/* * Freescale i.MX28 OCOTP Driver * * Copyright (C) 2014 Marek Vasut * * SPDX-License-Identifier: GPL-2.0+ * * Note: The i.MX23/i.MX28 OCOTP block is a predecessor to the OCOTP block * used in i.MX6 . While these blocks are very similar at the first * glance, by digging deeper, one will notice differences (like the * tight dependence on MXS power block, some completely new registers * etc.) which would make common driver an ifdef nightmare :-( */ #include #include #include #include #include #include #include #define MXS_OCOTP_TIMEOUT 100000 static struct mxs_ocotp_regs *ocotp_regs = (struct mxs_ocotp_regs *)MXS_OCOTP_BASE; static struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; static struct mxs_clkctrl_regs *clkctrl_regs = (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; static int mxs_ocotp_wait_busy_clear(void) { uint32_t reg; int timeout = MXS_OCOTP_TIMEOUT; while (--timeout) { reg = readl(&ocotp_regs->hw_ocotp_ctrl); if (!(reg & OCOTP_CTRL_BUSY)) break; udelay(10); } if (!timeout) return -EINVAL; /* Wait a little as per FSL datasheet's 'write postamble' section. */ udelay(10); return 0; } static void mxs_ocotp_clear_error(void) { writel(OCOTP_CTRL_ERROR, &ocotp_regs->hw_ocotp_ctrl_clr); } static int mxs_ocotp_read_bank_open(bool open) { int ret = 0; if (open) { writel(OCOTP_CTRL_RD_BANK_OPEN, &ocotp_regs->hw_ocotp_ctrl_set); /* * Wait before polling the BUSY bit, since the BUSY bit might * be asserted only after a few HCLK cycles and if we were to * poll immediatelly, we could miss the busy bit. */ udelay(10); ret = mxs_ocotp_wait_busy_clear(); } else { writel(OCOTP_CTRL_RD_BANK_OPEN, &ocotp_regs->hw_ocotp_ctrl_clr); } return ret; } static void mxs_ocotp_scale_vddio(bool enter, uint32_t *val) { uint32_t scale_val; if (enter) { /* * Enter the fuse programming VDDIO voltage setup. We start * scaling the voltage from it's current value down to 2.8V * which is the one and only correct voltage for programming * the OCOTP fuses (according to datasheet). */ scale_val = readl(&power_regs->hw_power_vddioctrl); scale_val &= POWER_VDDIOCTRL_TRG_MASK; /* Return the original voltage. */ *val = scale_val; /* * Start scaling VDDIO down to 0x2, which is 2.8V . Actually, * the value 0x0 should be 2.8V, but that's not the case on * most designs due to load etc., so we play safe. Undervolt * can actually cause incorrect programming of the fuses and * or reboots of the board. */ while (scale_val > 2) { clrsetbits_le32(&power_regs->hw_power_vddioctrl, POWER_VDDIOCTRL_TRG_MASK, --scale_val); udelay(500); } } else { /* Start scaling VDDIO up to original value . */ for (scale_val = 2; scale_val <= *val; scale_val++) { clrsetbits_le32(&power_regs->hw_power_vddioctrl, POWER_VDDIOCTRL_TRG_MASK, scale_val); udelay(500); } } mdelay(10); } static int mxs_ocotp_wait_hclk_ready(void) { uint32_t reg, timeout = MXS_OCOTP_TIMEOUT; while (--timeout) { reg = readl(&clkctrl_regs->hw_clkctrl_hbus); if (!(reg & CLKCTRL_HBUS_ASM_BUSY)) break; } if (!timeout) return -EINVAL; return 0; } static int mxs_ocotp_scale_hclk(bool enter, uint32_t *val) { uint32_t scale_val; int ret; ret = mxs_ocotp_wait_hclk_ready(); if (ret) return ret; /* Set CPU bypass */ writel(CLKCTRL_CLKSEQ_BYPASS_CPU, &clkctrl_regs->hw_clkctrl_clkseq_set); if (enter) { /* Return the original HCLK clock speed. */ *val = readl(&clkctrl_regs->hw_clkctrl_hbus); *val &= CLKCTRL_HBUS_DIV_MASK; *val >>= CLKCTRL_HBUS_DIV_OFFSET; /* Scale the HCLK to 454/19 = 23.9 MHz . */ scale_val = (~19) << CLKCTRL_HBUS_DIV_OFFSET; scale_val &= CLKCTRL_HBUS_DIV_MASK; } else { /* Scale the HCLK back to original frequency. */ scale_val = (~(*val)) << CLKCTRL_HBUS_DIV_OFFSET; scale_val &= CLKCTRL_HBUS_DIV_MASK; } writel(CLKCTRL_HBUS_DIV_MASK, &clkctrl_regs->hw_clkctrl_hbus_set); writel(scale_val, &clkctrl_regs->hw_clkctrl_hbus_clr); mdelay(10); ret = mxs_ocotp_wait_hclk_ready(); if (ret) return ret; /* Disable CPU bypass */ writel(CLKCTRL_CLKSEQ_BYPASS_CPU, &clkctrl_regs->hw_clkctrl_clkseq_clr); mdelay(10); return 0; } static int mxs_ocotp_write_fuse(uint32_t addr, uint32_t mask) { uint32_t hclk_val, vddio_val; int ret; mxs_ocotp_clear_error(); /* Make sure the banks are closed for reading. */ ret = mxs_ocotp_read_bank_open(0); if (ret) { puts("Failed closing banks for reading!\n"); return ret; } ret = mxs_ocotp_scale_hclk(1, &hclk_val); if (ret) { puts("Failed scaling down the HCLK!\n"); return ret; } mxs_ocotp_scale_vddio(1, &vddio_val); ret = mxs_ocotp_wait_busy_clear(); if (ret) { puts("Failed waiting for ready state!\n"); goto fail; } /* Program the fuse address */ writel(addr | OCOTP_CTRL_WR_UNLOCK_KEY, &ocotp_regs->hw_ocotp_ctrl); /* Program the data. */ writel(mask, &ocotp_regs->hw_ocotp_data); udelay(10); ret = mxs_ocotp_wait_busy_clear(); if (ret) { puts("Failed waiting for ready state!\n"); goto fail; } /* Check for errors */ if (readl(&ocotp_regs->hw_ocotp_ctrl) & OCOTP_CTRL_ERROR) { puts("Failed writing fuses!\n"); ret = -EPERM; goto fail; } fail: mxs_ocotp_scale_vddio(0, &vddio_val); if (mxs_ocotp_scale_hclk(0, &hclk_val)) puts("Failed scaling up the HCLK!\n"); return ret; } static int mxs_ocotp_read_fuse(uint32_t reg, uint32_t *val) { int ret; /* Register offset from CUST0 */ reg = ((uint32_t)&ocotp_regs->hw_ocotp_cust0) + (reg << 4); ret = mxs_ocotp_wait_busy_clear(); if (ret) { puts("Failed waiting for ready state!\n"); return ret; } mxs_ocotp_clear_error(); ret = mxs_ocotp_read_bank_open(1); if (ret) { puts("Failed opening banks for reading!\n"); return ret; } *val = readl(reg); ret = mxs_ocotp_read_bank_open(0); if (ret) { puts("Failed closing banks for reading!\n"); return ret; } return ret; } static int mxs_ocotp_valid(u32 bank, u32 word) { if (bank > 4) return -EINVAL; if (word > 7) return -EINVAL; return 0; } /* * The 'fuse' command API */ int fuse_read(u32 bank, u32 word, u32 *val) { int ret; ret = mxs_ocotp_valid(bank, word); if (ret) return ret; return mxs_ocotp_read_fuse((bank << 3) | word, val); } int fuse_prog(u32 bank, u32 word, u32 val) { int ret; ret = mxs_ocotp_valid(bank, word); if (ret) return ret; return mxs_ocotp_write_fuse((bank << 3) | word, val); } int fuse_sense(u32 bank, u32 word, u32 *val) { /* We do not support sensing :-( */ return -EINVAL; } int fuse_override(u32 bank, u32 word, u32 val) { /* We do not support overriding :-( */ return -EINVAL; }