/* * Copyright 2009-2014 Freescale Semiconductor, Inc. and others * * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver. * Ported to U-Boot by Stefan Agner * Based on RFC driver posted on Kernel Mailing list by Bill Pringlemeir * Jason ported to M54418TWR and MVFA5. * Authors: Stefan Agner * Bill Pringlemeir * Shaohui Xie * Jason Jin * * Based on original driver mpc5121_nfc.c. * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * Limitations: * - Untested on MPC5125 and M54418. * - DMA not used. * - 2K pages or less. * - Only 2K page w. 64+OOB and hardware ECC. */ #include #include #include #include #include #include #include #include /* Register Offsets */ #define NFC_FLASH_CMD1 0x3F00 #define NFC_FLASH_CMD2 0x3F04 #define NFC_COL_ADDR 0x3F08 #define NFC_ROW_ADDR 0x3F0c #define NFC_ROW_ADDR_INC 0x3F14 #define NFC_FLASH_STATUS1 0x3F18 #define NFC_FLASH_STATUS2 0x3F1c #define NFC_CACHE_SWAP 0x3F28 #define NFC_SECTOR_SIZE 0x3F2c #define NFC_FLASH_CONFIG 0x3F30 #define NFC_IRQ_STATUS 0x3F38 /* Addresses for NFC MAIN RAM BUFFER areas */ #define NFC_MAIN_AREA(n) ((n) * 0x1000) #define PAGE_2K 0x0800 #define OOB_64 0x0040 /* * NFC_CMD2[CODE] values. See section: * - 31.4.7 Flash Command Code Description, Vybrid manual * - 23.8.6 Flash Command Sequencer, MPC5125 manual * * Briefly these are bitmasks of controller cycles. */ #define READ_PAGE_CMD_CODE 0x7EE0 #define PROGRAM_PAGE_CMD_CODE 0x7FC0 #define ERASE_CMD_CODE 0x4EC0 #define READ_ID_CMD_CODE 0x4804 #define RESET_CMD_CODE 0x4040 #define STATUS_READ_CMD_CODE 0x4068 /* NFC ECC mode define */ #define ECC_BYPASS 0 #define ECC_45_BYTE 6 /*** Register Mask and bit definitions */ /* NFC_FLASH_CMD1 Field */ #define CMD_BYTE2_MASK 0xFF000000 #define CMD_BYTE2_SHIFT 24 /* NFC_FLASH_CM2 Field */ #define CMD_BYTE1_MASK 0xFF000000 #define CMD_BYTE1_SHIFT 24 #define CMD_CODE_MASK 0x00FFFF00 #define CMD_CODE_SHIFT 8 #define BUFNO_MASK 0x00000006 #define BUFNO_SHIFT 1 #define START_BIT (1<<0) /* NFC_COL_ADDR Field */ #define COL_ADDR_MASK 0x0000FFFF #define COL_ADDR_SHIFT 0 /* NFC_ROW_ADDR Field */ #define ROW_ADDR_MASK 0x00FFFFFF #define ROW_ADDR_SHIFT 0 #define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000 #define ROW_ADDR_CHIP_SEL_RB_SHIFT 28 #define ROW_ADDR_CHIP_SEL_MASK 0x0F000000 #define ROW_ADDR_CHIP_SEL_SHIFT 24 /* NFC_FLASH_STATUS2 Field */ #define STATUS_BYTE1_MASK 0x000000FF /* NFC_FLASH_CONFIG Field */ #define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000 #define CONFIG_ECC_SRAM_ADDR_SHIFT 22 #define CONFIG_ECC_SRAM_REQ_BIT (1<<21) #define CONFIG_DMA_REQ_BIT (1<<20) #define CONFIG_ECC_MODE_MASK 0x000E0000 #define CONFIG_ECC_MODE_SHIFT 17 #define CONFIG_FAST_FLASH_BIT (1<<16) #define CONFIG_16BIT (1<<7) #define CONFIG_BOOT_MODE_BIT (1<<6) #define CONFIG_ADDR_AUTO_INCR_BIT (1<<5) #define CONFIG_BUFNO_AUTO_INCR_BIT (1<<4) #define CONFIG_PAGE_CNT_MASK 0xF #define CONFIG_PAGE_CNT_SHIFT 0 /* NFC_IRQ_STATUS Field */ #define IDLE_IRQ_BIT (1<<29) #define IDLE_EN_BIT (1<<20) #define CMD_DONE_CLEAR_BIT (1<<18) #define IDLE_CLEAR_BIT (1<<17) #define NFC_TIMEOUT (1000) /* ECC status placed at end of buffers. */ #define ECC_SRAM_ADDR ((PAGE_2K+256-8) >> 3) #define ECC_STATUS_MASK 0x80 #define ECC_ERR_COUNT 0x3F /* * ECC status is stored at NFC_CFG[ECCADD] +4 for little-endian * and +7 for big-endian SOC. */ #ifdef CONFIG_VF610 #define ECC_OFFSET 4 #else #define ECC_OFFSET 7 #endif struct vf610_nfc { struct mtd_info *mtd; struct nand_chip chip; void __iomem *regs; uint column; int spareonly; int page; /* Status and ID are in alternate locations. */ int alt_buf; #define ALT_BUF_ID 1 #define ALT_BUF_STAT 2 struct clk *clk; }; #define mtd_to_nfc(_mtd) \ (struct vf610_nfc *)((struct nand_chip *)_mtd->priv)->priv static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; static struct nand_bbt_descr bbt_main_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION, .offs = 11, .len = 4, .veroffs = 15, .maxblocks = 4, .pattern = bbt_pattern, }; static struct nand_bbt_descr bbt_mirror_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION, .offs = 11, .len = 4, .veroffs = 15, .maxblocks = 4, .pattern = mirror_pattern, }; static struct nand_ecclayout vf610_nfc_ecc45 = { .eccbytes = 45, .eccpos = {19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63}, .oobfree = { {.offset = 8, .length = 11} } }; static inline u32 vf610_nfc_read(struct mtd_info *mtd, uint reg) { struct vf610_nfc *nfc = mtd_to_nfc(mtd); return readl(nfc->regs + reg); } static inline void vf610_nfc_write(struct mtd_info *mtd, uint reg, u32 val) { struct vf610_nfc *nfc = mtd_to_nfc(mtd); writel(val, nfc->regs + reg); } static inline void vf610_nfc_set(struct mtd_info *mtd, uint reg, u32 bits) { vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) | bits); } static inline void vf610_nfc_clear(struct mtd_info *mtd, uint reg, u32 bits) { vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) & ~bits); } static inline void vf610_nfc_set_field(struct mtd_info *mtd, u32 reg, u32 mask, u32 shift, u32 val) { vf610_nfc_write(mtd, reg, (vf610_nfc_read(mtd, reg) & (~mask)) | val << shift); } static inline void vf610_nfc_memcpy(void *dst, const void *src, size_t n) { /* * Use this accessor for the interal SRAM buffers. On ARM we can * treat the SRAM buffer as if its memory, hence use memcpy */ memcpy(dst, src, n); } /* Clear flags for upcoming command */ static inline void vf610_nfc_clear_status(void __iomem *regbase) { void __iomem *reg = regbase + NFC_IRQ_STATUS; u32 tmp = __raw_readl(reg); tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT; __raw_writel(tmp, reg); } /* Wait for complete operation */ static inline void vf610_nfc_done(struct mtd_info *mtd) { struct vf610_nfc *nfc = mtd_to_nfc(mtd); uint start; /* * Barrier is needed after this write. This write need * to be done before reading the next register the first * time. * vf610_nfc_set implicates such a barrier by using writel * to write to the register. */ vf610_nfc_set(mtd, NFC_FLASH_CMD2, START_BIT); start = get_timer(0); while (!(vf610_nfc_read(mtd, NFC_IRQ_STATUS) & IDLE_IRQ_BIT)) { if (get_timer(start) > NFC_TIMEOUT) { printf("Timeout while waiting for !BUSY.\n"); return; } } vf610_nfc_clear_status(nfc->regs); } static u8 vf610_nfc_get_id(struct mtd_info *mtd, int col) { u32 flash_id; if (col < 4) { flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS1); return (flash_id >> (3-col)*8) & 0xff; } else { flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS2); return flash_id >> 24; } } static u8 vf610_nfc_get_status(struct mtd_info *mtd) { return vf610_nfc_read(mtd, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK; } /* Single command */ static void vf610_nfc_send_command(void __iomem *regbase, u32 cmd_byte1, u32 cmd_code) { void __iomem *reg = regbase + NFC_FLASH_CMD2; u32 tmp; vf610_nfc_clear_status(regbase); tmp = __raw_readl(reg); tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK); tmp |= cmd_byte1 << CMD_BYTE1_SHIFT; tmp |= cmd_code << CMD_CODE_SHIFT; __raw_writel(tmp, reg); } /* Two commands */ static void vf610_nfc_send_commands(void __iomem *regbase, u32 cmd_byte1, u32 cmd_byte2, u32 cmd_code) { void __iomem *reg = regbase + NFC_FLASH_CMD1; u32 tmp; vf610_nfc_send_command(regbase, cmd_byte1, cmd_code); tmp = __raw_readl(reg); tmp &= ~CMD_BYTE2_MASK; tmp |= cmd_byte2 << CMD_BYTE2_SHIFT; __raw_writel(tmp, reg); } static void vf610_nfc_addr_cycle(struct mtd_info *mtd, int column, int page) { if (column != -1) { struct vf610_nfc *nfc = mtd_to_nfc(mtd); if (nfc->chip.options | NAND_BUSWIDTH_16) column = column/2; vf610_nfc_set_field(mtd, NFC_COL_ADDR, COL_ADDR_MASK, COL_ADDR_SHIFT, column); } if (page != -1) vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK, ROW_ADDR_SHIFT, page); } /* Send command to NAND chip */ static void vf610_nfc_command(struct mtd_info *mtd, unsigned command, int column, int page) { struct vf610_nfc *nfc = mtd_to_nfc(mtd); nfc->column = max(column, 0); nfc->spareonly = 0; nfc->alt_buf = 0; switch (command) { case NAND_CMD_PAGEPROG: nfc->page = -1; vf610_nfc_send_commands(nfc->regs, NAND_CMD_SEQIN, command, PROGRAM_PAGE_CMD_CODE); vf610_nfc_addr_cycle(mtd, column, page); break; case NAND_CMD_RESET: vf610_nfc_send_command(nfc->regs, command, RESET_CMD_CODE); break; /* * NFC does not support sub-page reads and writes, * so emulate them using full page transfers. */ case NAND_CMD_READOOB: nfc->spareonly = 1; case NAND_CMD_SEQIN: /* Pre-read for partial writes. */ case NAND_CMD_READ0: column = 0; /* Already read? */ if (nfc->page == page) return; nfc->page = page; vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0, NAND_CMD_READSTART, READ_PAGE_CMD_CODE); vf610_nfc_addr_cycle(mtd, column, page); break; case NAND_CMD_ERASE1: if (nfc->page == page) nfc->page = -1; vf610_nfc_send_commands(nfc->regs, command, NAND_CMD_ERASE2, ERASE_CMD_CODE); vf610_nfc_addr_cycle(mtd, column, page); break; case NAND_CMD_READID: nfc->alt_buf = ALT_BUF_ID; vf610_nfc_send_command(nfc->regs, command, READ_ID_CMD_CODE); break; case NAND_CMD_STATUS: nfc->alt_buf = ALT_BUF_STAT; vf610_nfc_send_command(nfc->regs, command, STATUS_READ_CMD_CODE); break; default: return; } vf610_nfc_done(mtd); } static inline void vf610_nfc_read_spare(struct mtd_info *mtd, void *buf, int len) { struct vf610_nfc *nfc = mtd_to_nfc(mtd); len = min(mtd->oobsize, (uint)len); if (len > 0) vf610_nfc_memcpy(buf, nfc->regs + mtd->writesize, len); } /* Read data from NFC buffers */ static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len) { struct vf610_nfc *nfc = mtd_to_nfc(mtd); uint c = nfc->column; uint l; /* Handle main area */ if (!nfc->spareonly) { l = min((uint)len, mtd->writesize - c); nfc->column += l; if (!nfc->alt_buf) vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c, l); else if (nfc->alt_buf & ALT_BUF_ID) *buf = vf610_nfc_get_id(mtd, c); else *buf = vf610_nfc_get_status(mtd); buf += l; len -= l; } /* Handle spare area access */ if (len) { nfc->column += len; vf610_nfc_read_spare(mtd, buf, len); } } /* Write data to NFC buffers */ static void vf610_nfc_write_buf(struct mtd_info *mtd, const u_char *buf, int len) { struct vf610_nfc *nfc = mtd_to_nfc(mtd); uint c = nfc->column; uint l; l = min((uint)len, mtd->writesize + mtd->oobsize - c); nfc->column += l; vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l); } /* Read byte from NFC buffers */ static u8 vf610_nfc_read_byte(struct mtd_info *mtd) { u8 tmp; vf610_nfc_read_buf(mtd, &tmp, sizeof(tmp)); return tmp; } /* Read word from NFC buffers */ static u16 vf610_nfc_read_word(struct mtd_info *mtd) { u16 tmp; vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp)); return tmp; } /* If not provided, upper layers apply a fixed delay. */ static int vf610_nfc_dev_ready(struct mtd_info *mtd) { /* NFC handles R/B internally; always ready. */ return 1; } /* * This function supports Vybrid only (MPC5125 would have full RB and four CS) */ static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip) { #ifdef CONFIG_VF610 u32 tmp = vf610_nfc_read(mtd, NFC_ROW_ADDR); tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK); tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT; if (chip == 0) tmp |= 1 << ROW_ADDR_CHIP_SEL_SHIFT; else if (chip == 1) tmp |= 2 << ROW_ADDR_CHIP_SEL_SHIFT; vf610_nfc_write(mtd, NFC_ROW_ADDR, tmp); #endif } /* Count the number of 0's in buff upto max_bits */ static inline int count_written_bits(uint8_t *buff, int size, int max_bits) { uint32_t *buff32 = (uint32_t *)buff; int k, written_bits = 0; for (k = 0; k < (size / 4); k++) { written_bits += hweight32(~buff32[k]); if (written_bits > max_bits) break; } return written_bits; } static inline int vf610_nfc_correct_data(struct mtd_info *mtd, u_char *dat) { struct vf610_nfc *nfc = mtd_to_nfc(mtd); u8 ecc_status; u8 ecc_count; int flip; ecc_status = __raw_readb(nfc->regs + ECC_SRAM_ADDR * 8 + ECC_OFFSET); ecc_count = ecc_status & ECC_ERR_COUNT; if (!(ecc_status & ECC_STATUS_MASK)) return ecc_count; /* If 'ecc_count' zero or less then buffer is all 0xff or erased. */ flip = count_written_bits(dat, nfc->chip.ecc.size, ecc_count); /* ECC failed. */ if (flip > ecc_count) { nfc->page = -1; return -1; } /* Erased page. */ memset(dat, 0xff, nfc->chip.ecc.size); return 0; } static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { int eccsize = chip->ecc.size; int stat; uint8_t *p = buf; vf610_nfc_read_buf(mtd, p, eccsize); if (oob_required) vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize); stat = vf610_nfc_correct_data(mtd, p); if (stat < 0) mtd->ecc_stats.failed++; else mtd->ecc_stats.corrected += stat; return 0; } /* * ECC will be calculated automatically */ static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { vf610_nfc_write_buf(mtd, buf, mtd->writesize); if (oob_required) vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize); return 0; } struct vf610_nfc_config { int hardware_ecc; int width; int flash_bbt; }; static int vf610_nfc_nand_init(int devnum, void __iomem *addr) { struct mtd_info *mtd = &nand_info[devnum]; struct nand_chip *chip; struct vf610_nfc *nfc; int err = 0; int page_sz; struct vf610_nfc_config cfg = { .hardware_ecc = 1, #ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT .width = 16, #else .width = 8, #endif .flash_bbt = 1, }; nfc = malloc(sizeof(*nfc)); if (!nfc) { printf(KERN_ERR "%s: Memory exhausted!\n", __func__); return -ENOMEM; } chip = &nfc->chip; nfc->regs = addr; mtd->priv = chip; chip->priv = nfc; if (cfg.width == 16) { chip->options |= NAND_BUSWIDTH_16; vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT); } else { chip->options &= ~NAND_BUSWIDTH_16; vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT); } chip->dev_ready = vf610_nfc_dev_ready; chip->cmdfunc = vf610_nfc_command; chip->read_byte = vf610_nfc_read_byte; chip->read_word = vf610_nfc_read_word; chip->read_buf = vf610_nfc_read_buf; chip->write_buf = vf610_nfc_write_buf; chip->select_chip = vf610_nfc_select_chip; /* Bad block options. */ if (cfg.flash_bbt) chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_CREATE; /* Default to software ECC until flash ID. */ vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_ECC_MODE_MASK, CONFIG_ECC_MODE_SHIFT, ECC_BYPASS); chip->bbt_td = &bbt_main_descr; chip->bbt_md = &bbt_mirror_descr; page_sz = PAGE_2K + OOB_64; page_sz += cfg.width == 16 ? 1 : 0; vf610_nfc_write(mtd, NFC_SECTOR_SIZE, page_sz); /* Set configuration register. */ vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT); vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT); vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT); vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT); vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT); /* Enable Idle IRQ */ vf610_nfc_set(mtd, NFC_IRQ_STATUS, IDLE_EN_BIT); /* PAGE_CNT = 1 */ vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK, CONFIG_PAGE_CNT_SHIFT, 1); /* Set ECC_STATUS offset */ vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_ADDR_MASK, CONFIG_ECC_SRAM_ADDR_SHIFT, ECC_SRAM_ADDR); /* first scan to find the device and get the page size */ if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) { err = -ENXIO; goto error; } chip->ecc.mode = NAND_ECC_SOFT; /* default */ page_sz = mtd->writesize + mtd->oobsize; /* Single buffer only, max 256 OOB minus ECC status */ if (page_sz > PAGE_2K + 256 - 8) { dev_err(nfc->dev, "Unsupported flash size\n"); err = -ENXIO; goto error; } page_sz += cfg.width == 16 ? 1 : 0; vf610_nfc_write(mtd, NFC_SECTOR_SIZE, page_sz); if (cfg.hardware_ecc) { if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) { dev_err(nfc->dev, "Unsupported flash with hwecc\n"); err = -ENXIO; goto error; } chip->ecc.layout = &vf610_nfc_ecc45; /* propagate ecc.layout to mtd_info */ mtd->ecclayout = chip->ecc.layout; chip->ecc.read_page = vf610_nfc_read_page; chip->ecc.write_page = vf610_nfc_write_page; chip->ecc.mode = NAND_ECC_HW; chip->ecc.bytes = 45; chip->ecc.size = PAGE_2K; chip->ecc.strength = 24; /* set ECC mode to 45 bytes OOB with 24 bits correction */ vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_ECC_MODE_MASK, CONFIG_ECC_MODE_SHIFT, ECC_45_BYTE); /* Enable ECC_STATUS */ vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT); } /* second phase scan */ err = nand_scan_tail(mtd); if (err) return err; err = nand_register(devnum); if (err) return err; return 0; error: return err; } void board_nand_init(void) { int err = vf610_nfc_nand_init(0, (void __iomem *)CONFIG_SYS_NAND_BASE); if (err) printf("VF610 NAND init failed (err %d)\n", err); }