/* * Core registration and callback routines for MTD * drivers and users. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include struct mtd_info *mtd_table[MAX_MTD_DEVICES]; int add_mtd_device(struct mtd_info *mtd) { int i; BUG_ON(mtd->writesize == 0); for (i = 0; i < MAX_MTD_DEVICES; i++) if (!mtd_table[i]) { mtd_table[i] = mtd; mtd->index = i; mtd->usecount = 0; /* default value if not set by driver */ if (mtd->bitflip_threshold == 0) mtd->bitflip_threshold = mtd->ecc_strength; /* No need to get a refcount on the module containing the notifier, since we hold the mtd_table_mutex */ /* We _know_ we aren't being removed, because our caller is still holding us here. So none of this try_ nonsense, and no bitching about it either. :) */ return 0; } return 1; } /** * del_mtd_device - unregister an MTD device * @mtd: pointer to MTD device info structure * * Remove a device from the list of MTD devices present in the system, * and notify each currently active MTD 'user' of its departure. * Returns zero on success or 1 on failure, which currently will happen * if the requested device does not appear to be present in the list. */ int del_mtd_device(struct mtd_info *mtd) { int ret; if (mtd_table[mtd->index] != mtd) { ret = -ENODEV; } else if (mtd->usecount) { printk(KERN_NOTICE "Removing MTD device #%d (%s)" " with use count %d\n", mtd->index, mtd->name, mtd->usecount); ret = -EBUSY; } else { /* No need to get a refcount on the module containing * the notifier, since we hold the mtd_table_mutex */ mtd_table[mtd->index] = NULL; ret = 0; } return ret; } /** * get_mtd_device - obtain a validated handle for an MTD device * @mtd: last known address of the required MTD device * @num: internal device number of the required MTD device * * Given a number and NULL address, return the num'th entry in the device * table, if any. Given an address and num == -1, search the device table * for a device with that address and return if it's still present. Given * both, return the num'th driver only if its address matches. Return * error code if not. */ struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) { struct mtd_info *ret = NULL; int i, err = -ENODEV; if (num == -1) { for (i = 0; i < MAX_MTD_DEVICES; i++) if (mtd_table[i] == mtd) ret = mtd_table[i]; } else if (num < MAX_MTD_DEVICES) { ret = mtd_table[num]; if (mtd && mtd != ret) ret = NULL; } if (!ret) goto out_unlock; ret->usecount++; return ret; out_unlock: return ERR_PTR(err); } /** * get_mtd_device_nm - obtain a validated handle for an MTD device by * device name * @name: MTD device name to open * * This function returns MTD device description structure in case of * success and an error code in case of failure. */ struct mtd_info *get_mtd_device_nm(const char *name) { int i, err = -ENODEV; struct mtd_info *mtd = NULL; for (i = 0; i < MAX_MTD_DEVICES; i++) { if (mtd_table[i] && !strcmp(name, mtd_table[i]->name)) { mtd = mtd_table[i]; break; } } if (!mtd) goto out_unlock; mtd->usecount++; return mtd; out_unlock: return ERR_PTR(err); } void put_mtd_device(struct mtd_info *mtd) { int c; c = --mtd->usecount; BUG_ON(c < 0); } #if defined(CONFIG_CMD_MTDPARTS_SPREAD) /** * mtd_get_len_incl_bad * * Check if length including bad blocks fits into device. * * @param mtd an MTD device * @param offset offset in flash * @param length image length * @return image length including bad blocks in *len_incl_bad and whether or not * the length returned was truncated in *truncated */ void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset, const uint64_t length, uint64_t *len_incl_bad, int *truncated) { *truncated = 0; *len_incl_bad = 0; if (!mtd->block_isbad) { *len_incl_bad = length; return; } uint64_t len_excl_bad = 0; uint64_t block_len; while (len_excl_bad < length) { if (offset >= mtd->size) { *truncated = 1; return; } block_len = mtd->erasesize - (offset & (mtd->erasesize - 1)); if (!mtd->block_isbad(mtd, offset & ~(mtd->erasesize - 1))) len_excl_bad += block_len; *len_incl_bad += block_len; offset += block_len; } } #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */ /* * Erase is an asynchronous operation. Device drivers are supposed * to call instr->callback() whenever the operation completes, even * if it completes with a failure. * Callers are supposed to pass a callback function and wait for it * to be called before writing to the block. */ int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) { if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr) return -EINVAL; if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; if (!instr->len) { instr->state = MTD_ERASE_DONE; mtd_erase_callback(instr); return 0; } return mtd->_erase(mtd, instr); } int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { int ret_code; if (from < 0 || from > mtd->size || len > mtd->size - from) return -EINVAL; if (!len) return 0; /* * In the absence of an error, drivers return a non-negative integer * representing the maximum number of bitflips that were corrected on * any one ecc region (if applicable; zero otherwise). */ ret_code = mtd->_read(mtd, from, len, retlen, buf); if (unlikely(ret_code < 0)) return ret_code; if (mtd->ecc_strength == 0) return 0; /* device lacks ecc */ return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; } int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { *retlen = 0; if (to < 0 || to > mtd->size || len > mtd->size - to) return -EINVAL; if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE)) return -EROFS; if (!len) return 0; return mtd->_write(mtd, to, len, retlen, buf); } /* * In blackbox flight recorder like scenarios we want to make successful writes * in interrupt context. panic_write() is only intended to be called when its * known the kernel is about to panic and we need the write to succeed. Since * the kernel is not going to be running for much longer, this function can * break locks and delay to ensure the write succeeds (but not sleep). */ int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { *retlen = 0; if (!mtd->_panic_write) return -EOPNOTSUPP; if (to < 0 || to > mtd->size || len > mtd->size - to) return -EINVAL; if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; if (!len) return 0; return mtd->_panic_write(mtd, to, len, retlen, buf); } int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { ops->retlen = ops->oobretlen = 0; if (!mtd->_read_oob) return -EOPNOTSUPP; return mtd->_read_oob(mtd, from, ops); } /* * Method to access the protection register area, present in some flash * devices. The user data is one time programmable but the factory data is read * only. */ int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf, size_t len) { if (!mtd->_get_fact_prot_info) return -EOPNOTSUPP; if (!len) return 0; return mtd->_get_fact_prot_info(mtd, buf, len); } int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { *retlen = 0; if (!mtd->_read_fact_prot_reg) return -EOPNOTSUPP; if (!len) return 0; return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); } int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf, size_t len) { if (!mtd->_get_user_prot_info) return -EOPNOTSUPP; if (!len) return 0; return mtd->_get_user_prot_info(mtd, buf, len); } int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { *retlen = 0; if (!mtd->_read_user_prot_reg) return -EOPNOTSUPP; if (!len) return 0; return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); } int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, u_char *buf) { *retlen = 0; if (!mtd->_write_user_prot_reg) return -EOPNOTSUPP; if (!len) return 0; return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); } int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) { if (!mtd->_lock_user_prot_reg) return -EOPNOTSUPP; if (!len) return 0; return mtd->_lock_user_prot_reg(mtd, from, len); } /* Chip-supported device locking */ int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { if (!mtd->_lock) return -EOPNOTSUPP; if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) return -EINVAL; if (!len) return 0; return mtd->_lock(mtd, ofs, len); } int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { if (!mtd->_unlock) return -EOPNOTSUPP; if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) return -EINVAL; if (!len) return 0; return mtd->_unlock(mtd, ofs, len); } int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) { if (!mtd->_block_isbad) return 0; if (ofs < 0 || ofs > mtd->size) return -EINVAL; return mtd->_block_isbad(mtd, ofs); } int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) { if (!mtd->_block_markbad) return -EOPNOTSUPP; if (ofs < 0 || ofs > mtd->size) return -EINVAL; if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; return mtd->_block_markbad(mtd, ofs); }