/* * Freescale i.MX28 I2C Driver * * Copyright (C) 2011 Marek Vasut * on behalf of DENX Software Engineering GmbH * * Partly based on Linux kernel i2c-mxs.c driver: * Copyright (C) 2011 Wolfram Sang, Pengutronix e.K. * * Which was based on a (non-working) driver which was: * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #define MXS_I2C_MAX_TIMEOUT 1000000 static struct mxs_i2c_regs *mxs_i2c_get_base(struct i2c_adapter *adap) { if (adap->hwadapnr == 0) return (struct mxs_i2c_regs *)MXS_I2C0_BASE; else return (struct mxs_i2c_regs *)MXS_I2C1_BASE; } static unsigned int mxs_i2c_get_bus_speed(struct i2c_adapter *adap) { struct mxs_i2c_regs *i2c_regs = mxs_i2c_get_base(adap); uint32_t clk = mxc_get_clock(MXC_XTAL_CLK); uint32_t timing0; timing0 = readl(&i2c_regs->hw_i2c_timing0); /* * This is a reverse version of the algorithm presented in * i2c_set_bus_speed(). Please refer there for details. */ return clk / ((((timing0 >> 16) - 3) * 2) + 38); } static uint mxs_i2c_set_bus_speed(struct i2c_adapter *adap, uint speed) { struct mxs_i2c_regs *i2c_regs = mxs_i2c_get_base(adap); /* * The timing derivation algorithm. There is no documentation for this * algorithm available, it was derived by using the scope and fiddling * with constants until the result observed on the scope was good enough * for 20kHz, 50kHz, 100kHz, 200kHz, 300kHz and 400kHz. It should be * possible to assume the algorithm works for other frequencies as well. * * Note it was necessary to cap the frequency on both ends as it's not * possible to configure completely arbitrary frequency for the I2C bus * clock. */ uint32_t clk = mxc_get_clock(MXC_XTAL_CLK); uint32_t base = ((clk / speed) - 38) / 2; uint16_t high_count = base + 3; uint16_t low_count = base - 3; uint16_t rcv_count = (high_count * 3) / 4; uint16_t xmit_count = low_count / 4; if (speed > 540000) { printf("MXS I2C: Speed too high (%d Hz)\n", speed); return -EINVAL; } if (speed < 12000) { printf("MXS I2C: Speed too low (%d Hz)\n", speed); return -EINVAL; } writel((high_count << 16) | rcv_count, &i2c_regs->hw_i2c_timing0); writel((low_count << 16) | xmit_count, &i2c_regs->hw_i2c_timing1); writel((0x0030 << I2C_TIMING2_BUS_FREE_OFFSET) | (0x0030 << I2C_TIMING2_LEADIN_COUNT_OFFSET), &i2c_regs->hw_i2c_timing2); return 0; } static void mxs_i2c_reset(struct i2c_adapter *adap) { struct mxs_i2c_regs *i2c_regs = mxs_i2c_get_base(adap); int ret; int speed = mxs_i2c_get_bus_speed(adap); ret = mxs_reset_block(&i2c_regs->hw_i2c_ctrl0_reg); if (ret) { debug("MXS I2C: Block reset timeout\n"); return; } writel(I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | I2C_CTRL1_NO_SLAVE_ACK_IRQ | I2C_CTRL1_EARLY_TERM_IRQ | I2C_CTRL1_MASTER_LOSS_IRQ | I2C_CTRL1_SLAVE_STOP_IRQ | I2C_CTRL1_SLAVE_IRQ, &i2c_regs->hw_i2c_ctrl1_clr); writel(I2C_QUEUECTRL_PIO_QUEUE_MODE, &i2c_regs->hw_i2c_queuectrl_set); mxs_i2c_set_bus_speed(adap, speed); } static void mxs_i2c_setup_read(struct i2c_adapter *adap, uint8_t chip, int len) { struct mxs_i2c_regs *i2c_regs = mxs_i2c_get_base(adap); writel(I2C_QUEUECMD_RETAIN_CLOCK | I2C_QUEUECMD_PRE_SEND_START | I2C_QUEUECMD_MASTER_MODE | I2C_QUEUECMD_DIRECTION | (1 << I2C_QUEUECMD_XFER_COUNT_OFFSET), &i2c_regs->hw_i2c_queuecmd); writel((chip << 1) | 1, &i2c_regs->hw_i2c_data); writel(I2C_QUEUECMD_SEND_NAK_ON_LAST | I2C_QUEUECMD_MASTER_MODE | (len << I2C_QUEUECMD_XFER_COUNT_OFFSET) | I2C_QUEUECMD_POST_SEND_STOP, &i2c_regs->hw_i2c_queuecmd); writel(I2C_QUEUECTRL_QUEUE_RUN, &i2c_regs->hw_i2c_queuectrl_set); } static int mxs_i2c_write(struct i2c_adapter *adap, uchar chip, uint addr, int alen, uchar *buf, int blen, int stop) { struct mxs_i2c_regs *i2c_regs = mxs_i2c_get_base(adap); uint32_t data, tmp; int i, remain, off; int timeout = MXS_I2C_MAX_TIMEOUT; if ((alen > 4) || (alen == 0)) { debug("MXS I2C: Invalid address length\n"); return -EINVAL; } if (stop) stop = I2C_QUEUECMD_POST_SEND_STOP; writel(I2C_QUEUECMD_PRE_SEND_START | I2C_QUEUECMD_MASTER_MODE | I2C_QUEUECMD_DIRECTION | ((blen + alen + 1) << I2C_QUEUECMD_XFER_COUNT_OFFSET) | stop, &i2c_regs->hw_i2c_queuecmd); data = (chip << 1) << 24; for (i = 0; i < alen; i++) { data >>= 8; data |= ((char *)&addr)[alen - i - 1] << 24; if ((i & 3) == 2) writel(data, &i2c_regs->hw_i2c_data); } off = i; for (; i < off + blen; i++) { data >>= 8; data |= buf[i - off] << 24; if ((i & 3) == 2) writel(data, &i2c_regs->hw_i2c_data); } remain = 24 - ((i & 3) * 8); if (remain) writel(data >> remain, &i2c_regs->hw_i2c_data); writel(I2C_QUEUECTRL_QUEUE_RUN, &i2c_regs->hw_i2c_queuectrl_set); while (--timeout) { tmp = readl(&i2c_regs->hw_i2c_queuestat); if (tmp & I2C_QUEUESTAT_WR_QUEUE_EMPTY) break; } if (!timeout) { debug("MXS I2C: Failed transmitting data!\n"); return -EINVAL; } return 0; } static int mxs_i2c_wait_for_ack(struct i2c_adapter *adap) { struct mxs_i2c_regs *i2c_regs = mxs_i2c_get_base(adap); uint32_t tmp; int timeout = MXS_I2C_MAX_TIMEOUT; for (;;) { tmp = readl(&i2c_regs->hw_i2c_ctrl1); if (tmp & I2C_CTRL1_NO_SLAVE_ACK_IRQ) { debug("MXS I2C: No slave ACK\n"); goto err; } if (tmp & ( I2C_CTRL1_EARLY_TERM_IRQ | I2C_CTRL1_MASTER_LOSS_IRQ | I2C_CTRL1_SLAVE_STOP_IRQ | I2C_CTRL1_SLAVE_IRQ)) { debug("MXS I2C: Error (CTRL1 = %08x)\n", tmp); goto err; } if (tmp & I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ) break; if (!timeout--) { debug("MXS I2C: Operation timed out\n"); goto err; } udelay(1); } return 0; err: mxs_i2c_reset(adap); return 1; } static int mxs_i2c_if_read(struct i2c_adapter *adap, uint8_t chip, uint addr, int alen, uint8_t *buffer, int len) { struct mxs_i2c_regs *i2c_regs = mxs_i2c_get_base(adap); uint32_t tmp = 0; int timeout = MXS_I2C_MAX_TIMEOUT; int ret; int i; ret = mxs_i2c_write(adap, chip, addr, alen, NULL, 0, 0); if (ret) { debug("MXS I2C: Failed writing address\n"); return ret; } ret = mxs_i2c_wait_for_ack(adap); if (ret) { debug("MXS I2C: Failed writing address\n"); return ret; } mxs_i2c_setup_read(adap, chip, len); ret = mxs_i2c_wait_for_ack(adap); if (ret) { debug("MXS I2C: Failed reading address\n"); return ret; } for (i = 0; i < len; i++) { if (!(i & 3)) { while (--timeout) { tmp = readl(&i2c_regs->hw_i2c_queuestat); if (!(tmp & I2C_QUEUESTAT_RD_QUEUE_EMPTY)) break; } if (!timeout) { debug("MXS I2C: Failed receiving data!\n"); return -ETIMEDOUT; } tmp = readl(&i2c_regs->hw_i2c_queuedata); } buffer[i] = tmp & 0xff; tmp >>= 8; } return 0; } static int mxs_i2c_if_write(struct i2c_adapter *adap, uint8_t chip, uint addr, int alen, uint8_t *buffer, int len) { int ret; ret = mxs_i2c_write(adap, chip, addr, alen, buffer, len, 1); if (ret) { debug("MXS I2C: Failed writing address\n"); return ret; } ret = mxs_i2c_wait_for_ack(adap); if (ret) debug("MXS I2C: Failed writing address\n"); return ret; } static int mxs_i2c_probe(struct i2c_adapter *adap, uint8_t chip) { int ret; ret = mxs_i2c_write(adap, chip, 0, 1, NULL, 0, 1); if (!ret) ret = mxs_i2c_wait_for_ack(adap); mxs_i2c_reset(adap); return ret; } static void mxs_i2c_init(struct i2c_adapter *adap, int speed, int slaveaddr) { mxs_i2c_reset(adap); mxs_i2c_set_bus_speed(adap, speed); return; } U_BOOT_I2C_ADAP_COMPLETE(mxs0, mxs_i2c_init, mxs_i2c_probe, mxs_i2c_if_read, mxs_i2c_if_write, mxs_i2c_set_bus_speed, CONFIG_SYS_I2C_SPEED, 0, 0) U_BOOT_I2C_ADAP_COMPLETE(mxs1, mxs_i2c_init, mxs_i2c_probe, mxs_i2c_if_read, mxs_i2c_if_write, mxs_i2c_set_bus_speed, CONFIG_SYS_I2C_SPEED, 0, 1)