/* * SPI Flash Core * * Copyright (C) 2015 Jagan Teki * Copyright (C) 2013 Jagannadha Sutradharudu Teki, Xilinx Inc. * Copyright (C) 2010 Reinhard Meyer, EMK Elektronik * Copyright (C) 2008 Atmel Corporation * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include "sf_internal.h" DECLARE_GLOBAL_DATA_PTR; static void spi_flash_addr(u32 addr, u8 *cmd) { /* cmd[0] is actual command */ cmd[1] = addr >> 16; cmd[2] = addr >> 8; cmd[3] = addr >> 0; } static int read_sr(struct spi_flash *flash, u8 *rs) { int ret; u8 cmd; cmd = CMD_READ_STATUS; ret = spi_flash_read_common(flash, &cmd, 1, rs, 1); if (ret < 0) { debug("SF: fail to read status register\n"); return ret; } return 0; } static int read_fsr(struct spi_flash *flash, u8 *fsr) { int ret; const u8 cmd = CMD_FLAG_STATUS; ret = spi_flash_read_common(flash, &cmd, 1, fsr, 1); if (ret < 0) { debug("SF: fail to read flag status register\n"); return ret; } return 0; } static int write_sr(struct spi_flash *flash, u8 ws) { u8 cmd; int ret; cmd = CMD_WRITE_STATUS; ret = spi_flash_write_common(flash, &cmd, 1, &ws, 1); if (ret < 0) { debug("SF: fail to write status register\n"); return ret; } return 0; } #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) static int read_cr(struct spi_flash *flash, u8 *rc) { int ret; u8 cmd; cmd = CMD_READ_CONFIG; ret = spi_flash_read_common(flash, &cmd, 1, rc, 1); if (ret < 0) { debug("SF: fail to read config register\n"); return ret; } return 0; } static int write_cr(struct spi_flash *flash, u8 wc) { u8 data[2]; u8 cmd; int ret; ret = read_sr(flash, &data[0]); if (ret < 0) return ret; cmd = CMD_WRITE_STATUS; data[1] = wc; ret = spi_flash_write_common(flash, &cmd, 1, &data, 2); if (ret) { debug("SF: fail to write config register\n"); return ret; } return 0; } #endif #ifdef CONFIG_SPI_FLASH_STMICRO static int read_evcr(struct spi_flash *flash, u8 *evcr) { int ret; const u8 cmd = CMD_READ_EVCR; ret = spi_flash_read_common(flash, &cmd, 1, evcr, 1); if (ret < 0) { debug("SF: error reading EVCR\n"); return ret; } return 0; } static int write_evcr(struct spi_flash *flash, u8 evcr) { u8 cmd; int ret; cmd = CMD_WRITE_EVCR; ret = spi_flash_write_common(flash, &cmd, 1, &evcr, 1); if (ret < 0) { debug("SF: error while writing EVCR register\n"); return ret; } return 0; } #endif #ifdef CONFIG_SPI_FLASH_BAR static int spi_flash_write_bar(struct spi_flash *flash, u32 offset) { u8 cmd, bank_sel; int ret; bank_sel = offset / (SPI_FLASH_16MB_BOUN << flash->shift); if (bank_sel == flash->bank_curr) goto bar_end; cmd = flash->bank_write_cmd; ret = spi_flash_write_common(flash, &cmd, 1, &bank_sel, 1); if (ret < 0) { debug("SF: fail to write bank register\n"); return ret; } bar_end: flash->bank_curr = bank_sel; return flash->bank_curr; } static int spi_flash_read_bar(struct spi_flash *flash, u8 idcode0) { u8 curr_bank = 0; int ret; if (flash->size <= SPI_FLASH_16MB_BOUN) goto bar_end; switch (idcode0) { case SPI_FLASH_CFI_MFR_SPANSION: flash->bank_read_cmd = CMD_BANKADDR_BRRD; flash->bank_write_cmd = CMD_BANKADDR_BRWR; break; default: flash->bank_read_cmd = CMD_EXTNADDR_RDEAR; flash->bank_write_cmd = CMD_EXTNADDR_WREAR; } ret = spi_flash_read_common(flash, &flash->bank_read_cmd, 1, &curr_bank, 1); if (ret) { debug("SF: fail to read bank addr register\n"); return ret; } bar_end: flash->bank_curr = curr_bank; return 0; } #endif #ifdef CONFIG_SF_DUAL_FLASH static void spi_flash_dual(struct spi_flash *flash, u32 *addr) { struct spi_slave *spi = flash->spi; switch (flash->dual_flash) { case SF_DUAL_STACKED_FLASH: if (*addr >= (flash->size >> 1)) { *addr -= flash->size >> 1; spi->flags |= SPI_XFER_U_PAGE; } else { spi->flags &= ~SPI_XFER_U_PAGE; } break; case SF_DUAL_PARALLEL_FLASH: *addr >>= flash->shift; break; default: debug("SF: Unsupported dual_flash=%d\n", flash->dual_flash); break; } } #endif static int spi_flash_sr_ready(struct spi_flash *flash) { u8 sr; int ret; ret = read_sr(flash, &sr); if (ret < 0) return ret; return !(sr & STATUS_WIP); } static int spi_flash_fsr_ready(struct spi_flash *flash) { u8 fsr; int ret; ret = read_fsr(flash, &fsr); if (ret < 0) return ret; return fsr & STATUS_PEC; } static int spi_flash_ready(struct spi_flash *flash) { int sr, fsr; sr = spi_flash_sr_ready(flash); if (sr < 0) return sr; fsr = 1; if (flash->flags & SNOR_F_USE_FSR) { fsr = spi_flash_fsr_ready(flash); if (fsr < 0) return fsr; } return sr && fsr; } static int spi_flash_cmd_wait_ready(struct spi_flash *flash, unsigned long timeout) { unsigned long timebase; int ret; timebase = get_timer(0); while (get_timer(timebase) < timeout) { ret = spi_flash_ready(flash); if (ret < 0) return ret; if (ret) return 0; } printf("SF: Timeout!\n"); return -ETIMEDOUT; } int spi_flash_write_common(struct spi_flash *flash, const u8 *cmd, size_t cmd_len, const void *buf, size_t buf_len) { struct spi_slave *spi = flash->spi; unsigned long timeout = SPI_FLASH_PROG_TIMEOUT; int ret; if (buf == NULL) timeout = SPI_FLASH_PAGE_ERASE_TIMEOUT; ret = spi_claim_bus(spi); if (ret) { debug("SF: unable to claim SPI bus\n"); return ret; } ret = spi_flash_cmd_write_enable(flash); if (ret < 0) { debug("SF: enabling write failed\n"); return ret; } ret = spi_flash_cmd_write(spi, cmd, cmd_len, buf, buf_len); if (ret < 0) { debug("SF: write cmd failed\n"); return ret; } ret = spi_flash_cmd_wait_ready(flash, timeout); if (ret < 0) { debug("SF: write %s timed out\n", timeout == SPI_FLASH_PROG_TIMEOUT ? "program" : "page erase"); return ret; } spi_release_bus(spi); return ret; } int spi_flash_cmd_erase_ops(struct spi_flash *flash, u32 offset, size_t len) { u32 erase_size, erase_addr; u8 cmd[SPI_FLASH_CMD_LEN]; int ret = -1; erase_size = flash->erase_size; if (offset % erase_size || len % erase_size) { debug("SF: Erase offset/length not multiple of erase size\n"); return -1; } if (flash->flash_is_locked) { if (flash->flash_is_locked(flash, offset, len) > 0) { printf("offset 0x%x is protected and cannot be erased\n", offset); return -EINVAL; } } cmd[0] = flash->erase_cmd; while (len) { erase_addr = offset; #ifdef CONFIG_SF_DUAL_FLASH if (flash->dual_flash > SF_SINGLE_FLASH) spi_flash_dual(flash, &erase_addr); #endif #ifdef CONFIG_SPI_FLASH_BAR ret = spi_flash_write_bar(flash, erase_addr); if (ret < 0) return ret; #endif spi_flash_addr(erase_addr, cmd); debug("SF: erase %2x %2x %2x %2x (%x)\n", cmd[0], cmd[1], cmd[2], cmd[3], erase_addr); ret = spi_flash_write_common(flash, cmd, sizeof(cmd), NULL, 0); if (ret < 0) { debug("SF: erase failed\n"); break; } offset += erase_size; len -= erase_size; } return ret; } int spi_flash_cmd_write_ops(struct spi_flash *flash, u32 offset, size_t len, const void *buf) { struct spi_slave *spi = flash->spi; unsigned long byte_addr, page_size; u32 write_addr; size_t chunk_len, actual; u8 cmd[SPI_FLASH_CMD_LEN]; int ret = -1; page_size = flash->page_size; if (flash->flash_is_locked) { if (flash->flash_is_locked(flash, offset, len) > 0) { printf("offset 0x%x is protected and cannot be written\n", offset); return -EINVAL; } } cmd[0] = flash->write_cmd; for (actual = 0; actual < len; actual += chunk_len) { write_addr = offset; #ifdef CONFIG_SF_DUAL_FLASH if (flash->dual_flash > SF_SINGLE_FLASH) spi_flash_dual(flash, &write_addr); #endif #ifdef CONFIG_SPI_FLASH_BAR ret = spi_flash_write_bar(flash, write_addr); if (ret < 0) return ret; #endif byte_addr = offset % page_size; chunk_len = min(len - actual, (size_t)(page_size - byte_addr)); if (spi->max_write_size) chunk_len = min(chunk_len, (size_t)spi->max_write_size); spi_flash_addr(write_addr, cmd); debug("SF: 0x%p => cmd = { 0x%02x 0x%02x%02x%02x } chunk_len = %zu\n", buf + actual, cmd[0], cmd[1], cmd[2], cmd[3], chunk_len); ret = spi_flash_write_common(flash, cmd, sizeof(cmd), buf + actual, chunk_len); if (ret < 0) { debug("SF: write failed\n"); break; } offset += chunk_len; } return ret; } int spi_flash_read_common(struct spi_flash *flash, const u8 *cmd, size_t cmd_len, void *data, size_t data_len) { struct spi_slave *spi = flash->spi; int ret; ret = spi_claim_bus(spi); if (ret) { debug("SF: unable to claim SPI bus\n"); return ret; } ret = spi_flash_cmd_read(spi, cmd, cmd_len, data, data_len); if (ret < 0) { debug("SF: read cmd failed\n"); return ret; } spi_release_bus(spi); return ret; } /* * TODO: remove the weak after all the other spi_flash_copy_mmap * implementations removed from drivers */ void __weak spi_flash_copy_mmap(void *data, void *offset, size_t len) { #ifdef CONFIG_DMA if (!dma_memcpy(data, offset, len)) return; #endif memcpy(data, offset, len); } int spi_flash_cmd_read_ops(struct spi_flash *flash, u32 offset, size_t len, void *data) { struct spi_slave *spi = flash->spi; u8 *cmd, cmdsz; u32 remain_len, read_len, read_addr; int bank_sel = 0; int ret = -1; /* Handle memory-mapped SPI */ if (flash->memory_map) { ret = spi_claim_bus(spi); if (ret) { debug("SF: unable to claim SPI bus\n"); return ret; } spi_xfer(spi, 0, NULL, NULL, SPI_XFER_MMAP); spi_flash_copy_mmap(data, flash->memory_map + offset, len); spi_xfer(spi, 0, NULL, NULL, SPI_XFER_MMAP_END); spi_release_bus(spi); return 0; } cmdsz = SPI_FLASH_CMD_LEN + flash->dummy_byte; cmd = calloc(1, cmdsz); if (!cmd) { debug("SF: Failed to allocate cmd\n"); return -ENOMEM; } cmd[0] = flash->read_cmd; while (len) { read_addr = offset; #ifdef CONFIG_SF_DUAL_FLASH if (flash->dual_flash > SF_SINGLE_FLASH) spi_flash_dual(flash, &read_addr); #endif #ifdef CONFIG_SPI_FLASH_BAR ret = spi_flash_write_bar(flash, read_addr); if (ret < 0) return ret; bank_sel = flash->bank_curr; #endif remain_len = ((SPI_FLASH_16MB_BOUN << flash->shift) * (bank_sel + 1)) - offset; if (len < remain_len) read_len = len; else read_len = remain_len; spi_flash_addr(read_addr, cmd); ret = spi_flash_read_common(flash, cmd, cmdsz, data, read_len); if (ret < 0) { debug("SF: read failed\n"); break; } offset += read_len; len -= read_len; data += read_len; } free(cmd); return ret; } #ifdef CONFIG_SPI_FLASH_SST static int sst_byte_write(struct spi_flash *flash, u32 offset, const void *buf) { struct spi_slave *spi = flash->spi; int ret; u8 cmd[4] = { CMD_SST_BP, offset >> 16, offset >> 8, offset, }; debug("BP[%02x]: 0x%p => cmd = { 0x%02x 0x%06x }\n", spi_w8r8(spi, CMD_READ_STATUS), buf, cmd[0], offset); ret = spi_flash_cmd_write_enable(flash); if (ret) return ret; ret = spi_flash_cmd_write(spi, cmd, sizeof(cmd), buf, 1); if (ret) return ret; return spi_flash_cmd_wait_ready(flash, SPI_FLASH_PROG_TIMEOUT); } int sst_write_wp(struct spi_flash *flash, u32 offset, size_t len, const void *buf) { struct spi_slave *spi = flash->spi; size_t actual, cmd_len; int ret; u8 cmd[4]; ret = spi_claim_bus(spi); if (ret) { debug("SF: Unable to claim SPI bus\n"); return ret; } /* If the data is not word aligned, write out leading single byte */ actual = offset % 2; if (actual) { ret = sst_byte_write(flash, offset, buf); if (ret) goto done; } offset += actual; ret = spi_flash_cmd_write_enable(flash); if (ret) goto done; cmd_len = 4; cmd[0] = CMD_SST_AAI_WP; cmd[1] = offset >> 16; cmd[2] = offset >> 8; cmd[3] = offset; for (; actual < len - 1; actual += 2) { debug("WP[%02x]: 0x%p => cmd = { 0x%02x 0x%06x }\n", spi_w8r8(spi, CMD_READ_STATUS), buf + actual, cmd[0], offset); ret = spi_flash_cmd_write(spi, cmd, cmd_len, buf + actual, 2); if (ret) { debug("SF: sst word program failed\n"); break; } ret = spi_flash_cmd_wait_ready(flash, SPI_FLASH_PROG_TIMEOUT); if (ret) break; cmd_len = 1; offset += 2; } if (!ret) ret = spi_flash_cmd_write_disable(flash); /* If there is a single trailing byte, write it out */ if (!ret && actual != len) ret = sst_byte_write(flash, offset, buf + actual); done: debug("SF: sst: program %s %zu bytes @ 0x%zx\n", ret ? "failure" : "success", len, offset - actual); spi_release_bus(spi); return ret; } int sst_write_bp(struct spi_flash *flash, u32 offset, size_t len, const void *buf) { struct spi_slave *spi = flash->spi; size_t actual; int ret; ret = spi_claim_bus(spi); if (ret) { debug("SF: Unable to claim SPI bus\n"); return ret; } for (actual = 0; actual < len; actual++) { ret = sst_byte_write(flash, offset, buf + actual); if (ret) { debug("SF: sst byte program failed\n"); break; } offset++; } if (!ret) ret = spi_flash_cmd_write_disable(flash); debug("SF: sst: program %s %zu bytes @ 0x%zx\n", ret ? "failure" : "success", len, offset - actual); spi_release_bus(spi); return ret; } #endif #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST) static void stm_get_locked_range(struct spi_flash *flash, u8 sr, loff_t *ofs, u64 *len) { u8 mask = SR_BP2 | SR_BP1 | SR_BP0; int shift = ffs(mask) - 1; int pow; if (!(sr & mask)) { /* No protection */ *ofs = 0; *len = 0; } else { pow = ((sr & mask) ^ mask) >> shift; *len = flash->size >> pow; *ofs = flash->size - *len; } } /* * Return 1 if the entire region is locked, 0 otherwise */ static int stm_is_locked_sr(struct spi_flash *flash, loff_t ofs, u64 len, u8 sr) { loff_t lock_offs; u64 lock_len; stm_get_locked_range(flash, sr, &lock_offs, &lock_len); return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs); } /* * Check if a region of the flash is (completely) locked. See stm_lock() for * more info. * * Returns 1 if entire region is locked, 0 if any portion is unlocked, and * negative on errors. */ int stm_is_locked(struct spi_flash *flash, u32 ofs, size_t len) { int status; u8 sr; status = read_sr(flash, &sr); if (status < 0) return status; return stm_is_locked_sr(flash, ofs, len, sr); } /* * Lock a region of the flash. Compatible with ST Micro and similar flash. * Supports only the block protection bits BP{0,1,2} in the status register * (SR). Does not support these features found in newer SR bitfields: * - TB: top/bottom protect - only handle TB=0 (top protect) * - SEC: sector/block protect - only handle SEC=0 (block protect) * - CMP: complement protect - only support CMP=0 (range is not complemented) * * Sample table portion for 8MB flash (Winbond w25q64fw): * * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion * -------------------------------------------------------------------------- * X | X | 0 | 0 | 0 | NONE | NONE * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2 * X | X | 1 | 1 | 1 | 8 MB | ALL * * Returns negative on errors, 0 on success. */ int stm_lock(struct spi_flash *flash, u32 ofs, size_t len) { u8 status_old, status_new; u8 mask = SR_BP2 | SR_BP1 | SR_BP0; u8 shift = ffs(mask) - 1, pow, val; int ret; ret = read_sr(flash, &status_old); if (ret < 0) return ret; /* SPI NOR always locks to the end */ if (ofs + len != flash->size) { /* Does combined region extend to end? */ if (!stm_is_locked_sr(flash, ofs + len, flash->size - ofs - len, status_old)) return -EINVAL; len = flash->size - ofs; } /* * Need smallest pow such that: * * 1 / (2^pow) <= (len / size) * * so (assuming power-of-2 size) we do: * * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len)) */ pow = ilog2(flash->size) - ilog2(len); val = mask - (pow << shift); if (val & ~mask) return -EINVAL; /* Don't "lock" with no region! */ if (!(val & mask)) return -EINVAL; status_new = (status_old & ~mask) | val; /* Only modify protection if it will not unlock other areas */ if ((status_new & mask) <= (status_old & mask)) return -EINVAL; write_sr(flash, status_new); return 0; } /* * Unlock a region of the flash. See stm_lock() for more info * * Returns negative on errors, 0 on success. */ int stm_unlock(struct spi_flash *flash, u32 ofs, size_t len) { uint8_t status_old, status_new; u8 mask = SR_BP2 | SR_BP1 | SR_BP0; u8 shift = ffs(mask) - 1, pow, val; int ret; ret = read_sr(flash, &status_old); if (ret < 0) return ret; /* Cannot unlock; would unlock larger region than requested */ if (stm_is_locked_sr(flash, ofs - flash->erase_size, flash->erase_size, status_old)) return -EINVAL; /* * Need largest pow such that: * * 1 / (2^pow) >= (len / size) * * so (assuming power-of-2 size) we do: * * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len)) */ pow = ilog2(flash->size) - order_base_2(flash->size - (ofs + len)); if (ofs + len == flash->size) { val = 0; /* fully unlocked */ } else { val = mask - (pow << shift); /* Some power-of-two sizes are not supported */ if (val & ~mask) return -EINVAL; } status_new = (status_old & ~mask) | val; /* Only modify protection if it will not lock other areas */ if ((status_new & mask) >= (status_old & mask)) return -EINVAL; write_sr(flash, status_new); return 0; } #endif #ifdef CONFIG_SPI_FLASH_MACRONIX static int macronix_quad_enable(struct spi_flash *flash) { u8 qeb_status; int ret; ret = read_sr(flash, &qeb_status); if (ret < 0) return ret; if (qeb_status & STATUS_QEB_MXIC) return 0; ret = write_sr(flash, qeb_status | STATUS_QEB_MXIC); if (ret < 0) return ret; /* read SR and check it */ ret = read_sr(flash, &qeb_status); if (!(ret >= 0 && (qeb_status & STATUS_QEB_MXIC))) { printf("SF: Macronix SR Quad bit not clear\n"); return -EINVAL; } return ret; } #endif #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) static int spansion_quad_enable(struct spi_flash *flash) { u8 qeb_status; int ret; ret = read_cr(flash, &qeb_status); if (ret < 0) return ret; if (qeb_status & STATUS_QEB_WINSPAN) return 0; ret = write_cr(flash, qeb_status | STATUS_QEB_WINSPAN); if (ret < 0) return ret; /* read CR and check it */ ret = read_cr(flash, &qeb_status); if (!(ret >= 0 && (qeb_status & STATUS_QEB_WINSPAN))) { printf("SF: Spansion CR Quad bit not clear\n"); return -EINVAL; } return ret; } #endif #ifdef CONFIG_SPI_FLASH_STMICRO static int micron_quad_enable(struct spi_flash *flash) { u8 qeb_status; int ret; ret = read_evcr(flash, &qeb_status); if (ret < 0) return ret; if (!(qeb_status & STATUS_QEB_MICRON)) return 0; ret = write_evcr(flash, qeb_status & ~STATUS_QEB_MICRON); if (ret < 0) return ret; /* read EVCR and check it */ ret = read_evcr(flash, &qeb_status); if (!(ret >= 0 && !(qeb_status & STATUS_QEB_MICRON))) { printf("SF: Micron EVCR Quad bit not clear\n"); return -EINVAL; } return ret; } #endif static int set_quad_mode(struct spi_flash *flash, u8 idcode0) { switch (idcode0) { #ifdef CONFIG_SPI_FLASH_MACRONIX case SPI_FLASH_CFI_MFR_MACRONIX: return macronix_quad_enable(flash); #endif #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) case SPI_FLASH_CFI_MFR_SPANSION: case SPI_FLASH_CFI_MFR_WINBOND: return spansion_quad_enable(flash); #endif #ifdef CONFIG_SPI_FLASH_STMICRO case SPI_FLASH_CFI_MFR_STMICRO: return micron_quad_enable(flash); #endif default: printf("SF: Need set QEB func for %02x flash\n", idcode0); return -1; } } #if CONFIG_IS_ENABLED(OF_CONTROL) int spi_flash_decode_fdt(const void *blob, struct spi_flash *flash) { #ifdef CONFIG_DM_SPI_FLASH fdt_addr_t addr; fdt_size_t size; int node = flash->dev->of_offset; addr = fdtdec_get_addr_size(blob, node, "memory-map", &size); if (addr == FDT_ADDR_T_NONE) { debug("%s: Cannot decode address\n", __func__); return 0; } if (flash->size != size) { debug("%s: Memory map must cover entire device\n", __func__); return -1; } flash->memory_map = map_sysmem(addr, size); #endif return 0; } #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */ #ifdef CONFIG_SPI_FLASH_SPANSION static int spansion_s25fss_disable_4KB_erase(struct spi_slave *spi) { u8 cmd[4]; u32 offset = 0x800004; /* CR3V register offset */ u8 cr3v; int ret; cmd[0] = CMD_SPANSION_RDAR; cmd[1] = offset >> 16; cmd[2] = offset >> 8; cmd[3] = offset >> 0; ret = spi_flash_cmd_read(spi, cmd, 4, &cr3v, 1); if (ret) return -EIO; /* CR3V bit3: 4-KB Erase */ if (cr3v & 0x8) return 0; cmd[0] = CMD_SPANSION_WRAR; cr3v |= 0x8; ret = spi_flash_cmd_write(spi, cmd, 4, &cr3v, 1); if (ret) return -EIO; cmd[0] = CMD_SPANSION_RDAR; ret = spi_flash_cmd_read(spi, cmd, 4, &cr3v, 1); if (ret) return -EIO; if (!(cr3v & 0x8)) return -EFAULT; return 0; } #endif int spi_flash_scan(struct spi_flash *flash) { struct spi_slave *spi = flash->spi; const struct spi_flash_params *params; u16 jedec, ext_jedec; u8 cmd, idcode[5]; int ret; static u8 spi_read_cmds_array[] = { CMD_READ_ARRAY_SLOW, CMD_READ_ARRAY_FAST, CMD_READ_DUAL_OUTPUT_FAST, CMD_READ_QUAD_OUTPUT_FAST, CMD_READ_DUAL_IO_FAST, CMD_READ_QUAD_IO_FAST }; /* Read the ID codes */ ret = spi_flash_cmd(spi, CMD_READ_ID, idcode, sizeof(idcode)); if (ret) { printf("SF: Failed to get idcodes\n"); return ret; } #ifdef DEBUG printf("SF: Got idcodes\n"); print_buffer(0, idcode, 1, sizeof(idcode), 0); #endif jedec = idcode[1] << 8 | idcode[2]; ext_jedec = idcode[3] << 8 | idcode[4]; /* Validate params from spi_flash_params table */ params = spi_flash_params_table; for (; params->name != NULL; params++) { if ((params->jedec >> 16) == idcode[0]) { if ((params->jedec & 0xFFFF) == jedec) { if (params->ext_jedec == 0) break; else if (params->ext_jedec == ext_jedec) break; } } } if (!params->name) { printf("SF: Unsupported flash IDs: "); printf("manuf %02x, jedec %04x, ext_jedec %04x\n", idcode[0], jedec, ext_jedec); return -EPROTONOSUPPORT; } #ifdef CONFIG_SPI_FLASH_SPANSION /* * The S25FS-S family physical sectors may be configured as a * hybrid combination of eight 4-kB parameter sectors * at the top or bottom of the address space with all * but one of the remaining sectors being uniform size. * The Parameter Sector Erase commands (20h or 21h) must * be used to erase the 4-kB parameter sectors individually. * The Sector (uniform sector) Erase commands (D8h or DCh) * must be used to erase any of the remaining * sectors, including the portion of highest or lowest address * sector that is not overlaid by the parameter sectors. * The uniform sector erase command has no effect on parameter sectors. */ if ((jedec == 0x0219 || (jedec == 0x0220)) && (ext_jedec & 0xff00) == 0x4d00) { int ret; u8 id[6]; /* Read the ID codes again, 6 bytes */ ret = spi_flash_cmd(flash->spi, CMD_READ_ID, id, sizeof(id)); if (ret) return -EIO; ret = memcmp(id, idcode, 5); if (ret) return -EIO; /* 0x81: S25FS-S family 0x80: S25FL-S family */ if (id[5] == 0x81) { ret = spansion_s25fss_disable_4KB_erase(spi); if (ret) return ret; } } #endif /* Flash powers up read-only, so clear BP# bits */ if (idcode[0] == SPI_FLASH_CFI_MFR_ATMEL || idcode[0] == SPI_FLASH_CFI_MFR_MACRONIX || idcode[0] == SPI_FLASH_CFI_MFR_SST) write_sr(flash, 0); /* Assign spi data */ flash->name = params->name; flash->memory_map = spi->memory_map; flash->dual_flash = spi->option; /* Assign spi flash flags */ if (params->flags & SST_WR) flash->flags |= SNOR_F_SST_WR; /* Assign spi_flash ops */ #ifndef CONFIG_DM_SPI_FLASH flash->write = spi_flash_cmd_write_ops; #if defined(CONFIG_SPI_FLASH_SST) if (flash->flags & SNOR_F_SST_WR) { if (spi->mode & SPI_TX_BYTE) flash->write = sst_write_bp; else flash->write = sst_write_wp; } #endif flash->erase = spi_flash_cmd_erase_ops; flash->read = spi_flash_cmd_read_ops; #endif /* lock hooks are flash specific - assign them based on idcode0 */ switch (idcode[0]) { #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST) case SPI_FLASH_CFI_MFR_STMICRO: case SPI_FLASH_CFI_MFR_SST: flash->flash_lock = stm_lock; flash->flash_unlock = stm_unlock; flash->flash_is_locked = stm_is_locked; #endif break; default: debug("SF: Lock ops not supported for %02x flash\n", idcode[0]); } /* Compute the flash size */ flash->shift = (flash->dual_flash & SF_DUAL_PARALLEL_FLASH) ? 1 : 0; /* * The Spansion S25FL032P and S25FL064P have 256b pages, yet use the * 0x4d00 Extended JEDEC code. The rest of the Spansion flashes with * the 0x4d00 Extended JEDEC code have 512b pages. All of the others * have 256b pages. */ if (ext_jedec == 0x4d00) { if ((jedec == 0x0215) || (jedec == 0x216) || (jedec == 0x220)) flash->page_size = 256; else flash->page_size = 512; } else { flash->page_size = 256; } flash->page_size <<= flash->shift; flash->sector_size = params->sector_size << flash->shift; flash->size = flash->sector_size * params->nr_sectors << flash->shift; #ifdef CONFIG_SF_DUAL_FLASH if (flash->dual_flash & SF_DUAL_STACKED_FLASH) flash->size <<= 1; #endif /* Compute erase sector and command */ if (params->flags & SECT_4K) { flash->erase_cmd = CMD_ERASE_4K; flash->erase_size = 4096 << flash->shift; } else if (params->flags & SECT_32K) { flash->erase_cmd = CMD_ERASE_32K; flash->erase_size = 32768 << flash->shift; } else { flash->erase_cmd = CMD_ERASE_64K; flash->erase_size = flash->sector_size; } /* Now erase size becomes valid sector size */ flash->sector_size = flash->erase_size; /* Look for the fastest read cmd */ cmd = fls(params->e_rd_cmd & spi->mode_rx); if (cmd) { cmd = spi_read_cmds_array[cmd - 1]; flash->read_cmd = cmd; } else { /* Go for default supported read cmd */ flash->read_cmd = CMD_READ_ARRAY_FAST; } /* Not require to look for fastest only two write cmds yet */ if (params->flags & WR_QPP && spi->mode & SPI_TX_QUAD) flash->write_cmd = CMD_QUAD_PAGE_PROGRAM; else /* Go for default supported write cmd */ flash->write_cmd = CMD_PAGE_PROGRAM; /* Set the quad enable bit - only for quad commands */ if ((flash->read_cmd == CMD_READ_QUAD_OUTPUT_FAST) || (flash->read_cmd == CMD_READ_QUAD_IO_FAST) || (flash->write_cmd == CMD_QUAD_PAGE_PROGRAM)) { ret = set_quad_mode(flash, idcode[0]); if (ret) { debug("SF: Fail to set QEB for %02x\n", idcode[0]); return -EINVAL; } } /* Read dummy_byte: dummy byte is determined based on the * dummy cycles of a particular command. * Fast commands - dummy_byte = dummy_cycles/8 * I/O commands- dummy_byte = (dummy_cycles * no.of lines)/8 * For I/O commands except cmd[0] everything goes on no.of lines * based on particular command but incase of fast commands except * data all go on single line irrespective of command. */ switch (flash->read_cmd) { case CMD_READ_QUAD_IO_FAST: flash->dummy_byte = 2; break; case CMD_READ_ARRAY_SLOW: flash->dummy_byte = 0; break; default: flash->dummy_byte = 1; } #ifdef CONFIG_SPI_FLASH_STMICRO if (params->flags & E_FSR) flash->flags |= SNOR_F_USE_FSR; #endif /* Configure the BAR - discover bank cmds and read current bank */ #ifdef CONFIG_SPI_FLASH_BAR ret = spi_flash_read_bar(flash, idcode[0]); if (ret < 0) return ret; #endif #if CONFIG_IS_ENABLED(OF_CONTROL) ret = spi_flash_decode_fdt(gd->fdt_blob, flash); if (ret) { debug("SF: FDT decode error\n"); return -EINVAL; } #endif #ifndef CONFIG_SPL_BUILD printf("SF: Detected %s with page size ", flash->name); print_size(flash->page_size, ", erase size "); print_size(flash->erase_size, ", total "); print_size(flash->size, ""); if (flash->memory_map) printf(", mapped at %p", flash->memory_map); puts("\n"); #endif #ifndef CONFIG_SPI_FLASH_BAR if (((flash->dual_flash == SF_SINGLE_FLASH) && (flash->size > SPI_FLASH_16MB_BOUN)) || ((flash->dual_flash > SF_SINGLE_FLASH) && (flash->size > SPI_FLASH_16MB_BOUN << 1))) { puts("SF: Warning - Only lower 16MiB accessible,"); puts(" Full access #define CONFIG_SPI_FLASH_BAR\n"); } #endif return ret; }