf_len, buf); /* We temporarily use 'ofs' as a pointer into the buffer/jeb */ ofs = 0; /* Scan only 4KiB of 0xFF before declaring it's empty */ while (ofs < EMPTY_SCAN_SIZE(part->sector_size) && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF) ofs += 4; if (ofs == EMPTY_SCAN_SIZE(part->sector_size)) continue; ofs += sector_ofs; prevofs = ofs - 1; scan_more: while (ofs < sector_ofs + part->sector_size) { if (ofs == prevofs) { printf("offset %08x already seen, skip\n", ofs); ofs += 4; counter4++; continue; } prevofs = ofs; if (sector_ofs + part->sector_size < ofs + sizeof(*node)) break; if (buf_ofs + buf_len < ofs + sizeof(*node)) { buf_len = min_t(uint32_t, buf_size, sector_ofs + part->sector_size - ofs); get_fl_mem((u32)part->offset + ofs, buf_len, buf); buf_ofs = ofs; } node = (struct jffs2_unknown_node *)&buf[ofs-buf_ofs]; if (*(uint32_t *)(&buf[ofs-buf_ofs]) == 0xffffffff) { uint32_t inbuf_ofs; uint32_t scan_end; ofs += 4; scan_end = min_t(uint32_t, EMPTY_SCAN_SIZE( part->sector_size)/8, buf_len); more_empty: inbuf_ofs = ofs - buf_ofs; while (inbuf_ofs < scan_end) { if (*(uint32_t *)(&buf[inbuf_ofs]) != 0xffffffff) goto scan_more; inbuf_ofs += 4; ofs += 4; } /* Ran off end. */ /* See how much more there is to read in this * eraseblock... */ buf_len = min_t(uint32_t, buf_size, sector_ofs + part->sector_size - ofs); if (!buf_len) { /* No more to read. Break out of main * loop without marking this range of * empty space as dirty (because it's * not) */ break; } scan_end = buf_len; get_fl_mem((u32)part->offset + ofs, buf_len, buf); buf_ofs = ofs; goto more_empty; } if (node->magic != JFFS2_MAGIC_BITMASK || !hdr_crc(node)) { ofs += 4; counter4++; continue; } if (ofs + node->totlen > sector_ofs + part->sector_size) { ofs += 4; counter4++; continue; } /* if its a fragment add it */ switch (node->nodetype) { case JFFS2_NODETYPE_INODE: if (buf_ofs + buf_len < ofs + sizeof(struct jffs2_raw_inode)) { get_fl_mem((u32)part->offset + ofs, buf_len, buf); buf_ofs = ofs; node = (void *)buf; } if (!inode_crc((struct jffs2_raw_inode *) node)) break; if (insert_node(&pL->frag, (u32) part->offset + ofs) == NULL) { free(buf); jffs2_free_cache(part); return 0; } if (max_totlen < node->totlen) max_totlen = node->totlen; break; case JFFS2_NODETYPE_DIRENT: if (buf_ofs + buf_len < ofs + sizeof(struct jffs2_raw_dirent) + ((struct jffs2_raw_dirent *) node)->nsize) { get_fl_mem((u32)part->offset + ofs, buf_len, buf); buf_ofs = ofs; node = (void *)buf; } if (!dirent_crc((struct jffs2_raw_dirent *) node) || !dirent_name_crc( (struct jffs2_raw_dirent *) node)) break; if (! (counterN%100)) puts ("\b\b. "); if (insert_node(&pL->dir, (u32) part->offset + ofs) == NULL) { free(buf); jffs2_free_cache(part); return 0; } if (max_totlen < node->totlen) max_totlen = node->totlen; counterN++; break; case JFFS2_NODETYPE_CLEANMARKER: if (node->totlen != sizeof(struct jffs2_unknown_node)) printf("OOPS Cleanmarker has bad size " "%d != %zu\n", node->totlen, sizeof(struct jffs2_unknown_node)); break; case JFFS2_NODETYPE_PADDING: if (node->totlen < sizeof(struct jffs2_unknown_node)) printf("OOPS Padding has bad size " "%d < %zu\n", node->totlen, sizeof(struct jffs2_unknown_node)); break; case JFFS2_NODETYPE_SUMMARY: break; default: printf("Unknown node type: %x len %d offset 0x%x\n", node->nodetype, node->totlen, ofs); } ofs += ((node->totlen + 3) & ~3); counterF++; } } free(buf); putstr("\b\b done.\r\n"); /* close off the dots */ /* We don't care if malloc failed - then each read operation will * allocate its own buffer as necessary (NAND) or will read directly * from flash (NOR). */ pL->readbuf = malloc(max_totlen); /* turn the lcd back on. */ /* splash(); */ #if 0 putLabeledWord("dir entries = ", pL->dir.listCount); putLabeledWord("frag entries = ", pL->frag.listCount); putLabeledWord("+4 increments = ", counter4); putLabeledWord("+file_offset increments = ", counterF); #endif #ifdef DEBUG_DIRENTS dump_dirents(pL); #endif #ifdef DEBUG_FRAGMENTS dump_fragments(pL); #endif /* give visual feedback that we are done scanning the flash */ led_blink(0x0, 0x0, 0x1, 0x1); /* off, forever, on 100ms, off 100ms */ return 1; } static u32 jffs2_1pass_fill_info(struct b_lists * pL, struct b_jffs2_info * piL) { struct b_node *b; struct jffs2_raw_inode ojNode; struct jffs2_raw_inode *jNode; int i; for (i = 0; i < JFFS2_NUM_COMPR; i++) { piL->compr_info[i].num_frags = 0; piL->compr_info[i].compr_sum = 0; piL->compr_info[i].decompr_sum = 0; } b = pL->frag.listHead; while (b) { jNode = (struct jffs2_raw_inode *) get_fl_mem(b->offset, sizeof(ojNode), &ojNode); if (jNode->compr < JFFS2_NUM_COMPR) { piL->compr_info[jNode->compr].num_frags++; piL->compr_info[jNode->compr].compr_sum += jNode->csize; piL->compr_info[jNode->compr].decompr_sum += jNode->dsize; } b = b->next; } return 0; } static struct b_lists * jffs2_get_list(struct part_info * part, const char *who) { /* copy requested part_info struct pointer to global location */ current_part = part; if (jffs2_1pass_rescan_needed(part)) { if (!jffs2_1pass_build_lists(part)) { printf("%s: Failed to scan JFFSv2 file structure\n", who); return NULL; } } return (struct b_lists *)part->jffs2_priv; } /* Print directory / file contents */ u32 jffs2_1pass_ls(struct part_info * part, const char *fname) { struct b_lists *pl; long ret = 1; u32 inode; if (! (pl = jffs2_get_list(part, "ls"))) return 0; if (! (inode = jffs2_1pass_search_list_inodes(pl, fname, 1))) { putstr("ls: Failed to scan jffs2 file structure\r\n"); return 0; } #if 0 putLabeledWord("found file at inode = ", inode); putLabeledWord("read_inode returns = ", ret); #endif return ret; } /* Load a file from flash into memory. fname can be a full path */ u32 jffs2_1pass_load(char *dest, struct part_info * part, const char *fname) { struct b_lists *pl; long ret = 1; u32 inode; if (! (pl = jffs2_get_list(part, "load"))) return 0; if (! (inode = jffs2_1pass_search_inode(pl, fname, 1))) { putstr("load: Failed to find inode\r\n"); return 0; } /* Resolve symlinks */ if (! (inode = jffs2_1pass_resolve_inode(pl, inode))) { putstr("load: Failed to resolve inode structure\r\n"); return 0; } if ((ret = jffs2_1pass_read_inode(pl, inode, dest)) < 0) { putstr("load: Failed to read inode\r\n"); return 0; } DEBUGF ("load: loaded '%s' to 0x%lx (%ld bytes)\n", fname, (unsigned long) dest, ret); return ret; } /* Return information about the fs on this partition */ u32 jffs2_1pass_info(struct part_info * part) { struct b_jffs2_info info; struct b_lists *pl; int i; if (! (pl = jffs2_get_list(part, "info"))) return 0; jffs2_1pass_fill_info(pl, &info); for (i = 0; i < JFFS2_NUM_COMPR; i++) { printf ("Compression: %s\n" "\tfrag count: %d\n" "\tcompressed sum: %d\n" "\tuncompressed sum: %d\n", compr_names[i], info.compr_info[i].num_frags, info.compr_info[i].compr_sum, info.compr_info[i].decompr_sum); } return 1; }