/* * (C) Copyright 2015 Google, Inc * Written by Simon Glass * * usb_match_device() modified from Linux kernel v4.0. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; extern bool usb_started; /* flag for the started/stopped USB status */ static bool asynch_allowed; struct usb_uclass_priv { int companion_device_count; }; int usb_disable_asynch(int disable) { int old_value = asynch_allowed; asynch_allowed = !disable; return old_value; } int submit_int_msg(struct usb_device *udev, unsigned long pipe, void *buffer, int length, int interval) { struct udevice *bus = udev->controller_dev; struct dm_usb_ops *ops = usb_get_ops(bus); if (!ops->interrupt) return -ENOSYS; return ops->interrupt(bus, udev, pipe, buffer, length, interval); } int submit_control_msg(struct usb_device *udev, unsigned long pipe, void *buffer, int length, struct devrequest *setup) { struct udevice *bus = udev->controller_dev; struct dm_usb_ops *ops = usb_get_ops(bus); struct usb_uclass_priv *uc_priv = bus->uclass->priv; int err; if (!ops->control) return -ENOSYS; err = ops->control(bus, udev, pipe, buffer, length, setup); if (setup->request == USB_REQ_SET_FEATURE && setup->requesttype == USB_RT_PORT && setup->value == cpu_to_le16(USB_PORT_FEAT_RESET) && err == -ENXIO) { /* Device handed over to companion after port reset */ uc_priv->companion_device_count++; } return err; } int submit_bulk_msg(struct usb_device *udev, unsigned long pipe, void *buffer, int length) { struct udevice *bus = udev->controller_dev; struct dm_usb_ops *ops = usb_get_ops(bus); if (!ops->bulk) return -ENOSYS; return ops->bulk(bus, udev, pipe, buffer, length); } struct int_queue *create_int_queue(struct usb_device *udev, unsigned long pipe, int queuesize, int elementsize, void *buffer, int interval) { struct udevice *bus = udev->controller_dev; struct dm_usb_ops *ops = usb_get_ops(bus); if (!ops->create_int_queue) return NULL; return ops->create_int_queue(bus, udev, pipe, queuesize, elementsize, buffer, interval); } void *poll_int_queue(struct usb_device *udev, struct int_queue *queue) { struct udevice *bus = udev->controller_dev; struct dm_usb_ops *ops = usb_get_ops(bus); if (!ops->poll_int_queue) return NULL; return ops->poll_int_queue(bus, udev, queue); } int destroy_int_queue(struct usb_device *udev, struct int_queue *queue) { struct udevice *bus = udev->controller_dev; struct dm_usb_ops *ops = usb_get_ops(bus); if (!ops->destroy_int_queue) return -ENOSYS; return ops->destroy_int_queue(bus, udev, queue); } int usb_alloc_device(struct usb_device *udev) { struct udevice *bus = udev->controller_dev; struct dm_usb_ops *ops = usb_get_ops(bus); /* This is only requird by some controllers - current XHCI */ if (!ops->alloc_device) return 0; return ops->alloc_device(bus, udev); } int usb_reset_root_port(struct usb_device *udev) { struct udevice *bus = udev->controller_dev; struct dm_usb_ops *ops = usb_get_ops(bus); if (!ops->reset_root_port) return -ENOSYS; return ops->reset_root_port(bus, udev); } int usb_stop(void) { struct udevice *bus; struct uclass *uc; struct usb_uclass_priv *uc_priv; int err = 0, ret; /* De-activate any devices that have been activated */ ret = uclass_get(UCLASS_USB, &uc); if (ret) return ret; uc_priv = uc->priv; uclass_foreach_dev(bus, uc) { ret = device_remove(bus); if (ret && !err) err = ret; ret = device_unbind_children(bus); if (ret && !err) err = ret; } #ifdef CONFIG_SANDBOX struct udevice *dev; /* Reset all enulation devices */ ret = uclass_get(UCLASS_USB_EMUL, &uc); if (ret) return ret; uclass_foreach_dev(dev, uc) usb_emul_reset(dev); #endif #ifdef CONFIG_USB_STORAGE usb_stor_reset(); #endif usb_hub_reset(); uc_priv->companion_device_count = 0; usb_started = 0; return err; } static void usb_scan_bus(struct udevice *bus, bool recurse) { struct usb_bus_priv *priv; struct udevice *dev; int ret; priv = dev_get_uclass_priv(bus); assert(recurse); /* TODO: Support non-recusive */ printf("scanning bus %d for devices... ", bus->seq); debug("\n"); ret = usb_scan_device(bus, 0, USB_SPEED_FULL, &dev); if (ret) printf("failed, error %d\n", ret); else if (priv->next_addr == 0) printf("No USB Device found\n"); else printf("%d USB Device(s) found\n", priv->next_addr); } int usb_init(void) { int controllers_initialized = 0; struct usb_uclass_priv *uc_priv; struct usb_bus_priv *priv; struct udevice *bus; struct uclass *uc; int count = 0; int ret; asynch_allowed = 1; usb_hub_reset(); ret = uclass_get(UCLASS_USB, &uc); if (ret) return ret; uc_priv = uc->priv; uclass_foreach_dev(bus, uc) { /* init low_level USB */ printf("USB%d: ", count); count++; ret = device_probe(bus); if (ret == -ENODEV) { /* No such device. */ puts("Port not available.\n"); controllers_initialized++; continue; } if (ret) { /* Other error. */ printf("probe failed, error %d\n", ret); continue; } controllers_initialized++; usb_started = true; } /* * lowlevel init done, now scan the bus for devices i.e. search HUBs * and configure them, first scan primary controllers. */ uclass_foreach_dev(bus, uc) { if (!device_active(bus)) continue; priv = dev_get_uclass_priv(bus); if (!priv->companion) usb_scan_bus(bus, true); } /* * Now that the primary controllers have been scanned and have handed * over any devices they do not understand to their companions, scan * the companions if necessary. */ if (uc_priv->companion_device_count) { uclass_foreach_dev(bus, uc) { if (!device_active(bus)) continue; priv = dev_get_uclass_priv(bus); if (priv->companion) usb_scan_bus(bus, true); } } debug("scan end\n"); /* if we were not able to find at least one working bus, bail out */ if (!count) printf("No controllers found\n"); else if (controllers_initialized == 0) printf("USB error: all controllers failed lowlevel init\n"); return usb_started ? 0 : -1; } static struct usb_device *find_child_devnum(struct udevice *parent, int devnum) { struct usb_device *udev; struct udevice *dev; if (!device_active(parent)) return NULL; udev = dev_get_parentdata(parent); if (udev->devnum == devnum) return udev; for (device_find_first_child(parent, &dev); dev; device_find_next_child(&dev)) { udev = find_child_devnum(dev, devnum); if (udev) return udev; } return NULL; } struct usb_device *usb_get_dev_index(struct udevice *bus, int index) { struct udevice *dev; int devnum = index + 1; /* Addresses are allocated from 1 on USB */ device_find_first_child(bus, &dev); if (!dev) return NULL; return find_child_devnum(dev, devnum); } int usb_post_bind(struct udevice *dev) { /* Scan the bus for devices */ return dm_scan_fdt_node(dev, gd->fdt_blob, dev->of_offset, false); } int usb_setup_ehci_gadget(struct ehci_ctrl **ctlrp) { struct usb_platdata *plat; struct udevice *dev; int ret; /* Find the old device and remove it */ ret = uclass_find_device_by_seq(UCLASS_USB, 0, true, &dev); if (ret) return ret; ret = device_remove(dev); if (ret) return ret; plat = dev_get_platdata(dev); plat->init_type = USB_INIT_DEVICE; ret = device_probe(dev); if (ret) return ret; *ctlrp = dev_get_priv(dev); return 0; } /* returns 0 if no match, 1 if match */ int usb_match_device(const struct usb_device_descriptor *desc, const struct usb_device_id *id) { if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) && id->idVendor != le16_to_cpu(desc->idVendor)) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) && id->idProduct != le16_to_cpu(desc->idProduct)) return 0; /* No need to test id->bcdDevice_lo != 0, since 0 is never greater than any unsigned number. */ if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) && (id->bcdDevice_lo > le16_to_cpu(desc->bcdDevice))) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) && (id->bcdDevice_hi < le16_to_cpu(desc->bcdDevice))) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) && (id->bDeviceClass != desc->bDeviceClass)) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) && (id->bDeviceSubClass != desc->bDeviceSubClass)) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) && (id->bDeviceProtocol != desc->bDeviceProtocol)) return 0; return 1; } /* returns 0 if no match, 1 if match */ int usb_match_one_id_intf(const struct usb_device_descriptor *desc, const struct usb_interface_descriptor *int_desc, const struct usb_device_id *id) { /* The interface class, subclass, protocol and number should never be * checked for a match if the device class is Vendor Specific, * unless the match record specifies the Vendor ID. */ if (desc->bDeviceClass == USB_CLASS_VENDOR_SPEC && !(id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) && (id->match_flags & (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS | USB_DEVICE_ID_MATCH_INT_PROTOCOL | USB_DEVICE_ID_MATCH_INT_NUMBER))) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) && (id->bInterfaceClass != int_desc->bInterfaceClass)) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) && (id->bInterfaceSubClass != int_desc->bInterfaceSubClass)) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) && (id->bInterfaceProtocol != int_desc->bInterfaceProtocol)) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_NUMBER) && (id->bInterfaceNumber != int_desc->bInterfaceNumber)) return 0; return 1; } /* returns 0 if no match, 1 if match */ int usb_match_one_id(struct usb_device_descriptor *desc, struct usb_interface_descriptor *int_desc, const struct usb_device_id *id) { if (!usb_match_device(desc, id)) return 0; return usb_match_one_id_intf(desc, int_desc, id); } /** * usb_find_and_bind_driver() - Find and bind the right USB driver * * This only looks at certain fields in the descriptor. */ static int usb_find_and_bind_driver(struct udevice *parent, struct usb_device_descriptor *desc, struct usb_interface_descriptor *iface, int bus_seq, int devnum, struct udevice **devp) { struct usb_driver_entry *start, *entry; int n_ents; int ret; char name[30], *str; *devp = NULL; debug("%s: Searching for driver\n", __func__); start = ll_entry_start(struct usb_driver_entry, usb_driver_entry); n_ents = ll_entry_count(struct usb_driver_entry, usb_driver_entry); for (entry = start; entry != start + n_ents; entry++) { const struct usb_device_id *id; struct udevice *dev; const struct driver *drv; struct usb_dev_platdata *plat; for (id = entry->match; id->match_flags; id++) { if (!usb_match_one_id(desc, iface, id)) continue; drv = entry->driver; /* * We could pass the descriptor to the driver as * platdata (instead of NULL) and allow its bind() * method to return -ENOENT if it doesn't support this * device. That way we could continue the search to * find another driver. For now this doesn't seem * necesssary, so just bind the first match. */ ret = device_bind(parent, drv, drv->name, NULL, -1, &dev); if (ret) goto error; debug("%s: Match found: %s\n", __func__, drv->name); dev->driver_data = id->driver_info; plat = dev_get_parent_platdata(dev); plat->id = *id; *devp = dev; return 0; } } /* Bind a generic driver so that the device can be used */ snprintf(name, sizeof(name), "generic_bus_%x_dev_%x", bus_seq, devnum); str = strdup(name); if (!str) return -ENOMEM; ret = device_bind_driver(parent, "usb_dev_generic_drv", str, devp); error: debug("%s: No match found: %d\n", __func__, ret); return ret; } /** * usb_find_emul_child() - Find an existing device for emulated devices */ static int usb_find_emul_child(struct udevice *parent, struct usb_device_descriptor *desc, struct usb_interface_descriptor *iface, struct udevice **devp) { #ifdef CONFIG_SANDBOX struct udevice *dev; *devp = NULL; for (device_find_first_child(parent, &dev); dev; device_find_next_child(&dev)) { struct usb_dev_platdata *plat = dev_get_parent_platdata(dev); /* If this device is already in use, skip it */ if (device_active(dev)) continue; debug(" %s: name='%s', plat=%d, desc=%d\n", __func__, dev->name, plat->id.bDeviceClass, desc->bDeviceClass); if (usb_match_one_id(desc, iface, &plat->id)) { *devp = dev; return 0; } } #endif return -ENOENT; } int usb_scan_device(struct udevice *parent, int port, enum usb_device_speed speed, struct udevice **devp) { struct udevice *dev; bool created = false; struct usb_dev_platdata *plat; struct usb_bus_priv *priv; struct usb_device *parent_udev; int ret; ALLOC_CACHE_ALIGN_BUFFER(struct usb_device, udev, 1); struct usb_interface_descriptor *iface = &udev->config.if_desc[0].desc; *devp = NULL; memset(udev, '\0', sizeof(*udev)); udev->controller_dev = usb_get_bus(parent); priv = dev_get_uclass_priv(udev->controller_dev); /* * Somewhat nasty, this. We create a local device and use the normal * USB stack to read its descriptor. Then we know what type of device * to create for real. * * udev->dev is set to the parent, since we don't have a real device * yet. The USB stack should not access udev.dev anyway, except perhaps * to find the controller, and the controller will either be @parent, * or some parent of @parent. * * Another option might be to create the device as a generic USB * device, then morph it into the correct one when we know what it * should be. This means that a generic USB device would morph into * a network controller, or a USB flash stick, for example. However, * we don't support such morphing and it isn't clear that it would * be easy to do. * * Yet another option is to split out the USB stack parts of udev * into something like a 'struct urb' (as Linux does) which can exist * independently of any device. This feels cleaner, but calls for quite * a big change to the USB stack. * * For now, the approach is to set up an empty udev, read its * descriptor and assign it an address, then bind a real device and * stash the resulting information into the device's parent * platform data. Then when we probe it, usb_child_pre_probe() is called * and it will pull the information out of the stash. */ udev->dev = parent; udev->speed = speed; udev->devnum = priv->next_addr + 1; udev->portnr = port; debug("Calling usb_setup_device(), portnr=%d\n", udev->portnr); parent_udev = device_get_uclass_id(parent) == UCLASS_USB_HUB ? dev_get_parentdata(parent) : NULL; ret = usb_setup_device(udev, priv->desc_before_addr, parent_udev); debug("read_descriptor for '%s': ret=%d\n", parent->name, ret); if (ret) return ret; ret = usb_find_emul_child(parent, &udev->descriptor, iface, &dev); debug("** usb_find_emul_child returns %d\n", ret); if (ret) { if (ret != -ENOENT) return ret; ret = usb_find_and_bind_driver(parent, &udev->descriptor, iface, udev->controller_dev->seq, udev->devnum, &dev); if (ret) return ret; created = true; } plat = dev_get_parent_platdata(dev); debug("%s: Probing '%s', plat=%p\n", __func__, dev->name, plat); plat->devnum = udev->devnum; plat->udev = udev; priv->next_addr++; ret = device_probe(dev); if (ret) { debug("%s: Device '%s' probe failed\n", __func__, dev->name); priv->next_addr--; if (created) device_unbind(dev); return ret; } *devp = dev; return 0; } /* * Detect if a USB device has been plugged or unplugged. */ int usb_detect_change(void) { struct udevice *hub; struct uclass *uc; int change = 0; int ret; ret = uclass_get(UCLASS_USB_HUB, &uc); if (ret) return ret; uclass_foreach_dev(hub, uc) { struct usb_device *udev; struct udevice *dev; if (!device_active(hub)) continue; for (device_find_first_child(hub, &dev); dev; device_find_next_child(&dev)) { struct usb_port_status status; if (!device_active(dev)) continue; udev = dev_get_parentdata(dev); if (usb_get_port_status(udev, udev->portnr, &status) < 0) /* USB request failed */ continue; if (le16_to_cpu(status.wPortChange) & USB_PORT_STAT_C_CONNECTION) change++; } } return change; } int usb_child_post_bind(struct udevice *dev) { struct usb_dev_platdata *plat = dev_get_parent_platdata(dev); const void *blob = gd->fdt_blob; int val; if (dev->of_offset == -1) return 0; /* We only support matching a few things */ val = fdtdec_get_int(blob, dev->of_offset, "usb,device-class", -1); if (val != -1) { plat->id.match_flags |= USB_DEVICE_ID_MATCH_DEV_CLASS; plat->id.bDeviceClass = val; } val = fdtdec_get_int(blob, dev->of_offset, "usb,interface-class", -1); if (val != -1) { plat->id.match_flags |= USB_DEVICE_ID_MATCH_INT_CLASS; plat->id.bInterfaceClass = val; } return 0; } struct udevice *usb_get_bus(struct udevice *dev) { struct udevice *bus; for (bus = dev; bus && device_get_uclass_id(bus) != UCLASS_USB; ) bus = bus->parent; if (!bus) { /* By design this cannot happen */ assert(bus); debug("USB HUB '%s' does not have a controller\n", dev->name); } return bus; } int usb_child_pre_probe(struct udevice *dev) { struct usb_device *udev = dev_get_parentdata(dev); struct usb_dev_platdata *plat = dev_get_parent_platdata(dev); int ret; if (plat->udev) { /* * Copy over all the values set in the on stack struct * usb_device in usb_scan_device() to our final struct * usb_device for this dev. */ *udev = *(plat->udev); /* And clear plat->udev as it will not be valid for long */ plat->udev = NULL; udev->dev = dev; } else { /* * This happens with devices which are explicitly bound * instead of being discovered through usb_scan_device() * such as sandbox emul devices. */ udev->dev = dev; udev->controller_dev = usb_get_bus(dev); udev->devnum = plat->devnum; /* * udev did not go through usb_scan_device(), so we need to * select the config and read the config descriptors. */ ret = usb_select_config(udev); if (ret) return ret; } return 0; } UCLASS_DRIVER(usb) = { .id = UCLASS_USB, .name = "usb", .flags = DM_UC_FLAG_SEQ_ALIAS, .post_bind = usb_post_bind, .priv_auto_alloc_size = sizeof(struct usb_uclass_priv), .per_child_auto_alloc_size = sizeof(struct usb_device), .per_device_auto_alloc_size = sizeof(struct usb_bus_priv), .child_post_bind = usb_child_post_bind, .child_pre_probe = usb_child_pre_probe, .per_child_platdata_auto_alloc_size = sizeof(struct usb_dev_platdata), }; UCLASS_DRIVER(usb_dev_generic) = { .id = UCLASS_USB_DEV_GENERIC, .name = "usb_dev_generic", }; U_BOOT_DRIVER(usb_dev_generic_drv) = { .id = UCLASS_USB_DEV_GENERIC, .name = "usb_dev_generic_drv", };