/* * Copyright 2011, Marvell Semiconductor Inc. * Lei Wen * * SPDX-License-Identifier: GPL-2.0+ * * Back ported to the 8xx platform (from the 8260 platform) by * Murray.Jensen@cmst.csiro.au, 27-Jan-01. */ #include #include #include #include #if defined(CONFIG_FIXED_SDHCI_ALIGNED_BUFFER) void *aligned_buffer = (void *)CONFIG_FIXED_SDHCI_ALIGNED_BUFFER; #else void *aligned_buffer; #endif static void sdhci_reset(struct sdhci_host *host, u8 mask) { unsigned long timeout; /* Wait max 100 ms */ timeout = 100; sdhci_writeb(host, mask, SDHCI_SOFTWARE_RESET); while (sdhci_readb(host, SDHCI_SOFTWARE_RESET) & mask) { if (timeout == 0) { printf("%s: Reset 0x%x never completed.\n", __func__, (int)mask); return; } timeout--; udelay(1000); } } static void sdhci_cmd_done(struct sdhci_host *host, struct mmc_cmd *cmd) { int i; if (cmd->resp_type & MMC_RSP_136) { /* CRC is stripped so we need to do some shifting. */ for (i = 0; i < 4; i++) { cmd->response[i] = sdhci_readl(host, SDHCI_RESPONSE + (3-i)*4) << 8; if (i != 3) cmd->response[i] |= sdhci_readb(host, SDHCI_RESPONSE + (3-i)*4-1); } } else { cmd->response[0] = sdhci_readl(host, SDHCI_RESPONSE); } } static void sdhci_transfer_pio(struct sdhci_host *host, struct mmc_data *data) { int i; char *offs; for (i = 0; i < data->blocksize; i += 4) { offs = data->dest + i; if (data->flags == MMC_DATA_READ) *(u32 *)offs = sdhci_readl(host, SDHCI_BUFFER); else sdhci_writel(host, *(u32 *)offs, SDHCI_BUFFER); } } static int sdhci_transfer_data(struct sdhci_host *host, struct mmc_data *data, unsigned int start_addr) { unsigned int stat, rdy, mask, timeout, block = 0; #ifdef CONFIG_MMC_SDMA unsigned char ctrl; ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); ctrl &= ~SDHCI_CTRL_DMA_MASK; sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); #endif timeout = 1000000; rdy = SDHCI_INT_SPACE_AVAIL | SDHCI_INT_DATA_AVAIL; mask = SDHCI_DATA_AVAILABLE | SDHCI_SPACE_AVAILABLE; do { stat = sdhci_readl(host, SDHCI_INT_STATUS); if (stat & SDHCI_INT_ERROR) { printf("%s: Error detected in status(0x%X)!\n", __func__, stat); return -1; } if (stat & rdy) { if (!(sdhci_readl(host, SDHCI_PRESENT_STATE) & mask)) continue; sdhci_writel(host, rdy, SDHCI_INT_STATUS); sdhci_transfer_pio(host, data); data->dest += data->blocksize; if (++block >= data->blocks) break; } #ifdef CONFIG_MMC_SDMA if (stat & SDHCI_INT_DMA_END) { sdhci_writel(host, SDHCI_INT_DMA_END, SDHCI_INT_STATUS); start_addr &= ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1); start_addr += SDHCI_DEFAULT_BOUNDARY_SIZE; sdhci_writel(host, start_addr, SDHCI_DMA_ADDRESS); } #endif if (timeout-- > 0) udelay(10); else { printf("%s: Transfer data timeout\n", __func__); return -1; } } while (!(stat & SDHCI_INT_DATA_END)); return 0; } /* * No command will be sent by driver if card is busy, so driver must wait * for card ready state. * Every time when card is busy after timeout then (last) timeout value will be * increased twice but only if it doesn't exceed global defined maximum. * Each function call will use last timeout value. Max timeout can be redefined * in board config file. */ #ifndef CONFIG_SDHCI_CMD_MAX_TIMEOUT #define CONFIG_SDHCI_CMD_MAX_TIMEOUT 3200 #endif #define CONFIG_SDHCI_CMD_DEFAULT_TIMEOUT 100 #define SDHCI_READ_STATUS_TIMEOUT 1000 static int sdhci_send_command(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) { struct sdhci_host *host = mmc->priv; unsigned int stat = 0; int ret = 0; int trans_bytes = 0, is_aligned = 1; u32 mask, flags, mode; unsigned int time = 0, start_addr = 0; int mmc_dev = mmc_get_blk_desc(mmc)->devnum; unsigned start = get_timer(0); /* Timeout unit - ms */ static unsigned int cmd_timeout = CONFIG_SDHCI_CMD_DEFAULT_TIMEOUT; sdhci_writel(host, SDHCI_INT_ALL_MASK, SDHCI_INT_STATUS); mask = SDHCI_CMD_INHIBIT | SDHCI_DATA_INHIBIT; /* We shouldn't wait for data inihibit for stop commands, even though they might use busy signaling */ if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION) mask &= ~SDHCI_DATA_INHIBIT; while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) { if (time >= cmd_timeout) { printf("%s: MMC: %d busy ", __func__, mmc_dev); if (2 * cmd_timeout <= CONFIG_SDHCI_CMD_MAX_TIMEOUT) { cmd_timeout += cmd_timeout; printf("timeout increasing to: %u ms.\n", cmd_timeout); } else { puts("timeout.\n"); return COMM_ERR; } } time++; udelay(1000); } mask = SDHCI_INT_RESPONSE; if (!(cmd->resp_type & MMC_RSP_PRESENT)) flags = SDHCI_CMD_RESP_NONE; else if (cmd->resp_type & MMC_RSP_136) flags = SDHCI_CMD_RESP_LONG; else if (cmd->resp_type & MMC_RSP_BUSY) { flags = SDHCI_CMD_RESP_SHORT_BUSY; mask |= SDHCI_INT_DATA_END; } else flags = SDHCI_CMD_RESP_SHORT; if (cmd->resp_type & MMC_RSP_CRC) flags |= SDHCI_CMD_CRC; if (cmd->resp_type & MMC_RSP_OPCODE) flags |= SDHCI_CMD_INDEX; if (data) flags |= SDHCI_CMD_DATA; /* Set Transfer mode regarding to data flag */ if (data != 0) { sdhci_writeb(host, 0xe, SDHCI_TIMEOUT_CONTROL); mode = SDHCI_TRNS_BLK_CNT_EN; trans_bytes = data->blocks * data->blocksize; if (data->blocks > 1) mode |= SDHCI_TRNS_MULTI; if (data->flags == MMC_DATA_READ) mode |= SDHCI_TRNS_READ; #ifdef CONFIG_MMC_SDMA if (data->flags == MMC_DATA_READ) start_addr = (unsigned long)data->dest; else start_addr = (unsigned long)data->src; if ((host->quirks & SDHCI_QUIRK_32BIT_DMA_ADDR) && (start_addr & 0x7) != 0x0) { is_aligned = 0; start_addr = (unsigned long)aligned_buffer; if (data->flags != MMC_DATA_READ) memcpy(aligned_buffer, data->src, trans_bytes); } #if defined(CONFIG_FIXED_SDHCI_ALIGNED_BUFFER) /* * Always use this bounce-buffer when * CONFIG_FIXED_SDHCI_ALIGNED_BUFFER is defined */ is_aligned = 0; start_addr = (unsigned long)aligned_buffer; if (data->flags != MMC_DATA_READ) memcpy(aligned_buffer, data->src, trans_bytes); #endif sdhci_writel(host, start_addr, SDHCI_DMA_ADDRESS); mode |= SDHCI_TRNS_DMA; #endif sdhci_writew(host, SDHCI_MAKE_BLKSZ(SDHCI_DEFAULT_BOUNDARY_ARG, data->blocksize), SDHCI_BLOCK_SIZE); sdhci_writew(host, data->blocks, SDHCI_BLOCK_COUNT); sdhci_writew(host, mode, SDHCI_TRANSFER_MODE); } else if (cmd->resp_type & MMC_RSP_BUSY) { sdhci_writeb(host, 0xe, SDHCI_TIMEOUT_CONTROL); } sdhci_writel(host, cmd->cmdarg, SDHCI_ARGUMENT); #ifdef CONFIG_MMC_SDMA flush_cache(start_addr, trans_bytes); #endif sdhci_writew(host, SDHCI_MAKE_CMD(cmd->cmdidx, flags), SDHCI_COMMAND); start = get_timer(0); do { stat = sdhci_readl(host, SDHCI_INT_STATUS); if (stat & SDHCI_INT_ERROR) break; } while (((stat & mask) != mask) && (get_timer(start) < SDHCI_READ_STATUS_TIMEOUT)); if (get_timer(start) >= SDHCI_READ_STATUS_TIMEOUT) { if (host->quirks & SDHCI_QUIRK_BROKEN_R1B) return 0; else { printf("%s: Timeout for status update!\n", __func__); return TIMEOUT; } } if ((stat & (SDHCI_INT_ERROR | mask)) == mask) { sdhci_cmd_done(host, cmd); sdhci_writel(host, mask, SDHCI_INT_STATUS); } else ret = -1; if (!ret && data) ret = sdhci_transfer_data(host, data, start_addr); if (host->quirks & SDHCI_QUIRK_WAIT_SEND_CMD) udelay(1000); stat = sdhci_readl(host, SDHCI_INT_STATUS); sdhci_writel(host, SDHCI_INT_ALL_MASK, SDHCI_INT_STATUS); if (!ret) { if ((host->quirks & SDHCI_QUIRK_32BIT_DMA_ADDR) && !is_aligned && (data->flags == MMC_DATA_READ)) memcpy(data->dest, aligned_buffer, trans_bytes); return 0; } sdhci_reset(host, SDHCI_RESET_CMD); sdhci_reset(host, SDHCI_RESET_DATA); if (stat & SDHCI_INT_TIMEOUT) return TIMEOUT; else return COMM_ERR; } static int sdhci_set_clock(struct mmc *mmc, unsigned int clock) { struct sdhci_host *host = mmc->priv; unsigned int div, clk, timeout, reg; /* Wait max 20 ms */ timeout = 200; while (sdhci_readl(host, SDHCI_PRESENT_STATE) & (SDHCI_CMD_INHIBIT | SDHCI_DATA_INHIBIT)) { if (timeout == 0) { printf("%s: Timeout to wait cmd & data inhibit\n", __func__); return -1; } timeout--; udelay(100); } reg = sdhci_readw(host, SDHCI_CLOCK_CONTROL); reg &= ~SDHCI_CLOCK_CARD_EN; sdhci_writew(host, reg, SDHCI_CLOCK_CONTROL); if (clock == 0) return 0; if (SDHCI_GET_VERSION(host) >= SDHCI_SPEC_300) { /* Version 3.00 divisors must be a multiple of 2. */ if (mmc->cfg->f_max <= clock) div = 1; else { for (div = 2; div < SDHCI_MAX_DIV_SPEC_300; div += 2) { if ((mmc->cfg->f_max / div) <= clock) break; } } } else { /* Version 2.00 divisors must be a power of 2. */ for (div = 1; div < SDHCI_MAX_DIV_SPEC_200; div *= 2) { if ((mmc->cfg->f_max / div) <= clock) break; } } div >>= 1; if (host->set_clock) host->set_clock(host->index, div); clk = (div & SDHCI_DIV_MASK) << SDHCI_DIVIDER_SHIFT; clk |= ((div & SDHCI_DIV_HI_MASK) >> SDHCI_DIV_MASK_LEN) << SDHCI_DIVIDER_HI_SHIFT; clk |= SDHCI_CLOCK_INT_EN; sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); /* Wait max 20 ms */ timeout = 20; while (!((clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL)) & SDHCI_CLOCK_INT_STABLE)) { if (timeout == 0) { printf("%s: Internal clock never stabilised.\n", __func__); return -1; } timeout--; udelay(1000); } clk |= SDHCI_CLOCK_CARD_EN; sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); return 0; } static void sdhci_set_power(struct sdhci_host *host, unsigned short power) { u8 pwr = 0; if (power != (unsigned short)-1) { switch (1 << power) { case MMC_VDD_165_195: pwr = SDHCI_POWER_180; break; case MMC_VDD_29_30: case MMC_VDD_30_31: pwr = SDHCI_POWER_300; break; case MMC_VDD_32_33: case MMC_VDD_33_34: pwr = SDHCI_POWER_330; break; } } if (pwr == 0) { sdhci_writeb(host, 0, SDHCI_POWER_CONTROL); return; } if (host->quirks & SDHCI_QUIRK_NO_SIMULT_VDD_AND_POWER) sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL); pwr |= SDHCI_POWER_ON; sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL); } static void sdhci_set_ios(struct mmc *mmc) { u32 ctrl; struct sdhci_host *host = mmc->priv; if (host->set_control_reg) host->set_control_reg(host); if (mmc->clock != host->clock) sdhci_set_clock(mmc, mmc->clock); /* Set bus width */ ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); if (mmc->bus_width == 8) { ctrl &= ~SDHCI_CTRL_4BITBUS; if ((SDHCI_GET_VERSION(host) >= SDHCI_SPEC_300) || (host->quirks & SDHCI_QUIRK_USE_WIDE8)) ctrl |= SDHCI_CTRL_8BITBUS; } else { if ((SDHCI_GET_VERSION(host) >= SDHCI_SPEC_300) || (host->quirks & SDHCI_QUIRK_USE_WIDE8)) ctrl &= ~SDHCI_CTRL_8BITBUS; if (mmc->bus_width == 4) ctrl |= SDHCI_CTRL_4BITBUS; else ctrl &= ~SDHCI_CTRL_4BITBUS; } if (mmc->clock > 26000000) ctrl |= SDHCI_CTRL_HISPD; else ctrl &= ~SDHCI_CTRL_HISPD; if (host->quirks & SDHCI_QUIRK_NO_HISPD_BIT) ctrl &= ~SDHCI_CTRL_HISPD; sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); } static int sdhci_init(struct mmc *mmc) { struct sdhci_host *host = mmc->priv; if ((host->quirks & SDHCI_QUIRK_32BIT_DMA_ADDR) && !aligned_buffer) { aligned_buffer = memalign(8, 512*1024); if (!aligned_buffer) { printf("%s: Aligned buffer alloc failed!!!\n", __func__); return -1; } } sdhci_set_power(host, fls(mmc->cfg->voltages) - 1); if (host->quirks & SDHCI_QUIRK_NO_CD) { #if defined(CONFIG_PIC32_SDHCI) /* PIC32 SDHCI CD errata: * - set CD_TEST and clear CD_TEST_INS bit */ sdhci_writeb(host, SDHCI_CTRL_CD_TEST, SDHCI_HOST_CONTROL); #else unsigned int status; sdhci_writeb(host, SDHCI_CTRL_CD_TEST_INS | SDHCI_CTRL_CD_TEST, SDHCI_HOST_CONTROL); status = sdhci_readl(host, SDHCI_PRESENT_STATE); while ((!(status & SDHCI_CARD_PRESENT)) || (!(status & SDHCI_CARD_STATE_STABLE)) || (!(status & SDHCI_CARD_DETECT_PIN_LEVEL))) status = sdhci_readl(host, SDHCI_PRESENT_STATE); #endif } /* Enable only interrupts served by the SD controller */ sdhci_writel(host, SDHCI_INT_DATA_MASK | SDHCI_INT_CMD_MASK, SDHCI_INT_ENABLE); /* Mask all sdhci interrupt sources */ sdhci_writel(host, 0x0, SDHCI_SIGNAL_ENABLE); return 0; } static const struct mmc_ops sdhci_ops = { .send_cmd = sdhci_send_command, .set_ios = sdhci_set_ios, .init = sdhci_init, }; int add_sdhci(struct sdhci_host *host, u32 max_clk, u32 min_clk) { unsigned int caps; host->cfg.name = host->name; host->cfg.ops = &sdhci_ops; caps = sdhci_readl(host, SDHCI_CAPABILITIES); #ifdef CONFIG_MMC_SDMA if (!(caps & SDHCI_CAN_DO_SDMA)) { printf("%s: Your controller doesn't support SDMA!!\n", __func__); return -1; } #endif if (max_clk) host->cfg.f_max = max_clk; else { if (SDHCI_GET_VERSION(host) >= SDHCI_SPEC_300) host->cfg.f_max = (caps & SDHCI_CLOCK_V3_BASE_MASK) >> SDHCI_CLOCK_BASE_SHIFT; else host->cfg.f_max = (caps & SDHCI_CLOCK_BASE_MASK) >> SDHCI_CLOCK_BASE_SHIFT; host->cfg.f_max *= 1000000; } if (host->cfg.f_max == 0) { printf("%s: Hardware doesn't specify base clock frequency\n", __func__); return -1; } if (min_clk) host->cfg.f_min = min_clk; else { if (SDHCI_GET_VERSION(host) >= SDHCI_SPEC_300) host->cfg.f_min = host->cfg.f_max / SDHCI_MAX_DIV_SPEC_300; else host->cfg.f_min = host->cfg.f_max / SDHCI_MAX_DIV_SPEC_200; } host->cfg.voltages = 0; if (caps & SDHCI_CAN_VDD_330) host->cfg.voltages |= MMC_VDD_32_33 | MMC_VDD_33_34; if (caps & SDHCI_CAN_VDD_300) host->cfg.voltages |= MMC_VDD_29_30 | MMC_VDD_30_31; if (caps & SDHCI_CAN_VDD_180) host->cfg.voltages |= MMC_VDD_165_195; if (host->quirks & SDHCI_QUIRK_BROKEN_VOLTAGE) host->cfg.voltages |= host->voltages; host->cfg.host_caps = MMC_MODE_HS | MMC_MODE_HS_52MHz | MMC_MODE_4BIT; if (SDHCI_GET_VERSION(host) >= SDHCI_SPEC_300) { if (caps & SDHCI_CAN_DO_8BIT) host->cfg.host_caps |= MMC_MODE_8BIT; } if (host->quirks & SDHCI_QUIRK_NO_HISPD_BIT) host->cfg.host_caps &= ~(MMC_MODE_HS | MMC_MODE_HS_52MHz); if (host->host_caps) host->cfg.host_caps |= host->host_caps; host->cfg.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT; sdhci_reset(host, SDHCI_RESET_ALL); host->mmc = mmc_create(&host->cfg, host); if (host->mmc == NULL) { printf("%s: mmc create fail!\n", __func__); return -1; } return 0; }