/* Integrated Flash Controller NAND Machine Driver * * Copyright (c) 2012 Freescale Semiconductor, Inc * * Authors: Dipen Dudhat * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #define FSL_IFC_V1_1_0 0x01010000 #define MAX_BANKS 4 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */ #define IFC_TIMEOUT_MSECS 10 /* Maximum number of mSecs to wait for IFC NAND Machine */ struct fsl_ifc_ctrl; /* mtd information per set */ struct fsl_ifc_mtd { struct nand_chip chip; struct fsl_ifc_ctrl *ctrl; struct device *dev; int bank; /* Chip select bank number */ unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */ u8 __iomem *vbase; /* Chip select base virtual address */ }; /* overview of the fsl ifc controller */ struct fsl_ifc_ctrl { struct nand_hw_control controller; struct fsl_ifc_mtd *chips[MAX_BANKS]; /* device info */ struct fsl_ifc *regs; uint8_t __iomem *addr; /* Address of assigned IFC buffer */ unsigned int cs_nand; /* On which chipsel NAND is connected */ unsigned int page; /* Last page written to / read from */ unsigned int read_bytes; /* Number of bytes read during command */ unsigned int column; /* Saved column from SEQIN */ unsigned int index; /* Pointer to next byte to 'read' */ unsigned int status; /* status read from NEESR after last op */ unsigned int oob; /* Non zero if operating on OOB data */ unsigned int eccread; /* Non zero for a full-page ECC read */ }; static struct fsl_ifc_ctrl *ifc_ctrl; /* 512-byte page with 4-bit ECC, 8-bit */ static struct nand_ecclayout oob_512_8bit_ecc4 = { .eccbytes = 8, .eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, .oobfree = { {0, 5}, {6, 2} }, }; /* 512-byte page with 4-bit ECC, 16-bit */ static struct nand_ecclayout oob_512_16bit_ecc4 = { .eccbytes = 8, .eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, .oobfree = { {2, 6}, }, }; /* 2048-byte page size with 4-bit ECC */ static struct nand_ecclayout oob_2048_ecc4 = { .eccbytes = 32, .eccpos = { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, }, .oobfree = { {2, 6}, {40, 24} }, }; /* 4096-byte page size with 4-bit ECC */ static struct nand_ecclayout oob_4096_ecc4 = { .eccbytes = 64, .eccpos = { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, }, .oobfree = { {2, 6}, {72, 56} }, }; /* 4096-byte page size with 8-bit ECC -- requires 218-byte OOB */ static struct nand_ecclayout oob_4096_ecc8 = { .eccbytes = 128, .eccpos = { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, }, .oobfree = { {2, 6}, {136, 82} }, }; /* * Generic flash bbt descriptors */ static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; static struct nand_bbt_descr bbt_main_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION, .offs = 2, /* 0 on 8-bit small page */ .len = 4, .veroffs = 6, .maxblocks = 4, .pattern = bbt_pattern, }; static struct nand_bbt_descr bbt_mirror_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION, .offs = 2, /* 0 on 8-bit small page */ .len = 4, .veroffs = 6, .maxblocks = 4, .pattern = mirror_pattern, }; /* * Set up the IFC hardware block and page address fields, and the ifc nand * structure addr field to point to the correct IFC buffer in memory */ static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) { struct nand_chip *chip = mtd->priv; struct fsl_ifc_mtd *priv = chip->priv; struct fsl_ifc_ctrl *ctrl = priv->ctrl; struct fsl_ifc *ifc = ctrl->regs; int buf_num; ctrl->page = page_addr; /* Program ROW0/COL0 */ out_be32(&ifc->ifc_nand.row0, page_addr); out_be32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column); buf_num = page_addr & priv->bufnum_mask; ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2); ctrl->index = column; /* for OOB data point to the second half of the buffer */ if (oob) ctrl->index += mtd->writesize; } static int is_blank(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, unsigned int bufnum) { struct nand_chip *chip = mtd->priv; struct fsl_ifc_mtd *priv = chip->priv; u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2); u32 __iomem *main = (u32 *)addr; u8 __iomem *oob = addr + mtd->writesize; int i; for (i = 0; i < mtd->writesize / 4; i++) { if (__raw_readl(&main[i]) != 0xffffffff) return 0; } for (i = 0; i < chip->ecc.layout->eccbytes; i++) { int pos = chip->ecc.layout->eccpos[i]; if (__raw_readb(&oob[pos]) != 0xff) return 0; } return 1; } /* returns nonzero if entire page is blank */ static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, u32 *eccstat, unsigned int bufnum) { u32 reg = eccstat[bufnum / 4]; int errors; errors = (reg >> ((3 - bufnum % 4) * 8)) & 15; return errors; } /* * execute IFC NAND command and wait for it to complete */ static int fsl_ifc_run_command(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct fsl_ifc_mtd *priv = chip->priv; struct fsl_ifc_ctrl *ctrl = priv->ctrl; struct fsl_ifc *ifc = ctrl->regs; long long end_tick; u32 eccstat[4]; int i; /* set the chip select for NAND Transaction */ out_be32(&ifc->ifc_nand.nand_csel, ifc_ctrl->cs_nand); /* start read/write seq */ out_be32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT); /* wait for NAND Machine complete flag or timeout */ end_tick = usec2ticks(IFC_TIMEOUT_MSECS * 1000) + get_ticks(); while (end_tick > get_ticks()) { ctrl->status = in_be32(&ifc->ifc_nand.nand_evter_stat); if (ctrl->status & IFC_NAND_EVTER_STAT_OPC) break; } out_be32(&ifc->ifc_nand.nand_evter_stat, ctrl->status); if (ctrl->status & IFC_NAND_EVTER_STAT_FTOER) printf("%s: Flash Time Out Error\n", __func__); if (ctrl->status & IFC_NAND_EVTER_STAT_WPER) printf("%s: Write Protect Error\n", __func__); if (ctrl->eccread) { int errors; int bufnum = ctrl->page & priv->bufnum_mask; int sector = bufnum * chip->ecc.steps; int sector_end = sector + chip->ecc.steps - 1; for (i = sector / 4; i <= sector_end / 4; i++) eccstat[i] = in_be32(&ifc->ifc_nand.nand_eccstat[i]); for (i = sector; i <= sector_end; i++) { errors = check_read_ecc(mtd, ctrl, eccstat, i); if (errors == 15) { /* * Uncorrectable error. * OK only if the whole page is blank. * * We disable ECCER reporting due to erratum * IFC-A002770 -- so report it now if we * see an uncorrectable error in ECCSTAT. */ if (!is_blank(mtd, ctrl, bufnum)) ctrl->status |= IFC_NAND_EVTER_STAT_ECCER; break; } mtd->ecc_stats.corrected += errors; } ctrl->eccread = 0; } /* returns 0 on success otherwise non-zero) */ return ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO; } static void fsl_ifc_do_read(struct nand_chip *chip, int oob, struct mtd_info *mtd) { struct fsl_ifc_mtd *priv = chip->priv; struct fsl_ifc_ctrl *ctrl = priv->ctrl; struct fsl_ifc *ifc = ctrl->regs; /* Program FIR/IFC_NAND_FCR0 for Small/Large page */ if (mtd->writesize > 512) { out_be32(&ifc->ifc_nand.nand_fir0, (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT)); out_be32(&ifc->ifc_nand.nand_fir1, 0x0); out_be32(&ifc->ifc_nand.nand_fcr0, (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT)); } else { out_be32(&ifc->ifc_nand.nand_fir0, (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT)); if (oob) out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT); else out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT); } } /* cmdfunc send commands to the IFC NAND Machine */ static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, int column, int page_addr) { struct nand_chip *chip = mtd->priv; struct fsl_ifc_mtd *priv = chip->priv; struct fsl_ifc_ctrl *ctrl = priv->ctrl; struct fsl_ifc *ifc = ctrl->regs; /* clear the read buffer */ ctrl->read_bytes = 0; if (command != NAND_CMD_PAGEPROG) ctrl->index = 0; switch (command) { /* READ0 read the entire buffer to use hardware ECC. */ case NAND_CMD_READ0: { out_be32(&ifc->ifc_nand.nand_fbcr, 0); set_addr(mtd, 0, page_addr, 0); ctrl->read_bytes = mtd->writesize + mtd->oobsize; ctrl->index += column; if (chip->ecc.mode == NAND_ECC_HW) ctrl->eccread = 1; fsl_ifc_do_read(chip, 0, mtd); fsl_ifc_run_command(mtd); return; } /* READOOB reads only the OOB because no ECC is performed. */ case NAND_CMD_READOOB: out_be32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column); set_addr(mtd, column, page_addr, 1); ctrl->read_bytes = mtd->writesize + mtd->oobsize; fsl_ifc_do_read(chip, 1, mtd); fsl_ifc_run_command(mtd); return; /* READID must read all possible bytes while CEB is active */ case NAND_CMD_READID: case NAND_CMD_PARAM: { int timing = IFC_FIR_OP_RB; if (command == NAND_CMD_PARAM) timing = IFC_FIR_OP_RBCD; out_be32(&ifc->ifc_nand.nand_fir0, (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | (timing << IFC_NAND_FIR0_OP2_SHIFT)); out_be32(&ifc->ifc_nand.nand_fcr0, command << IFC_NAND_FCR0_CMD0_SHIFT); out_be32(&ifc->ifc_nand.row3, column); /* * although currently it's 8 bytes for READID, we always read * the maximum 256 bytes(for PARAM) */ out_be32(&ifc->ifc_nand.nand_fbcr, 256); ctrl->read_bytes = 256; set_addr(mtd, 0, 0, 0); fsl_ifc_run_command(mtd); return; } /* ERASE1 stores the block and page address */ case NAND_CMD_ERASE1: set_addr(mtd, 0, page_addr, 0); return; /* ERASE2 uses the block and page address from ERASE1 */ case NAND_CMD_ERASE2: out_be32(&ifc->ifc_nand.nand_fir0, (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) | (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT)); out_be32(&ifc->ifc_nand.nand_fcr0, (NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) | (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT)); out_be32(&ifc->ifc_nand.nand_fbcr, 0); ctrl->read_bytes = 0; fsl_ifc_run_command(mtd); return; /* SEQIN sets up the addr buffer and all registers except the length */ case NAND_CMD_SEQIN: { u32 nand_fcr0; ctrl->column = column; ctrl->oob = 0; if (mtd->writesize > 512) { nand_fcr0 = (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) | (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT); out_be32(&ifc->ifc_nand.nand_fir0, (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) | (IFC_FIR_OP_CW1 << IFC_NAND_FIR0_OP4_SHIFT)); out_be32(&ifc->ifc_nand.nand_fir1, 0); } else { nand_fcr0 = ((NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT) | (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD2_SHIFT)); out_be32(&ifc->ifc_nand.nand_fir0, (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) | (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) | (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT)); out_be32(&ifc->ifc_nand.nand_fir1, (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT)); if (column >= mtd->writesize) nand_fcr0 |= NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT; else nand_fcr0 |= NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT; } if (column >= mtd->writesize) { /* OOB area --> READOOB */ column -= mtd->writesize; ctrl->oob = 1; } out_be32(&ifc->ifc_nand.nand_fcr0, nand_fcr0); set_addr(mtd, column, page_addr, ctrl->oob); return; } /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ case NAND_CMD_PAGEPROG: if (ctrl->oob) out_be32(&ifc->ifc_nand.nand_fbcr, ctrl->index - ctrl->column); else out_be32(&ifc->ifc_nand.nand_fbcr, 0); fsl_ifc_run_command(mtd); return; case NAND_CMD_STATUS: out_be32(&ifc->ifc_nand.nand_fir0, (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT)); out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT); out_be32(&ifc->ifc_nand.nand_fbcr, 1); set_addr(mtd, 0, 0, 0); ctrl->read_bytes = 1; fsl_ifc_run_command(mtd); /* Chip sometimes reporting write protect even when it's not */ out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP); return; case NAND_CMD_RESET: out_be32(&ifc->ifc_nand.nand_fir0, IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT); out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT); fsl_ifc_run_command(mtd); return; default: printf("%s: error, unsupported command 0x%x.\n", __func__, command); } } /* * Write buf to the IFC NAND Controller Data Buffer */ static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) { struct nand_chip *chip = mtd->priv; struct fsl_ifc_mtd *priv = chip->priv; struct fsl_ifc_ctrl *ctrl = priv->ctrl; unsigned int bufsize = mtd->writesize + mtd->oobsize; if (len <= 0) { printf("%s of %d bytes", __func__, len); ctrl->status = 0; return; } if ((unsigned int)len > bufsize - ctrl->index) { printf("%s beyond end of buffer " "(%d requested, %u available)\n", __func__, len, bufsize - ctrl->index); len = bufsize - ctrl->index; } memcpy_toio(&ctrl->addr[ctrl->index], buf, len); ctrl->index += len; } /* * read a byte from either the IFC hardware buffer if it has any data left * otherwise issue a command to read a single byte. */ static u8 fsl_ifc_read_byte(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct fsl_ifc_mtd *priv = chip->priv; struct fsl_ifc_ctrl *ctrl = priv->ctrl; /* If there are still bytes in the IFC buffer, then use the * next byte. */ if (ctrl->index < ctrl->read_bytes) return in_8(&ctrl->addr[ctrl->index++]); printf("%s beyond end of buffer\n", __func__); return ERR_BYTE; } /* * Read two bytes from the IFC hardware buffer * read function for 16-bit buswith */ static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct fsl_ifc_mtd *priv = chip->priv; struct fsl_ifc_ctrl *ctrl = priv->ctrl; uint16_t data; /* * If there are still bytes in the IFC buffer, then use the * next byte. */ if (ctrl->index < ctrl->read_bytes) { data = in_be16((uint16_t *)&ctrl-> addr[ctrl->index]); ctrl->index += 2; return (uint8_t)data; } printf("%s beyond end of buffer\n", __func__); return ERR_BYTE; } /* * Read from the IFC Controller Data Buffer */ static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len) { struct nand_chip *chip = mtd->priv; struct fsl_ifc_mtd *priv = chip->priv; struct fsl_ifc_ctrl *ctrl = priv->ctrl; int avail; if (len < 0) return; avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index); memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail); ctrl->index += avail; if (len > avail) printf("%s beyond end of buffer " "(%d requested, %d available)\n", __func__, len, avail); } /* * Verify buffer against the IFC Controller Data Buffer */ static int fsl_ifc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) { struct nand_chip *chip = mtd->priv; struct fsl_ifc_mtd *priv = chip->priv; struct fsl_ifc_ctrl *ctrl = priv->ctrl; int i; if (len < 0) { printf("%s of %d bytes", __func__, len); return -EINVAL; } if ((unsigned int)len > ctrl->read_bytes - ctrl->index) { printf("%s beyond end of buffer " "(%d requested, %u available)\n", __func__, len, ctrl->read_bytes - ctrl->index); ctrl->index = ctrl->read_bytes; return -EINVAL; } for (i = 0; i < len; i++) if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i]) break; ctrl->index += len; return i == len && ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO; } /* This function is called after Program and Erase Operations to * check for success or failure. */ static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip) { struct fsl_ifc_mtd *priv = chip->priv; struct fsl_ifc_ctrl *ctrl = priv->ctrl; struct fsl_ifc *ifc = ctrl->regs; u32 nand_fsr; if (ctrl->status != IFC_NAND_EVTER_STAT_OPC) return NAND_STATUS_FAIL; /* Use READ_STATUS command, but wait for the device to be ready */ out_be32(&ifc->ifc_nand.nand_fir0, (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT)); out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT); out_be32(&ifc->ifc_nand.nand_fbcr, 1); set_addr(mtd, 0, 0, 0); ctrl->read_bytes = 1; fsl_ifc_run_command(mtd); if (ctrl->status != IFC_NAND_EVTER_STAT_OPC) return NAND_STATUS_FAIL; nand_fsr = in_be32(&ifc->ifc_nand.nand_fsr); /* Chip sometimes reporting write protect even when it's not */ nand_fsr = nand_fsr | NAND_STATUS_WP; return nand_fsr; } static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct fsl_ifc_mtd *priv = chip->priv; struct fsl_ifc_ctrl *ctrl = priv->ctrl; fsl_ifc_read_buf(mtd, buf, mtd->writesize); fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize); if (ctrl->status != IFC_NAND_EVTER_STAT_OPC) mtd->ecc_stats.failed++; return 0; } /* ECC will be calculated automatically, and errors will be detected in * waitfunc. */ static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { fsl_ifc_write_buf(mtd, buf, mtd->writesize); fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize); return 0; } static void fsl_ifc_ctrl_init(void) { ifc_ctrl = kzalloc(sizeof(*ifc_ctrl), GFP_KERNEL); if (!ifc_ctrl) return; ifc_ctrl->regs = IFC_BASE_ADDR; /* clear event registers */ out_be32(&ifc_ctrl->regs->ifc_nand.nand_evter_stat, ~0U); out_be32(&ifc_ctrl->regs->ifc_nand.pgrdcmpl_evt_stat, ~0U); /* Enable error and event for any detected errors */ out_be32(&ifc_ctrl->regs->ifc_nand.nand_evter_en, IFC_NAND_EVTER_EN_OPC_EN | IFC_NAND_EVTER_EN_PGRDCMPL_EN | IFC_NAND_EVTER_EN_FTOER_EN | IFC_NAND_EVTER_EN_WPER_EN); out_be32(&ifc_ctrl->regs->ifc_nand.ncfgr, 0x0); } static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip) { } static void fsl_ifc_sram_init(void) { struct fsl_ifc *ifc = ifc_ctrl->regs; uint32_t cs = 0, csor = 0, csor_8k = 0, csor_ext = 0; long long end_tick; cs = ifc_ctrl->cs_nand >> IFC_NAND_CSEL_SHIFT; /* Save CSOR and CSOR_ext */ csor = in_be32(&ifc_ctrl->regs->csor_cs[cs].csor); csor_ext = in_be32(&ifc_ctrl->regs->csor_cs[cs].csor_ext); /* chage PageSize 8K and SpareSize 1K*/ csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000; out_be32(&ifc_ctrl->regs->csor_cs[cs].csor, csor_8k); out_be32(&ifc_ctrl->regs->csor_cs[cs].csor_ext, 0x0000400); /* READID */ out_be32(&ifc->ifc_nand.nand_fir0, (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT)); out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT); out_be32(&ifc->ifc_nand.row3, 0x0); out_be32(&ifc->ifc_nand.nand_fbcr, 0x0); /* Program ROW0/COL0 */ out_be32(&ifc->ifc_nand.row0, 0x0); out_be32(&ifc->ifc_nand.col0, 0x0); /* set the chip select for NAND Transaction */ out_be32(&ifc->ifc_nand.nand_csel, ifc_ctrl->cs_nand); /* start read seq */ out_be32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT); /* wait for NAND Machine complete flag or timeout */ end_tick = usec2ticks(IFC_TIMEOUT_MSECS * 1000) + get_ticks(); while (end_tick > get_ticks()) { ifc_ctrl->status = in_be32(&ifc->ifc_nand.nand_evter_stat); if (ifc_ctrl->status & IFC_NAND_EVTER_STAT_OPC) break; } out_be32(&ifc->ifc_nand.nand_evter_stat, ifc_ctrl->status); /* Restore CSOR and CSOR_ext */ out_be32(&ifc_ctrl->regs->csor_cs[cs].csor, csor); out_be32(&ifc_ctrl->regs->csor_cs[cs].csor_ext, csor_ext); } static int fsl_ifc_chip_init(int devnum, u8 *addr) { struct mtd_info *mtd = &nand_info[devnum]; struct nand_chip *nand; struct fsl_ifc_mtd *priv; struct nand_ecclayout *layout; uint32_t cspr = 0, csor = 0, ver = 0; int ret; if (!ifc_ctrl) { fsl_ifc_ctrl_init(); if (!ifc_ctrl) return -1; } priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->ctrl = ifc_ctrl; priv->vbase = addr; /* Find which chip select it is connected to. */ for (priv->bank = 0; priv->bank < MAX_BANKS; priv->bank++) { phys_addr_t phys_addr = virt_to_phys(addr); cspr = in_be32(&ifc_ctrl->regs->cspr_cs[priv->bank].cspr); csor = in_be32(&ifc_ctrl->regs->csor_cs[priv->bank].csor); if ((cspr & CSPR_V) && (cspr & CSPR_MSEL) == CSPR_MSEL_NAND && (cspr & CSPR_BA) == CSPR_PHYS_ADDR(phys_addr)) { ifc_ctrl->cs_nand = priv->bank << IFC_NAND_CSEL_SHIFT; break; } } if (priv->bank >= MAX_BANKS) { printf("%s: address did not match any " "chip selects\n", __func__); kfree(priv); return -ENODEV; } nand = &priv->chip; mtd->priv = nand; ifc_ctrl->chips[priv->bank] = priv; /* fill in nand_chip structure */ /* set up function call table */ nand->write_buf = fsl_ifc_write_buf; nand->read_buf = fsl_ifc_read_buf; nand->verify_buf = fsl_ifc_verify_buf; nand->select_chip = fsl_ifc_select_chip; nand->cmdfunc = fsl_ifc_cmdfunc; nand->waitfunc = fsl_ifc_wait; /* set up nand options */ nand->bbt_td = &bbt_main_descr; nand->bbt_md = &bbt_mirror_descr; /* set up nand options */ nand->options = NAND_NO_SUBPAGE_WRITE; nand->bbt_options = NAND_BBT_USE_FLASH; if (cspr & CSPR_PORT_SIZE_16) { nand->read_byte = fsl_ifc_read_byte16; nand->options |= NAND_BUSWIDTH_16; } else { nand->read_byte = fsl_ifc_read_byte; } nand->controller = &ifc_ctrl->controller; nand->priv = priv; nand->ecc.read_page = fsl_ifc_read_page; nand->ecc.write_page = fsl_ifc_write_page; /* Hardware generates ECC per 512 Bytes */ nand->ecc.size = 512; nand->ecc.bytes = 8; switch (csor & CSOR_NAND_PGS_MASK) { case CSOR_NAND_PGS_512: if (nand->options & NAND_BUSWIDTH_16) { layout = &oob_512_16bit_ecc4; } else { layout = &oob_512_8bit_ecc4; /* Avoid conflict with bad block marker */ bbt_main_descr.offs = 0; bbt_mirror_descr.offs = 0; } nand->ecc.strength = 4; priv->bufnum_mask = 15; break; case CSOR_NAND_PGS_2K: layout = &oob_2048_ecc4; nand->ecc.strength = 4; priv->bufnum_mask = 3; break; case CSOR_NAND_PGS_4K: if ((csor & CSOR_NAND_ECC_MODE_MASK) == CSOR_NAND_ECC_MODE_4) { layout = &oob_4096_ecc4; nand->ecc.strength = 4; } else { layout = &oob_4096_ecc8; nand->ecc.strength = 8; nand->ecc.bytes = 16; } priv->bufnum_mask = 1; break; default: printf("ifc nand: bad csor %#x: bad page size\n", csor); return -ENODEV; } /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */ if (csor & CSOR_NAND_ECC_DEC_EN) { nand->ecc.mode = NAND_ECC_HW; nand->ecc.layout = layout; } else { nand->ecc.mode = NAND_ECC_SOFT; } ver = in_be32(&ifc_ctrl->regs->ifc_rev); if (ver == FSL_IFC_V1_1_0) fsl_ifc_sram_init(); ret = nand_scan_ident(mtd, 1, NULL); if (ret) return ret; ret = nand_scan_tail(mtd); if (ret) return ret; ret = nand_register(devnum); if (ret) return ret; return 0; } #ifndef CONFIG_SYS_NAND_BASE_LIST #define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE } #endif static unsigned long base_address[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST; void board_nand_init(void) { int i; for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++) fsl_ifc_chip_init(i, (u8 *)base_address[i]); }