/* * Copyright (C) 2008, Guennadi Liakhovetski * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #ifdef CONFIG_MX27 /* i.MX27 has a completely wrong register layout and register definitions in the * datasheet, the correct one is in the Freescale's Linux driver */ #error "i.MX27 CSPI not supported due to drastic differences in register definitions" \ "See linux mxc_spi driver from Freescale for details." #endif static unsigned long spi_bases[] = { MXC_SPI_BASE_ADDRESSES }; __weak int board_spi_cs_gpio(unsigned bus, unsigned cs) { return -1; } #define OUT MXC_GPIO_DIRECTION_OUT #define reg_read readl #define reg_write(a, v) writel(v, a) #if !defined(CONFIG_SYS_SPI_MXC_WAIT) #define CONFIG_SYS_SPI_MXC_WAIT (CONFIG_SYS_HZ/100) /* 10 ms */ #endif struct mxc_spi_slave { struct spi_slave slave; unsigned long base; u32 ctrl_reg; #if defined(MXC_ECSPI) u32 cfg_reg; #endif int gpio; int ss_pol; unsigned int max_hz; unsigned int mode; }; static inline struct mxc_spi_slave *to_mxc_spi_slave(struct spi_slave *slave) { return container_of(slave, struct mxc_spi_slave, slave); } void spi_cs_activate(struct spi_slave *slave) { struct mxc_spi_slave *mxcs = to_mxc_spi_slave(slave); if (mxcs->gpio > 0) gpio_set_value(mxcs->gpio, mxcs->ss_pol); } void spi_cs_deactivate(struct spi_slave *slave) { struct mxc_spi_slave *mxcs = to_mxc_spi_slave(slave); if (mxcs->gpio > 0) gpio_set_value(mxcs->gpio, !(mxcs->ss_pol)); } u32 get_cspi_div(u32 div) { int i; for (i = 0; i < 8; i++) { if (div <= (4 << i)) return i; } return i; } #ifdef MXC_CSPI static s32 spi_cfg_mxc(struct mxc_spi_slave *mxcs, unsigned int cs) { unsigned int ctrl_reg; u32 clk_src; u32 div; unsigned int max_hz = mxcs->max_hz; unsigned int mode = mxcs->mode; clk_src = mxc_get_clock(MXC_CSPI_CLK); div = DIV_ROUND_UP(clk_src, max_hz); div = get_cspi_div(div); debug("clk %d Hz, div %d, real clk %d Hz\n", max_hz, div, clk_src / (4 << div)); ctrl_reg = MXC_CSPICTRL_CHIPSELECT(cs) | MXC_CSPICTRL_BITCOUNT(MXC_CSPICTRL_MAXBITS) | MXC_CSPICTRL_DATARATE(div) | MXC_CSPICTRL_EN | #ifdef CONFIG_MX35 MXC_CSPICTRL_SSCTL | #endif MXC_CSPICTRL_MODE; if (mode & SPI_CPHA) ctrl_reg |= MXC_CSPICTRL_PHA; if (mode & SPI_CPOL) ctrl_reg |= MXC_CSPICTRL_POL; if (mode & SPI_CS_HIGH) ctrl_reg |= MXC_CSPICTRL_SSPOL; mxcs->ctrl_reg = ctrl_reg; return 0; } #endif #ifdef MXC_ECSPI static s32 spi_cfg_mxc(struct mxc_spi_slave *mxcs, unsigned int cs) { u32 clk_src = mxc_get_clock(MXC_CSPI_CLK); s32 reg_ctrl, reg_config; u32 ss_pol = 0, sclkpol = 0, sclkpha = 0, sclkctl = 0; u32 pre_div = 0, post_div = 0; struct cspi_regs *regs = (struct cspi_regs *)mxcs->base; unsigned int max_hz = mxcs->max_hz; unsigned int mode = mxcs->mode; /* * Reset SPI and set all CSs to master mode, if toggling * between slave and master mode we might see a glitch * on the clock line */ reg_ctrl = MXC_CSPICTRL_MODE_MASK; reg_write(®s->ctrl, reg_ctrl); reg_ctrl |= MXC_CSPICTRL_EN; reg_write(®s->ctrl, reg_ctrl); if (clk_src > max_hz) { pre_div = (clk_src - 1) / max_hz; /* fls(1) = 1, fls(0x80000000) = 32, fls(16) = 5 */ post_div = fls(pre_div); if (post_div > 4) { post_div -= 4; if (post_div >= 16) { printf("Error: no divider for the freq: %d\n", max_hz); return -1; } pre_div >>= post_div; } else { post_div = 0; } } debug("pre_div = %d, post_div=%d\n", pre_div, post_div); reg_ctrl = (reg_ctrl & ~MXC_CSPICTRL_SELCHAN(3)) | MXC_CSPICTRL_SELCHAN(cs); reg_ctrl = (reg_ctrl & ~MXC_CSPICTRL_PREDIV(0x0F)) | MXC_CSPICTRL_PREDIV(pre_div); reg_ctrl = (reg_ctrl & ~MXC_CSPICTRL_POSTDIV(0x0F)) | MXC_CSPICTRL_POSTDIV(post_div); if (mode & SPI_CS_HIGH) ss_pol = 1; if (mode & SPI_CPOL) { sclkpol = 1; sclkctl = 1; } if (mode & SPI_CPHA) sclkpha = 1; reg_config = reg_read(®s->cfg); /* * Configuration register setup * The MX51 supports different setup for each SS */ reg_config = (reg_config & ~(1 << (cs + MXC_CSPICON_SSPOL))) | (ss_pol << (cs + MXC_CSPICON_SSPOL)); reg_config = (reg_config & ~(1 << (cs + MXC_CSPICON_POL))) | (sclkpol << (cs + MXC_CSPICON_POL)); reg_config = (reg_config & ~(1 << (cs + MXC_CSPICON_CTL))) | (sclkctl << (cs + MXC_CSPICON_CTL)); reg_config = (reg_config & ~(1 << (cs + MXC_CSPICON_PHA))) | (sclkpha << (cs + MXC_CSPICON_PHA)); debug("reg_ctrl = 0x%x\n", reg_ctrl); reg_write(®s->ctrl, reg_ctrl); debug("reg_config = 0x%x\n", reg_config); reg_write(®s->cfg, reg_config); /* save config register and control register */ mxcs->ctrl_reg = reg_ctrl; mxcs->cfg_reg = reg_config; /* clear interrupt reg */ reg_write(®s->intr, 0); reg_write(®s->stat, MXC_CSPICTRL_TC | MXC_CSPICTRL_RXOVF); return 0; } #endif int spi_xchg_single(struct spi_slave *slave, unsigned int bitlen, const u8 *dout, u8 *din, unsigned long flags) { struct mxc_spi_slave *mxcs = to_mxc_spi_slave(slave); int nbytes = DIV_ROUND_UP(bitlen, 8); u32 data, cnt, i; struct cspi_regs *regs = (struct cspi_regs *)mxcs->base; u32 ts; int status; debug("%s: bitlen %d dout 0x%x din 0x%x\n", __func__, bitlen, (u32)dout, (u32)din); mxcs->ctrl_reg = (mxcs->ctrl_reg & ~MXC_CSPICTRL_BITCOUNT(MXC_CSPICTRL_MAXBITS)) | MXC_CSPICTRL_BITCOUNT(bitlen - 1); reg_write(®s->ctrl, mxcs->ctrl_reg | MXC_CSPICTRL_EN); #ifdef MXC_ECSPI reg_write(®s->cfg, mxcs->cfg_reg); #endif /* Clear interrupt register */ reg_write(®s->stat, MXC_CSPICTRL_TC | MXC_CSPICTRL_RXOVF); /* * The SPI controller works only with words, * check if less than a word is sent. * Access to the FIFO is only 32 bit */ if (bitlen % 32) { data = 0; cnt = (bitlen % 32) / 8; if (dout) { for (i = 0; i < cnt; i++) { data = (data << 8) | (*dout++ & 0xFF); } } debug("Sending SPI 0x%x\n", data); reg_write(®s->txdata, data); nbytes -= cnt; } data = 0; while (nbytes > 0) { data = 0; if (dout) { /* Buffer is not 32-bit aligned */ if ((unsigned long)dout & 0x03) { data = 0; for (i = 0; i < 4; i++) data = (data << 8) | (*dout++ & 0xFF); } else { data = *(u32 *)dout; data = cpu_to_be32(data); dout += 4; } } debug("Sending SPI 0x%x\n", data); reg_write(®s->txdata, data); nbytes -= 4; } /* FIFO is written, now starts the transfer setting the XCH bit */ reg_write(®s->ctrl, mxcs->ctrl_reg | MXC_CSPICTRL_EN | MXC_CSPICTRL_XCH); ts = get_timer(0); status = reg_read(®s->stat); /* Wait until the TC (Transfer completed) bit is set */ while ((status & MXC_CSPICTRL_TC) == 0) { if (get_timer(ts) > CONFIG_SYS_SPI_MXC_WAIT) { printf("spi_xchg_single: Timeout!\n"); return -1; } status = reg_read(®s->stat); } /* Transfer completed, clear any pending request */ reg_write(®s->stat, MXC_CSPICTRL_TC | MXC_CSPICTRL_RXOVF); nbytes = DIV_ROUND_UP(bitlen, 8); cnt = nbytes % 32; if (bitlen % 32) { data = reg_read(®s->rxdata); cnt = (bitlen % 32) / 8; data = cpu_to_be32(data) >> ((sizeof(data) - cnt) * 8); debug("SPI Rx unaligned: 0x%x\n", data); if (din) { memcpy(din, &data, cnt); din += cnt; } nbytes -= cnt; } while (nbytes > 0) { u32 tmp; tmp = reg_read(®s->rxdata); data = cpu_to_be32(tmp); debug("SPI Rx: 0x%x 0x%x\n", tmp, data); cnt = min_t(u32, nbytes, sizeof(data)); if (din) { memcpy(din, &data, cnt); din += cnt; } nbytes -= cnt; } return 0; } int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { int n_bytes = DIV_ROUND_UP(bitlen, 8); int n_bits; int ret; u32 blk_size; u8 *p_outbuf = (u8 *)dout; u8 *p_inbuf = (u8 *)din; if (!slave) return -1; if (flags & SPI_XFER_BEGIN) spi_cs_activate(slave); while (n_bytes > 0) { if (n_bytes < MAX_SPI_BYTES) blk_size = n_bytes; else blk_size = MAX_SPI_BYTES; n_bits = blk_size * 8; ret = spi_xchg_single(slave, n_bits, p_outbuf, p_inbuf, 0); if (ret) return ret; if (dout) p_outbuf += blk_size; if (din) p_inbuf += blk_size; n_bytes -= blk_size; } if (flags & SPI_XFER_END) { spi_cs_deactivate(slave); } return 0; } void spi_init(void) { } /* * Some SPI devices require active chip-select over multiple * transactions, we achieve this using a GPIO. Still, the SPI * controller has to be configured to use one of its own chipselects. * To use this feature you have to implement board_spi_cs_gpio() to assign * a gpio value for each cs (-1 if cs doesn't need to use gpio). * You must use some unused on this SPI controller cs between 0 and 3. */ static int setup_cs_gpio(struct mxc_spi_slave *mxcs, unsigned int bus, unsigned int cs) { int ret; mxcs->gpio = board_spi_cs_gpio(bus, cs); if (mxcs->gpio == -1) return 0; ret = gpio_direction_output(mxcs->gpio, !(mxcs->ss_pol)); if (ret) { printf("mxc_spi: cannot setup gpio %d\n", mxcs->gpio); return -EINVAL; } return 0; } struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs, unsigned int max_hz, unsigned int mode) { struct mxc_spi_slave *mxcs; int ret; if (bus >= ARRAY_SIZE(spi_bases)) return NULL; if (max_hz == 0) { printf("Error: desired clock is 0\n"); return NULL; } mxcs = spi_alloc_slave(struct mxc_spi_slave, bus, cs); if (!mxcs) { puts("mxc_spi: SPI Slave not allocated !\n"); return NULL; } mxcs->ss_pol = (mode & SPI_CS_HIGH) ? 1 : 0; ret = setup_cs_gpio(mxcs, bus, cs); if (ret < 0) { free(mxcs); return NULL; } mxcs->base = spi_bases[bus]; mxcs->max_hz = max_hz; mxcs->mode = mode; return &mxcs->slave; } void spi_free_slave(struct spi_slave *slave) { struct mxc_spi_slave *mxcs = to_mxc_spi_slave(slave); free(mxcs); } int spi_claim_bus(struct spi_slave *slave) { int ret; struct mxc_spi_slave *mxcs = to_mxc_spi_slave(slave); struct cspi_regs *regs = (struct cspi_regs *)mxcs->base; reg_write(®s->rxdata, 1); udelay(1); ret = spi_cfg_mxc(mxcs, slave->cs); if (ret) { printf("mxc_spi: cannot setup SPI controller\n"); return ret; } reg_write(®s->period, MXC_CSPIPERIOD_32KHZ); reg_write(®s->intr, 0); return 0; } void spi_release_bus(struct spi_slave *slave) { /* TODO: Shut the controller down */ }