/* * Ethernet driver for TI K2HK EVM. * * (C) Copyright 2012-2014 * Texas Instruments Incorporated, * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include unsigned int emac_dbg; unsigned int emac_open; static unsigned int sys_has_mdio = 1; #ifdef KEYSTONE2_EMAC_GIG_ENABLE #define emac_gigabit_enable(x) keystone2_eth_gigabit_enable(x) #else #define emac_gigabit_enable(x) /* no gigabit to enable */ #endif #define RX_BUFF_NUMS 24 #define RX_BUFF_LEN 1520 #define MAX_SIZE_STREAM_BUFFER RX_BUFF_LEN static u8 rx_buffs[RX_BUFF_NUMS * RX_BUFF_LEN] __aligned(16); struct rx_buff_desc net_rx_buffs = { .buff_ptr = rx_buffs, .num_buffs = RX_BUFF_NUMS, .buff_len = RX_BUFF_LEN, .rx_flow = 22, }; static void keystone2_eth_mdio_enable(void); static int gen_get_link_speed(int phy_addr); /* EMAC Addresses */ static volatile struct emac_regs *adap_emac = (struct emac_regs *)EMAC_EMACSL_BASE_ADDR; static volatile struct mdio_regs *adap_mdio = (struct mdio_regs *)EMAC_MDIO_BASE_ADDR; int keystone2_eth_read_mac_addr(struct eth_device *dev) { struct eth_priv_t *eth_priv; u32 maca = 0; u32 macb = 0; eth_priv = (struct eth_priv_t *)dev->priv; /* Read the e-fuse mac address */ if (eth_priv->slave_port == 1) { maca = __raw_readl(MAC_ID_BASE_ADDR); macb = __raw_readl(MAC_ID_BASE_ADDR + 4); } dev->enetaddr[0] = (macb >> 8) & 0xff; dev->enetaddr[1] = (macb >> 0) & 0xff; dev->enetaddr[2] = (maca >> 24) & 0xff; dev->enetaddr[3] = (maca >> 16) & 0xff; dev->enetaddr[4] = (maca >> 8) & 0xff; dev->enetaddr[5] = (maca >> 0) & 0xff; return 0; } static void keystone2_eth_mdio_enable(void) { u_int32_t clkdiv; clkdiv = (EMAC_MDIO_BUS_FREQ / EMAC_MDIO_CLOCK_FREQ) - 1; writel((clkdiv & 0xffff) | MDIO_CONTROL_ENABLE | MDIO_CONTROL_FAULT | MDIO_CONTROL_FAULT_ENABLE, &adap_mdio->control); while (readl(&adap_mdio->control) & MDIO_CONTROL_IDLE) ; } /* Read a PHY register via MDIO inteface. Returns 1 on success, 0 otherwise */ int keystone2_eth_phy_read(u_int8_t phy_addr, u_int8_t reg_num, u_int16_t *data) { int tmp; while (readl(&adap_mdio->useraccess0) & MDIO_USERACCESS0_GO) ; writel(MDIO_USERACCESS0_GO | MDIO_USERACCESS0_WRITE_READ | ((reg_num & 0x1f) << 21) | ((phy_addr & 0x1f) << 16), &adap_mdio->useraccess0); /* Wait for command to complete */ while ((tmp = readl(&adap_mdio->useraccess0)) & MDIO_USERACCESS0_GO) ; if (tmp & MDIO_USERACCESS0_ACK) { *data = tmp & 0xffff; return 0; } *data = -1; return -1; } /* * Write to a PHY register via MDIO inteface. * Blocks until operation is complete. */ int keystone2_eth_phy_write(u_int8_t phy_addr, u_int8_t reg_num, u_int16_t data) { while (readl(&adap_mdio->useraccess0) & MDIO_USERACCESS0_GO) ; writel(MDIO_USERACCESS0_GO | MDIO_USERACCESS0_WRITE_WRITE | ((reg_num & 0x1f) << 21) | ((phy_addr & 0x1f) << 16) | (data & 0xffff), &adap_mdio->useraccess0); /* Wait for command to complete */ while (readl(&adap_mdio->useraccess0) & MDIO_USERACCESS0_GO) ; return 0; } /* PHY functions for a generic PHY */ static int gen_get_link_speed(int phy_addr) { u_int16_t tmp; if ((!keystone2_eth_phy_read(phy_addr, MII_STATUS_REG, &tmp)) && (tmp & 0x04)) { return 0; } return -1; } static void __attribute__((unused)) keystone2_eth_gigabit_enable(struct eth_device *dev) { u_int16_t data; struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv; if (sys_has_mdio) { if (keystone2_eth_phy_read(eth_priv->phy_addr, 0, &data) || !(data & (1 << 6))) /* speed selection MSB */ return; } /* * Check if link detected is giga-bit * If Gigabit mode detected, enable gigbit in MAC */ writel(readl(&(adap_emac[eth_priv->slave_port - 1].maccontrol)) | EMAC_MACCONTROL_GIGFORCE | EMAC_MACCONTROL_GIGABIT_ENABLE, &(adap_emac[eth_priv->slave_port - 1].maccontrol)) ; } int keystone_sgmii_link_status(int port) { u32 status = 0; status = __raw_readl(SGMII_STATUS_REG(port)); return status & SGMII_REG_STATUS_LINK; } int keystone_get_link_status(struct eth_device *dev) { struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv; int sgmii_link; int link_state = 0; #if CONFIG_GET_LINK_STATUS_ATTEMPTS > 1 int j; for (j = 0; (j < CONFIG_GET_LINK_STATUS_ATTEMPTS) && (link_state == 0); j++) { #endif sgmii_link = keystone_sgmii_link_status(eth_priv->slave_port - 1); if (sgmii_link) { link_state = 1; if (eth_priv->sgmii_link_type == SGMII_LINK_MAC_PHY) if (gen_get_link_speed(eth_priv->phy_addr)) link_state = 0; } #if CONFIG_GET_LINK_STATUS_ATTEMPTS > 1 } #endif return link_state; } int keystone_sgmii_config(int port, int interface) { unsigned int i, status, mask; unsigned int mr_adv_ability, control; switch (interface) { case SGMII_LINK_MAC_MAC_AUTONEG: mr_adv_ability = (SGMII_REG_MR_ADV_ENABLE | SGMII_REG_MR_ADV_LINK | SGMII_REG_MR_ADV_FULL_DUPLEX | SGMII_REG_MR_ADV_GIG_MODE); control = (SGMII_REG_CONTROL_MASTER | SGMII_REG_CONTROL_AUTONEG); break; case SGMII_LINK_MAC_PHY: case SGMII_LINK_MAC_PHY_FORCED: mr_adv_ability = SGMII_REG_MR_ADV_ENABLE; control = SGMII_REG_CONTROL_AUTONEG; break; case SGMII_LINK_MAC_MAC_FORCED: mr_adv_ability = (SGMII_REG_MR_ADV_ENABLE | SGMII_REG_MR_ADV_LINK | SGMII_REG_MR_ADV_FULL_DUPLEX | SGMII_REG_MR_ADV_GIG_MODE); control = SGMII_REG_CONTROL_MASTER; break; case SGMII_LINK_MAC_FIBER: mr_adv_ability = 0x20; control = SGMII_REG_CONTROL_AUTONEG; break; default: mr_adv_ability = SGMII_REG_MR_ADV_ENABLE; control = SGMII_REG_CONTROL_AUTONEG; } __raw_writel(0, SGMII_CTL_REG(port)); /* * Wait for the SerDes pll to lock, * but don't trap if lock is never read */ for (i = 0; i < 1000; i++) { udelay(2000); status = __raw_readl(SGMII_STATUS_REG(port)); if ((status & SGMII_REG_STATUS_LOCK) != 0) break; } __raw_writel(mr_adv_ability, SGMII_MRADV_REG(port)); __raw_writel(control, SGMII_CTL_REG(port)); mask = SGMII_REG_STATUS_LINK; if (control & SGMII_REG_CONTROL_AUTONEG) mask |= SGMII_REG_STATUS_AUTONEG; for (i = 0; i < 1000; i++) { status = __raw_readl(SGMII_STATUS_REG(port)); if ((status & mask) == mask) break; } return 0; } int mac_sl_reset(u32 port) { u32 i, v; if (port >= DEVICE_N_GMACSL_PORTS) return GMACSL_RET_INVALID_PORT; /* Set the soft reset bit */ writel(CPGMAC_REG_RESET_VAL_RESET, DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_RESET); /* Wait for the bit to clear */ for (i = 0; i < DEVICE_EMACSL_RESET_POLL_COUNT; i++) { v = readl(DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_RESET); if ((v & CPGMAC_REG_RESET_VAL_RESET_MASK) != CPGMAC_REG_RESET_VAL_RESET) return GMACSL_RET_OK; } /* Timeout on the reset */ return GMACSL_RET_WARN_RESET_INCOMPLETE; } int mac_sl_config(u_int16_t port, struct mac_sl_cfg *cfg) { u32 v, i; int ret = GMACSL_RET_OK; if (port >= DEVICE_N_GMACSL_PORTS) return GMACSL_RET_INVALID_PORT; if (cfg->max_rx_len > CPGMAC_REG_MAXLEN_LEN) { cfg->max_rx_len = CPGMAC_REG_MAXLEN_LEN; ret = GMACSL_RET_WARN_MAXLEN_TOO_BIG; } /* Must wait if the device is undergoing reset */ for (i = 0; i < DEVICE_EMACSL_RESET_POLL_COUNT; i++) { v = readl(DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_RESET); if ((v & CPGMAC_REG_RESET_VAL_RESET_MASK) != CPGMAC_REG_RESET_VAL_RESET) break; } if (i == DEVICE_EMACSL_RESET_POLL_COUNT) return GMACSL_RET_CONFIG_FAIL_RESET_ACTIVE; writel(cfg->max_rx_len, DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_MAXLEN); writel(cfg->ctl, DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_CTL); return ret; } int ethss_config(u32 ctl, u32 max_pkt_size) { u32 i; /* Max length register */ writel(max_pkt_size, DEVICE_CPSW_BASE + CPSW_REG_MAXLEN); /* Control register */ writel(ctl, DEVICE_CPSW_BASE + CPSW_REG_CTL); /* All statistics enabled by default */ writel(CPSW_REG_VAL_STAT_ENABLE_ALL, DEVICE_CPSW_BASE + CPSW_REG_STAT_PORT_EN); /* Reset and enable the ALE */ writel(CPSW_REG_VAL_ALE_CTL_RESET_AND_ENABLE | CPSW_REG_VAL_ALE_CTL_BYPASS, DEVICE_CPSW_BASE + CPSW_REG_ALE_CONTROL); /* All ports put into forward mode */ for (i = 0; i < DEVICE_CPSW_NUM_PORTS; i++) writel(CPSW_REG_VAL_PORTCTL_FORWARD_MODE, DEVICE_CPSW_BASE + CPSW_REG_ALE_PORTCTL(i)); return 0; } int ethss_start(void) { int i; struct mac_sl_cfg cfg; cfg.max_rx_len = MAX_SIZE_STREAM_BUFFER; cfg.ctl = GMACSL_ENABLE | GMACSL_RX_ENABLE_EXT_CTL; for (i = 0; i < DEVICE_N_GMACSL_PORTS; i++) { mac_sl_reset(i); mac_sl_config(i, &cfg); } return 0; } int ethss_stop(void) { int i; for (i = 0; i < DEVICE_N_GMACSL_PORTS; i++) mac_sl_reset(i); return 0; } int32_t cpmac_drv_send(u32 *buffer, int num_bytes, int slave_port_num) { if (num_bytes < EMAC_MIN_ETHERNET_PKT_SIZE) num_bytes = EMAC_MIN_ETHERNET_PKT_SIZE; return netcp_send(buffer, num_bytes, (slave_port_num) << 16); } /* Eth device open */ static int keystone2_eth_open(struct eth_device *dev, bd_t *bis) { u_int32_t clkdiv; int link; struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv; debug("+ emac_open\n"); net_rx_buffs.rx_flow = eth_priv->rx_flow; sys_has_mdio = (eth_priv->sgmii_link_type == SGMII_LINK_MAC_PHY) ? 1 : 0; psc_enable_module(KS2_LPSC_PA); psc_enable_module(KS2_LPSC_CPGMAC); sgmii_serdes_setup_156p25mhz(); if (sys_has_mdio) keystone2_eth_mdio_enable(); keystone_sgmii_config(eth_priv->slave_port - 1, eth_priv->sgmii_link_type); udelay(10000); /* On chip switch configuration */ ethss_config(target_get_switch_ctl(), SWITCH_MAX_PKT_SIZE); /* TODO: add error handling code */ if (qm_init()) { printf("ERROR: qm_init()\n"); return -1; } if (netcp_init(&net_rx_buffs)) { qm_close(); printf("ERROR: netcp_init()\n"); return -1; } /* * Streaming switch configuration. If not present this * statement is defined to void in target.h. * If present this is usually defined to a series of register writes */ hw_config_streaming_switch(); if (sys_has_mdio) { /* Init MDIO & get link state */ clkdiv = (EMAC_MDIO_BUS_FREQ / EMAC_MDIO_CLOCK_FREQ) - 1; writel((clkdiv & 0xff) | MDIO_CONTROL_ENABLE | MDIO_CONTROL_FAULT, &adap_mdio->control) ; /* We need to wait for MDIO to start */ udelay(1000); link = keystone_get_link_status(dev); if (link == 0) { netcp_close(); qm_close(); return -1; } } emac_gigabit_enable(dev); ethss_start(); debug("- emac_open\n"); emac_open = 1; return 0; } /* Eth device close */ void keystone2_eth_close(struct eth_device *dev) { debug("+ emac_close\n"); if (!emac_open) return; ethss_stop(); netcp_close(); qm_close(); emac_open = 0; debug("- emac_close\n"); } static int tx_send_loop; /* * This function sends a single packet on the network and returns * positive number (number of bytes transmitted) or negative for error */ static int keystone2_eth_send_packet(struct eth_device *dev, void *packet, int length) { int ret_status = -1; struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv; tx_send_loop = 0; if (keystone_get_link_status(dev) == 0) return -1; emac_gigabit_enable(dev); if (cpmac_drv_send((u32 *)packet, length, eth_priv->slave_port) != 0) return ret_status; if (keystone_get_link_status(dev) == 0) return -1; emac_gigabit_enable(dev); return length; } /* * This function handles receipt of a packet from the network */ static int keystone2_eth_rcv_packet(struct eth_device *dev) { void *hd; int pkt_size; u32 *pkt; hd = netcp_recv(&pkt, &pkt_size); if (hd == NULL) return 0; NetReceive((uchar *)pkt, pkt_size); netcp_release_rxhd(hd); return pkt_size; } /* * This function initializes the EMAC hardware. */ int keystone2_emac_initialize(struct eth_priv_t *eth_priv) { struct eth_device *dev; dev = malloc(sizeof(struct eth_device)); if (dev == NULL) return -1; memset(dev, 0, sizeof(struct eth_device)); strcpy(dev->name, eth_priv->int_name); dev->priv = eth_priv; keystone2_eth_read_mac_addr(dev); dev->iobase = 0; dev->init = keystone2_eth_open; dev->halt = keystone2_eth_close; dev->send = keystone2_eth_send_packet; dev->recv = keystone2_eth_rcv_packet; eth_register(dev); return 0; } void sgmii_serdes_setup_156p25mhz(void) { unsigned int cnt; /* * configure Serializer/Deserializer (SerDes) hardware. SerDes IP * hardware vendor published only register addresses and their values * to be used for configuring SerDes. So had to use hardcoded values * below. */ clrsetbits_le32(0x0232a000, 0xffff0000, 0x00800000); clrsetbits_le32(0x0232a014, 0x0000ffff, 0x00008282); clrsetbits_le32(0x0232a060, 0x00ffffff, 0x00142438); clrsetbits_le32(0x0232a064, 0x00ffff00, 0x00c3c700); clrsetbits_le32(0x0232a078, 0x0000ff00, 0x0000c000); clrsetbits_le32(0x0232a204, 0xff0000ff, 0x38000080); clrsetbits_le32(0x0232a208, 0x000000ff, 0x00000000); clrsetbits_le32(0x0232a20c, 0xff000000, 0x02000000); clrsetbits_le32(0x0232a210, 0xff000000, 0x1b000000); clrsetbits_le32(0x0232a214, 0x0000ffff, 0x00006fb8); clrsetbits_le32(0x0232a218, 0xffff00ff, 0x758000e4); clrsetbits_le32(0x0232a2ac, 0x0000ff00, 0x00004400); clrsetbits_le32(0x0232a22c, 0x00ffff00, 0x00200800); clrsetbits_le32(0x0232a280, 0x00ff00ff, 0x00820082); clrsetbits_le32(0x0232a284, 0xffffffff, 0x1d0f0385); clrsetbits_le32(0x0232a404, 0xff0000ff, 0x38000080); clrsetbits_le32(0x0232a408, 0x000000ff, 0x00000000); clrsetbits_le32(0x0232a40c, 0xff000000, 0x02000000); clrsetbits_le32(0x0232a410, 0xff000000, 0x1b000000); clrsetbits_le32(0x0232a414, 0x0000ffff, 0x00006fb8); clrsetbits_le32(0x0232a418, 0xffff00ff, 0x758000e4); clrsetbits_le32(0x0232a4ac, 0x0000ff00, 0x00004400); clrsetbits_le32(0x0232a42c, 0x00ffff00, 0x00200800); clrsetbits_le32(0x0232a480, 0x00ff00ff, 0x00820082); clrsetbits_le32(0x0232a484, 0xffffffff, 0x1d0f0385); clrsetbits_le32(0x0232a604, 0xff0000ff, 0x38000080); clrsetbits_le32(0x0232a608, 0x000000ff, 0x00000000); clrsetbits_le32(0x0232a60c, 0xff000000, 0x02000000); clrsetbits_le32(0x0232a610, 0xff000000, 0x1b000000); clrsetbits_le32(0x0232a614, 0x0000ffff, 0x00006fb8); clrsetbits_le32(0x0232a618, 0xffff00ff, 0x758000e4); clrsetbits_le32(0x0232a6ac, 0x0000ff00, 0x00004400); clrsetbits_le32(0x0232a62c, 0x00ffff00, 0x00200800); clrsetbits_le32(0x0232a680, 0x00ff00ff, 0x00820082); clrsetbits_le32(0x0232a684, 0xffffffff, 0x1d0f0385); clrsetbits_le32(0x0232a804, 0xff0000ff, 0x38000080); clrsetbits_le32(0x0232a808, 0x000000ff, 0x00000000); clrsetbits_le32(0x0232a80c, 0xff000000, 0x02000000); clrsetbits_le32(0x0232a810, 0xff000000, 0x1b000000); clrsetbits_le32(0x0232a814, 0x0000ffff, 0x00006fb8); clrsetbits_le32(0x0232a818, 0xffff00ff, 0x758000e4); clrsetbits_le32(0x0232a8ac, 0x0000ff00, 0x00004400); clrsetbits_le32(0x0232a82c, 0x00ffff00, 0x00200800); clrsetbits_le32(0x0232a880, 0x00ff00ff, 0x00820082); clrsetbits_le32(0x0232a884, 0xffffffff, 0x1d0f0385); clrsetbits_le32(0x0232aa00, 0x0000ff00, 0x00000800); clrsetbits_le32(0x0232aa08, 0xffff0000, 0x38a20000); clrsetbits_le32(0x0232aa30, 0x00ffff00, 0x008a8a00); clrsetbits_le32(0x0232aa84, 0x0000ff00, 0x00000600); clrsetbits_le32(0x0232aa94, 0xff000000, 0x10000000); clrsetbits_le32(0x0232aaa0, 0xff000000, 0x81000000); clrsetbits_le32(0x0232aabc, 0xff000000, 0xff000000); clrsetbits_le32(0x0232aac0, 0x000000ff, 0x0000008b); clrsetbits_le32(0x0232ab08, 0xffff0000, 0x583f0000); clrsetbits_le32(0x0232ab0c, 0x000000ff, 0x0000004e); clrsetbits_le32(0x0232a000, 0x000000ff, 0x00000003); clrsetbits_le32(0x0232aa00, 0x000000ff, 0x0000005f); clrsetbits_le32(0x0232aa48, 0x00ffff00, 0x00fd8c00); clrsetbits_le32(0x0232aa54, 0x00ffffff, 0x002fec72); clrsetbits_le32(0x0232aa58, 0xffffff00, 0x00f92100); clrsetbits_le32(0x0232aa5c, 0xffffffff, 0x00040060); clrsetbits_le32(0x0232aa60, 0xffffffff, 0x00008000); clrsetbits_le32(0x0232aa64, 0xffffffff, 0x0c581220); clrsetbits_le32(0x0232aa68, 0xffffffff, 0xe13b0602); clrsetbits_le32(0x0232aa6c, 0xffffffff, 0xb8074cc1); clrsetbits_le32(0x0232aa70, 0xffffffff, 0x3f02e989); clrsetbits_le32(0x0232aa74, 0x000000ff, 0x00000001); clrsetbits_le32(0x0232ab20, 0x00ff0000, 0x00370000); clrsetbits_le32(0x0232ab1c, 0xff000000, 0x37000000); clrsetbits_le32(0x0232ab20, 0x000000ff, 0x0000005d); /*Bring SerDes out of Reset if SerDes is Shutdown & is in Reset Mode*/ clrbits_le32(0x0232a010, 1 << 28); /* Enable TX and RX via the LANExCTL_STS 0x0000 + x*4 */ clrbits_le32(0x0232a228, 1 << 29); writel(0xF800F8C0, 0x0232bfe0); clrbits_le32(0x0232a428, 1 << 29); writel(0xF800F8C0, 0x0232bfe4); clrbits_le32(0x0232a628, 1 << 29); writel(0xF800F8C0, 0x0232bfe8); clrbits_le32(0x0232a828, 1 << 29); writel(0xF800F8C0, 0x0232bfec); /*Enable pll via the pll_ctrl 0x0014*/ writel(0xe0000000, 0x0232bff4) ; /*Waiting for SGMII Serdes PLL lock.*/ for (cnt = 10000; cnt > 0 && ((readl(0x02090114) & 0x10) == 0); cnt--) ; for (cnt = 10000; cnt > 0 && ((readl(0x02090214) & 0x10) == 0); cnt--) ; for (cnt = 10000; cnt > 0 && ((readl(0x02090414) & 0x10) == 0); cnt--) ; for (cnt = 10000; cnt > 0 && ((readl(0x02090514) & 0x10) == 0); cnt--) ; udelay(45000); } void sgmii_serdes_shutdown(void) { /* * shutdown SerDes hardware. SerDes hardware vendor published only * register addresses and their values. So had to use hardcoded * values below. */ clrbits_le32(0x0232bfe0, 3 << 29 | 3 << 13); setbits_le32(0x02320228, 1 << 29); clrbits_le32(0x0232bfe4, 3 << 29 | 3 << 13); setbits_le32(0x02320428, 1 << 29); clrbits_le32(0x0232bfe8, 3 << 29 | 3 << 13); setbits_le32(0x02320628, 1 << 29); clrbits_le32(0x0232bfec, 3 << 29 | 3 << 13); setbits_le32(0x02320828, 1 << 29); clrbits_le32(0x02320034, 3 << 29); setbits_le32(0x02320010, 1 << 28); }