/* * TI QSPI driver * * Copyright (C) 2013, Texas Instruments, Incorporated * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; /* ti qpsi register bit masks */ #define QSPI_TIMEOUT 2000000 #define QSPI_FCLK 192000000 /* clock control */ #define QSPI_CLK_EN BIT(31) #define QSPI_CLK_DIV_MAX 0xffff /* command */ #define QSPI_EN_CS(n) (n << 28) #define QSPI_WLEN(n) ((n-1) << 19) #define QSPI_3_PIN BIT(18) #define QSPI_RD_SNGL BIT(16) #define QSPI_WR_SNGL (2 << 16) #define QSPI_INVAL (4 << 16) #define QSPI_RD_QUAD (7 << 16) /* device control */ #define QSPI_DD(m, n) (m << (3 + n*8)) #define QSPI_CKPHA(n) (1 << (2 + n*8)) #define QSPI_CSPOL(n) (1 << (1 + n*8)) #define QSPI_CKPOL(n) (1 << (n*8)) /* status */ #define QSPI_WC BIT(1) #define QSPI_BUSY BIT(0) #define QSPI_WC_BUSY (QSPI_WC | QSPI_BUSY) #define QSPI_XFER_DONE QSPI_WC #define MM_SWITCH 0x01 #define MEM_CS(cs) ((cs + 1) << 8) #define MEM_CS_UNSELECT 0xfffff8ff #define MMAP_START_ADDR_DRA 0x5c000000 #define MMAP_START_ADDR_AM43x 0x30000000 #define CORE_CTRL_IO 0x4a002558 #define QSPI_CMD_READ (0x3 << 0) #define QSPI_CMD_READ_DUAL (0x6b << 0) #define QSPI_CMD_READ_QUAD (0x6c << 0) #define QSPI_CMD_READ_FAST (0x0b << 0) #define QSPI_SETUP0_NUM_A_BYTES (0x3 << 8) #define QSPI_SETUP0_NUM_D_BYTES_NO_BITS (0x0 << 10) #define QSPI_SETUP0_NUM_D_BYTES_8_BITS (0x1 << 10) #define QSPI_SETUP0_READ_NORMAL (0x0 << 12) #define QSPI_SETUP0_READ_DUAL (0x1 << 12) #define QSPI_SETUP0_READ_QUAD (0x3 << 12) #define QSPI_CMD_WRITE (0x12 << 16) #define QSPI_NUM_DUMMY_BITS (0x0 << 24) /* ti qspi register set */ struct ti_qspi_regs { u32 pid; u32 pad0[3]; u32 sysconfig; u32 pad1[3]; u32 int_stat_raw; u32 int_stat_en; u32 int_en_set; u32 int_en_ctlr; u32 intc_eoi; u32 pad2[3]; u32 clk_ctrl; u32 dc; u32 cmd; u32 status; u32 data; u32 setup0; u32 setup1; u32 setup2; u32 setup3; u32 memswitch; u32 data1; u32 data2; u32 data3; }; /* ti qspi priv */ struct ti_qspi_priv { #ifndef CONFIG_DM_SPI struct spi_slave slave; #else void *memory_map; uint max_hz; u32 num_cs; #endif struct ti_qspi_regs *base; void *ctrl_mod_mmap; unsigned int mode; u32 cmd; u32 dc; }; static void ti_spi_set_speed(struct ti_qspi_priv *priv, uint hz) { uint clk_div; debug("ti_spi_set_speed: hz: %d, clock divider %d\n", hz, clk_div); if (!hz) clk_div = 0; else clk_div = (QSPI_FCLK / hz) - 1; /* disable SCLK */ writel(readl(&priv->base->clk_ctrl) & ~QSPI_CLK_EN, &priv->base->clk_ctrl); /* assign clk_div values */ if (clk_div < 0) clk_div = 0; else if (clk_div > QSPI_CLK_DIV_MAX) clk_div = QSPI_CLK_DIV_MAX; /* enable SCLK */ writel(QSPI_CLK_EN | clk_div, &priv->base->clk_ctrl); } static void ti_qspi_cs_deactivate(struct ti_qspi_priv *priv) { writel(priv->cmd | QSPI_INVAL, &priv->base->cmd); /* dummy readl to ensure bus sync */ readl(&priv->base->cmd); } static int __ti_qspi_set_mode(struct ti_qspi_priv *priv, unsigned int mode) { priv->dc = 0; if (mode & SPI_CPHA) priv->dc |= QSPI_CKPHA(0); if (mode & SPI_CPOL) priv->dc |= QSPI_CKPOL(0); if (mode & SPI_CS_HIGH) priv->dc |= QSPI_CSPOL(0); return 0; } static int __ti_qspi_claim_bus(struct ti_qspi_priv *priv, int cs) { writel(priv->dc, &priv->base->dc); writel(0, &priv->base->cmd); writel(0, &priv->base->data); priv->dc <<= cs * 8; writel(priv->dc, &priv->base->dc); return 0; } static void __ti_qspi_release_bus(struct ti_qspi_priv *priv) { writel(0, &priv->base->dc); writel(0, &priv->base->cmd); writel(0, &priv->base->data); } static void ti_qspi_ctrl_mode_mmap(void *ctrl_mod_mmap, int cs, bool enable) { u32 val; val = readl(ctrl_mod_mmap); if (enable) val |= MEM_CS(cs); else val &= MEM_CS_UNSELECT; writel(val, ctrl_mod_mmap); } static int __ti_qspi_xfer(struct ti_qspi_priv *priv, unsigned int bitlen, const void *dout, void *din, unsigned long flags, u32 cs) { uint words = bitlen >> 3; /* fixed 8-bit word length */ const uchar *txp = dout; uchar *rxp = din; uint status; int timeout; /* Setup mmap flags */ if (flags & SPI_XFER_MMAP) { writel(MM_SWITCH, &priv->base->memswitch); if (priv->ctrl_mod_mmap) ti_qspi_ctrl_mode_mmap(priv->ctrl_mod_mmap, cs, true); return 0; } else if (flags & SPI_XFER_MMAP_END) { writel(~MM_SWITCH, &priv->base->memswitch); if (priv->ctrl_mod_mmap) ti_qspi_ctrl_mode_mmap(priv->ctrl_mod_mmap, cs, false); return 0; } if (bitlen == 0) return -1; if (bitlen % 8) { debug("spi_xfer: Non byte aligned SPI transfer\n"); return -1; } /* Setup command reg */ priv->cmd = 0; priv->cmd |= QSPI_WLEN(8); priv->cmd |= QSPI_EN_CS(cs); if (priv->mode & SPI_3WIRE) priv->cmd |= QSPI_3_PIN; priv->cmd |= 0xfff; /* FIXME: This delay is required for successfull * completion of read/write/erase. Once its root * caused, it will be remove from the driver. */ #ifdef CONFIG_AM43XX udelay(100); #endif while (words--) { if (txp) { debug("tx cmd %08x dc %08x data %02x\n", priv->cmd | QSPI_WR_SNGL, priv->dc, *txp); writel(*txp++, &priv->base->data); writel(priv->cmd | QSPI_WR_SNGL, &priv->base->cmd); status = readl(&priv->base->status); timeout = QSPI_TIMEOUT; while ((status & QSPI_WC_BUSY) != QSPI_XFER_DONE) { if (--timeout < 0) { printf("spi_xfer: TX timeout!\n"); return -1; } status = readl(&priv->base->status); } debug("tx done, status %08x\n", status); } if (rxp) { priv->cmd |= QSPI_RD_SNGL; debug("rx cmd %08x dc %08x\n", priv->cmd, priv->dc); #ifdef CONFIG_DRA7XX udelay(500); #endif writel(priv->cmd, &priv->base->cmd); status = readl(&priv->base->status); timeout = QSPI_TIMEOUT; while ((status & QSPI_WC_BUSY) != QSPI_XFER_DONE) { if (--timeout < 0) { printf("spi_xfer: RX timeout!\n"); return -1; } status = readl(&priv->base->status); } *rxp++ = readl(&priv->base->data); debug("rx done, status %08x, read %02x\n", status, *(rxp-1)); } } /* Terminate frame */ if (flags & SPI_XFER_END) ti_qspi_cs_deactivate(priv); return 0; } /* TODO: control from sf layer to here through dm-spi */ #if defined(CONFIG_TI_EDMA3) && !defined(CONFIG_DMA) void spi_flash_copy_mmap(void *data, void *offset, size_t len) { unsigned int addr = (unsigned int) (data); unsigned int edma_slot_num = 1; /* Invalidate the area, so no writeback into the RAM races with DMA */ invalidate_dcache_range(addr, addr + roundup(len, ARCH_DMA_MINALIGN)); /* enable edma3 clocks */ enable_edma3_clocks(); /* Call edma3 api to do actual DMA transfer */ edma3_transfer(EDMA3_BASE, edma_slot_num, data, offset, len); /* disable edma3 clocks */ disable_edma3_clocks(); *((unsigned int *)offset) += len; } #endif #ifndef CONFIG_DM_SPI static inline struct ti_qspi_priv *to_ti_qspi_priv(struct spi_slave *slave) { return container_of(slave, struct ti_qspi_priv, slave); } int spi_cs_is_valid(unsigned int bus, unsigned int cs) { return 1; } void spi_cs_activate(struct spi_slave *slave) { /* CS handled in xfer */ return; } void spi_cs_deactivate(struct spi_slave *slave) { struct ti_qspi_priv *priv = to_ti_qspi_priv(slave); ti_qspi_cs_deactivate(priv); } void spi_init(void) { /* nothing to do */ } static void ti_spi_setup_spi_register(struct ti_qspi_priv *priv) { u32 memval = 0; #ifdef CONFIG_QSPI_QUAD_SUPPORT struct spi_slave *slave = &priv->slave; memval |= (QSPI_CMD_READ_QUAD | QSPI_SETUP0_NUM_A_BYTES | QSPI_SETUP0_NUM_D_BYTES_8_BITS | QSPI_SETUP0_READ_QUAD | QSPI_CMD_WRITE | QSPI_NUM_DUMMY_BITS); slave->mode_rx = SPI_RX_QUAD; #else memval |= QSPI_CMD_READ | QSPI_SETUP0_NUM_A_BYTES | QSPI_SETUP0_NUM_D_BYTES_NO_BITS | QSPI_SETUP0_READ_NORMAL | QSPI_CMD_WRITE | QSPI_NUM_DUMMY_BITS; #endif writel(memval, &priv->base->setup0); } struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs, unsigned int max_hz, unsigned int mode) { struct ti_qspi_priv *priv; #ifdef CONFIG_AM43XX gpio_request(CONFIG_QSPI_SEL_GPIO, "qspi_gpio"); gpio_direction_output(CONFIG_QSPI_SEL_GPIO, 1); #endif priv = spi_alloc_slave(struct ti_qspi_priv, bus, cs); if (!priv) { printf("SPI_error: Fail to allocate ti_qspi_priv\n"); return NULL; } priv->base = (struct ti_qspi_regs *)QSPI_BASE; priv->mode = mode; #if defined(CONFIG_DRA7XX) || defined(CONFIG_AM57XX) priv->ctrl_mod_mmap = (void *)CORE_CTRL_IO; priv->slave.memory_map = (void *)MMAP_START_ADDR_DRA; #else priv->slave.memory_map = (void *)MMAP_START_ADDR_AM43x; #endif ti_spi_set_speed(priv, max_hz); #ifdef CONFIG_TI_SPI_MMAP ti_spi_setup_spi_register(priv); #endif return &priv->slave; } void spi_free_slave(struct spi_slave *slave) { struct ti_qspi_priv *priv = to_ti_qspi_priv(slave); free(priv); } int spi_claim_bus(struct spi_slave *slave) { struct ti_qspi_priv *priv = to_ti_qspi_priv(slave); debug("%s: bus:%i cs:%i\n", __func__, priv->slave.bus, priv->slave.cs); __ti_qspi_set_mode(priv, priv->mode); return __ti_qspi_claim_bus(priv, priv->slave.cs); } void spi_release_bus(struct spi_slave *slave) { struct ti_qspi_priv *priv = to_ti_qspi_priv(slave); debug("%s: bus:%i cs:%i\n", __func__, priv->slave.bus, priv->slave.cs); __ti_qspi_release_bus(priv); } int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct ti_qspi_priv *priv = to_ti_qspi_priv(slave); debug("spi_xfer: bus:%i cs:%i bitlen:%i flags:%lx\n", priv->slave.bus, priv->slave.cs, bitlen, flags); return __ti_qspi_xfer(priv, bitlen, dout, din, flags, priv->slave.cs); } #else /* CONFIG_DM_SPI */ static void __ti_qspi_setup_memorymap(struct ti_qspi_priv *priv, struct spi_slave *slave, bool enable) { u32 memval; u32 mode = slave->mode_rx & (SPI_RX_QUAD | SPI_RX_DUAL); if (!enable) { writel(0, &priv->base->setup0); return; } memval = QSPI_SETUP0_NUM_A_BYTES | QSPI_CMD_WRITE | QSPI_NUM_DUMMY_BITS; switch (mode) { case SPI_RX_QUAD: memval |= QSPI_CMD_READ_QUAD; memval |= QSPI_SETUP0_NUM_D_BYTES_8_BITS; memval |= QSPI_SETUP0_READ_QUAD; slave->mode_rx = SPI_RX_QUAD; break; case SPI_RX_DUAL: memval |= QSPI_CMD_READ_DUAL; memval |= QSPI_SETUP0_NUM_D_BYTES_8_BITS; memval |= QSPI_SETUP0_READ_DUAL; break; default: memval |= QSPI_CMD_READ; memval |= QSPI_SETUP0_NUM_D_BYTES_NO_BITS; memval |= QSPI_SETUP0_READ_NORMAL; break; } writel(memval, &priv->base->setup0); } static int ti_qspi_set_speed(struct udevice *bus, uint max_hz) { struct ti_qspi_priv *priv = dev_get_priv(bus); ti_spi_set_speed(priv, max_hz); return 0; } static int ti_qspi_set_mode(struct udevice *bus, uint mode) { struct ti_qspi_priv *priv = dev_get_priv(bus); return __ti_qspi_set_mode(priv, mode); } static int ti_qspi_claim_bus(struct udevice *dev) { struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev); struct spi_slave *slave = dev_get_parent_priv(dev); struct ti_qspi_priv *priv; struct udevice *bus; bus = dev->parent; priv = dev_get_priv(bus); if (slave_plat->cs > priv->num_cs) { debug("invalid qspi chip select\n"); return -EINVAL; } __ti_qspi_setup_memorymap(priv, slave, true); return __ti_qspi_claim_bus(priv, slave_plat->cs); } static int ti_qspi_release_bus(struct udevice *dev) { struct spi_slave *slave = dev_get_parent_priv(dev); struct ti_qspi_priv *priv; struct udevice *bus; bus = dev->parent; priv = dev_get_priv(bus); __ti_qspi_setup_memorymap(priv, slave, false); __ti_qspi_release_bus(priv); return 0; } static int ti_qspi_xfer(struct udevice *dev, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct dm_spi_slave_platdata *slave = dev_get_parent_platdata(dev); struct ti_qspi_priv *priv; struct udevice *bus; bus = dev->parent; priv = dev_get_priv(bus); if (slave->cs > priv->num_cs) { debug("invalid qspi chip select\n"); return -EINVAL; } return __ti_qspi_xfer(priv, bitlen, dout, din, flags, slave->cs); } static int ti_qspi_probe(struct udevice *bus) { /* Nothing to do in probe */ return 0; } static int ti_qspi_ofdata_to_platdata(struct udevice *bus) { struct ti_qspi_priv *priv = dev_get_priv(bus); const void *blob = gd->fdt_blob; int node = bus->of_offset; fdt_addr_t addr; void *mmap; priv->base = map_physmem(dev_get_addr(bus), sizeof(struct ti_qspi_regs), MAP_NOCACHE); priv->memory_map = map_physmem(dev_get_addr_index(bus, 1), 0, MAP_NOCACHE); addr = dev_get_addr_index(bus, 2); mmap = map_physmem(dev_get_addr_index(bus, 2), 0, MAP_NOCACHE); priv->ctrl_mod_mmap = (addr == FDT_ADDR_T_NONE) ? NULL : mmap; priv->max_hz = fdtdec_get_int(blob, node, "spi-max-frequency", -1); if (priv->max_hz < 0) { debug("Error: Max frequency missing\n"); return -ENODEV; } priv->num_cs = fdtdec_get_int(blob, node, "num-cs", 4); debug("%s: regs=<0x%x>, max-frequency=%d\n", __func__, (int)priv->base, priv->max_hz); return 0; } static int ti_qspi_child_pre_probe(struct udevice *dev) { struct spi_slave *slave = dev_get_parent_priv(dev); struct udevice *bus = dev_get_parent(dev); struct ti_qspi_priv *priv = dev_get_priv(bus); slave->memory_map = priv->memory_map; return 0; } static const struct dm_spi_ops ti_qspi_ops = { .claim_bus = ti_qspi_claim_bus, .release_bus = ti_qspi_release_bus, .xfer = ti_qspi_xfer, .set_speed = ti_qspi_set_speed, .set_mode = ti_qspi_set_mode, }; static const struct udevice_id ti_qspi_ids[] = { { .compatible = "ti,dra7xxx-qspi" }, { .compatible = "ti,am4372-qspi" }, { } }; U_BOOT_DRIVER(ti_qspi) = { .name = "ti_qspi", .id = UCLASS_SPI, .of_match = ti_qspi_ids, .ops = &ti_qspi_ops, .ofdata_to_platdata = ti_qspi_ofdata_to_platdata, .priv_auto_alloc_size = sizeof(struct ti_qspi_priv), .probe = ti_qspi_probe, .child_pre_probe = ti_qspi_child_pre_probe, }; #endif /* CONFIG_DM_SPI */