/* * Copyright Altera Corporation (C) 2014-2015 * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; struct sdram_prot_rule { u32 sdram_start; /* SDRAM start address */ u32 sdram_end; /* SDRAM end address */ u32 rule; /* SDRAM protection rule number: 0-19 */ int valid; /* Rule valid or not? 1 - valid, 0 not*/ u32 security; u32 portmask; u32 result; u32 lo_prot_id; u32 hi_prot_id; }; static struct socfpga_system_manager *sysmgr_regs = (struct socfpga_system_manager *)SOCFPGA_SYSMGR_ADDRESS; static struct socfpga_sdr_ctrl *sdr_ctrl = (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; /** * get_errata_rows() - Up the number of DRAM rows to cover entire address space * @cfg: SDRAM controller configuration data * * SDRAM Failure happens when accessing non-existent memory. Artificially * increase the number of rows so that the memory controller thinks it has * 4GB of RAM. This function returns such amount of rows. */ static int get_errata_rows(const struct socfpga_sdram_config *cfg) { /* Define constant for 4G memory - used for SDRAM errata workaround */ #define MEMSIZE_4G (4ULL * 1024ULL * 1024ULL * 1024ULL) const unsigned long long memsize = MEMSIZE_4G; const unsigned int cs = ((cfg->dram_addrw & SDR_CTRLGRP_DRAMADDRW_CSBITS_MASK) >> SDR_CTRLGRP_DRAMADDRW_CSBITS_LSB) + 1; const unsigned int rows = (cfg->dram_addrw & SDR_CTRLGRP_DRAMADDRW_ROWBITS_MASK) >> SDR_CTRLGRP_DRAMADDRW_ROWBITS_LSB; const unsigned int banks = (cfg->dram_addrw & SDR_CTRLGRP_DRAMADDRW_BANKBITS_MASK) >> SDR_CTRLGRP_DRAMADDRW_BANKBITS_LSB; const unsigned int cols = (cfg->dram_addrw & SDR_CTRLGRP_DRAMADDRW_COLBITS_MASK) >> SDR_CTRLGRP_DRAMADDRW_COLBITS_LSB; const unsigned int width = 8; unsigned long long newrows; int bits, inewrowslog2; debug("workaround rows - memsize %lld\n", memsize); debug("workaround rows - cs %d\n", cs); debug("workaround rows - width %d\n", width); debug("workaround rows - rows %d\n", rows); debug("workaround rows - banks %d\n", banks); debug("workaround rows - cols %d\n", cols); newrows = lldiv(memsize, cs * (width / 8)); debug("rows workaround - term1 %lld\n", newrows); newrows = lldiv(newrows, (1 << banks) * (1 << cols)); debug("rows workaround - term2 %lld\n", newrows); /* * Compute the hamming weight - same as number of bits set. * Need to see if result is ordinal power of 2 before * attempting log2 of result. */ bits = generic_hweight32(newrows); debug("rows workaround - bits %d\n", bits); if (bits != 1) { printf("SDRAM workaround failed, bits set %d\n", bits); return rows; } if (newrows > UINT_MAX) { printf("SDRAM workaround rangecheck failed, %lld\n", newrows); return rows; } inewrowslog2 = __ilog2(newrows); debug("rows workaround - ilog2 %d, %lld\n", inewrowslog2, newrows); if (inewrowslog2 == -1) { printf("SDRAM workaround failed, newrows %lld\n", newrows); return rows; } return inewrowslog2; } /* SDRAM protection rules vary from 0-19, a total of 20 rules. */ static void sdram_set_rule(struct sdram_prot_rule *prule) { u32 lo_addr_bits; u32 hi_addr_bits; int ruleno = prule->rule; /* Select the rule */ writel(ruleno, &sdr_ctrl->prot_rule_rdwr); /* Obtain the address bits */ lo_addr_bits = prule->sdram_start >> 20ULL; hi_addr_bits = (prule->sdram_end - 1) >> 20ULL; debug("sdram set rule start %x, %d\n", lo_addr_bits, prule->sdram_start); debug("sdram set rule end %x, %d\n", hi_addr_bits, prule->sdram_end); /* Set rule addresses */ writel(lo_addr_bits | (hi_addr_bits << 12), &sdr_ctrl->prot_rule_addr); /* Set rule protection ids */ writel(prule->lo_prot_id | (prule->hi_prot_id << 12), &sdr_ctrl->prot_rule_id); /* Set the rule data */ writel(prule->security | (prule->valid << 2) | (prule->portmask << 3) | (prule->result << 13), &sdr_ctrl->prot_rule_data); /* write the rule */ writel(ruleno | (1 << 5), &sdr_ctrl->prot_rule_rdwr); /* Set rule number to 0 by default */ writel(0, &sdr_ctrl->prot_rule_rdwr); } static void sdram_get_rule(struct sdram_prot_rule *prule) { u32 addr; u32 id; u32 data; int ruleno = prule->rule; /* Read the rule */ writel(ruleno, &sdr_ctrl->prot_rule_rdwr); writel(ruleno | (1 << 6), &sdr_ctrl->prot_rule_rdwr); /* Get the addresses */ addr = readl(&sdr_ctrl->prot_rule_addr); prule->sdram_start = (addr & 0xFFF) << 20; prule->sdram_end = ((addr >> 12) & 0xFFF) << 20; /* Get the configured protection IDs */ id = readl(&sdr_ctrl->prot_rule_id); prule->lo_prot_id = id & 0xFFF; prule->hi_prot_id = (id >> 12) & 0xFFF; /* Get protection data */ data = readl(&sdr_ctrl->prot_rule_data); prule->security = data & 0x3; prule->valid = (data >> 2) & 0x1; prule->portmask = (data >> 3) & 0x3FF; prule->result = (data >> 13) & 0x1; } static void sdram_set_protection_config(const u32 sdram_start, const u32 sdram_end) { struct sdram_prot_rule rule; int rules; /* Start with accepting all SDRAM transaction */ writel(0x0, &sdr_ctrl->protport_default); /* Clear all protection rules for warm boot case */ memset(&rule, 0, sizeof(rule)); for (rules = 0; rules < 20; rules++) { rule.rule = rules; sdram_set_rule(&rule); } /* new rule: accept SDRAM */ rule.sdram_start = sdram_start; rule.sdram_end = sdram_end; rule.lo_prot_id = 0x0; rule.hi_prot_id = 0xFFF; rule.portmask = 0x3FF; rule.security = 0x3; rule.result = 0; rule.valid = 1; rule.rule = 0; /* set new rule */ sdram_set_rule(&rule); /* default rule: reject everything */ writel(0x3ff, &sdr_ctrl->protport_default); } static void sdram_dump_protection_config(void) { struct sdram_prot_rule rule; int rules; debug("SDRAM Prot rule, default %x\n", readl(&sdr_ctrl->protport_default)); for (rules = 0; rules < 20; rules++) { rule.rule = rules; sdram_get_rule(&rule); debug("Rule %d, rules ...\n", rules); debug(" sdram start %x\n", rule.sdram_start); debug(" sdram end %x\n", rule.sdram_end); debug(" low prot id %d, hi prot id %d\n", rule.lo_prot_id, rule.hi_prot_id); debug(" portmask %x\n", rule.portmask); debug(" security %d\n", rule.security); debug(" result %d\n", rule.result); debug(" valid %d\n", rule.valid); } } /** * sdram_write_verify() - write to register and verify the write. * @addr: Register address * @val: Value to be written and verified * * This function writes to a register, reads back the value and compares * the result with the written value to check if the data match. */ static unsigned sdram_write_verify(const u32 *addr, const u32 val) { u32 rval; debug(" Write - Address 0x%p Data 0x%08x\n", addr, val); writel(val, addr); debug(" Read and verify..."); rval = readl(addr); if (rval != val) { debug("FAIL - Address 0x%p Expected 0x%08x Data 0x%08x\n", addr, val, rval); return -EINVAL; } debug("correct!\n"); return 0; } /** * sdr_get_ctrlcfg() - Get the value of DRAM CTRLCFG register * @cfg: SDRAM controller configuration data * * Return the value of DRAM CTRLCFG register. */ static u32 sdr_get_ctrlcfg(const struct socfpga_sdram_config *cfg) { const u32 csbits = ((cfg->dram_addrw & SDR_CTRLGRP_DRAMADDRW_CSBITS_MASK) >> SDR_CTRLGRP_DRAMADDRW_CSBITS_LSB) + 1; u32 addrorder = (cfg->ctrl_cfg & SDR_CTRLGRP_CTRLCFG_ADDRORDER_MASK) >> SDR_CTRLGRP_CTRLCFG_ADDRORDER_LSB; u32 ctrl_cfg = cfg->ctrl_cfg; /* * SDRAM Failure When Accessing Non-Existent Memory * Set the addrorder field of the SDRAM control register * based on the CSBITs setting. */ if (csbits == 1) { if (addrorder != 0) debug("INFO: Changing address order to 0 (chip, row, bank, column)\n"); addrorder = 0; } else if (csbits == 2) { if (addrorder != 2) debug("INFO: Changing address order to 2 (row, chip, bank, column)\n"); addrorder = 2; } ctrl_cfg &= ~SDR_CTRLGRP_CTRLCFG_ADDRORDER_MASK; ctrl_cfg |= addrorder << SDR_CTRLGRP_CTRLCFG_ADDRORDER_LSB; return ctrl_cfg; } /** * sdr_get_addr_rw() - Get the value of DRAM ADDRW register * @cfg: SDRAM controller configuration data * * Return the value of DRAM ADDRW register. */ static u32 sdr_get_addr_rw(const struct socfpga_sdram_config *cfg) { /* * SDRAM Failure When Accessing Non-Existent Memory * Set SDR_CTRLGRP_DRAMADDRW_CSBITS_LSB to * log2(number of chip select bits). Since there's only * 1 or 2 chip selects, log2(1) => 0, and log2(2) => 1, * which is the same as "chip selects" - 1. */ const int rows = get_errata_rows(cfg); u32 dram_addrw = cfg->dram_addrw & ~SDR_CTRLGRP_DRAMADDRW_ROWBITS_MASK; return dram_addrw | (rows << SDR_CTRLGRP_DRAMADDRW_ROWBITS_LSB); } /** * sdr_load_regs() - Load SDRAM controller registers * @cfg: SDRAM controller configuration data * * This function loads the register values into the SDRAM controller block. */ static void sdr_load_regs(const struct socfpga_sdram_config *cfg) { const u32 ctrl_cfg = sdr_get_ctrlcfg(cfg); const u32 dram_addrw = sdr_get_addr_rw(cfg); debug("\nConfiguring CTRLCFG\n"); writel(ctrl_cfg, &sdr_ctrl->ctrl_cfg); debug("Configuring DRAMTIMING1\n"); writel(cfg->dram_timing1, &sdr_ctrl->dram_timing1); debug("Configuring DRAMTIMING2\n"); writel(cfg->dram_timing2, &sdr_ctrl->dram_timing2); debug("Configuring DRAMTIMING3\n"); writel(cfg->dram_timing3, &sdr_ctrl->dram_timing3); debug("Configuring DRAMTIMING4\n"); writel(cfg->dram_timing4, &sdr_ctrl->dram_timing4); debug("Configuring LOWPWRTIMING\n"); writel(cfg->lowpwr_timing, &sdr_ctrl->lowpwr_timing); debug("Configuring DRAMADDRW\n"); writel(dram_addrw, &sdr_ctrl->dram_addrw); debug("Configuring DRAMIFWIDTH\n"); writel(cfg->dram_if_width, &sdr_ctrl->dram_if_width); debug("Configuring DRAMDEVWIDTH\n"); writel(cfg->dram_dev_width, &sdr_ctrl->dram_dev_width); debug("Configuring LOWPWREQ\n"); writel(cfg->lowpwr_eq, &sdr_ctrl->lowpwr_eq); debug("Configuring DRAMINTR\n"); writel(cfg->dram_intr, &sdr_ctrl->dram_intr); debug("Configuring STATICCFG\n"); writel(cfg->static_cfg, &sdr_ctrl->static_cfg); debug("Configuring CTRLWIDTH\n"); writel(cfg->ctrl_width, &sdr_ctrl->ctrl_width); debug("Configuring PORTCFG\n"); writel(cfg->port_cfg, &sdr_ctrl->port_cfg); debug("Configuring FIFOCFG\n"); writel(cfg->fifo_cfg, &sdr_ctrl->fifo_cfg); debug("Configuring MPPRIORITY\n"); writel(cfg->mp_priority, &sdr_ctrl->mp_priority); debug("Configuring MPWEIGHT_MPWEIGHT_0\n"); writel(cfg->mp_weight0, &sdr_ctrl->mp_weight0); writel(cfg->mp_weight1, &sdr_ctrl->mp_weight1); writel(cfg->mp_weight2, &sdr_ctrl->mp_weight2); writel(cfg->mp_weight3, &sdr_ctrl->mp_weight3); debug("Configuring MPPACING_MPPACING_0\n"); writel(cfg->mp_pacing0, &sdr_ctrl->mp_pacing0); writel(cfg->mp_pacing1, &sdr_ctrl->mp_pacing1); writel(cfg->mp_pacing2, &sdr_ctrl->mp_pacing2); writel(cfg->mp_pacing3, &sdr_ctrl->mp_pacing3); debug("Configuring MPTHRESHOLDRST_MPTHRESHOLDRST_0\n"); writel(cfg->mp_threshold0, &sdr_ctrl->mp_threshold0); writel(cfg->mp_threshold1, &sdr_ctrl->mp_threshold1); writel(cfg->mp_threshold2, &sdr_ctrl->mp_threshold2); debug("Configuring PHYCTRL_PHYCTRL_0\n"); writel(cfg->phy_ctrl0, &sdr_ctrl->phy_ctrl0); debug("Configuring CPORTWIDTH\n"); writel(cfg->cport_width, &sdr_ctrl->cport_width); debug("Configuring CPORTWMAP\n"); writel(cfg->cport_wmap, &sdr_ctrl->cport_wmap); debug("Configuring CPORTRMAP\n"); writel(cfg->cport_rmap, &sdr_ctrl->cport_rmap); debug("Configuring RFIFOCMAP\n"); writel(cfg->rfifo_cmap, &sdr_ctrl->rfifo_cmap); debug("Configuring WFIFOCMAP\n"); writel(cfg->wfifo_cmap, &sdr_ctrl->wfifo_cmap); debug("Configuring CPORTRDWR\n"); writel(cfg->cport_rdwr, &sdr_ctrl->cport_rdwr); debug("Configuring DRAMODT\n"); writel(cfg->dram_odt, &sdr_ctrl->dram_odt); } /** * sdram_mmr_init_full() - Function to initialize SDRAM MMR * @sdr_phy_reg: Value of the PHY control register 0 * * Initialize the SDRAM MMR. */ int sdram_mmr_init_full(unsigned int sdr_phy_reg) { const struct socfpga_sdram_config *cfg = socfpga_get_sdram_config(); const unsigned int rows = (cfg->dram_addrw & SDR_CTRLGRP_DRAMADDRW_ROWBITS_MASK) >> SDR_CTRLGRP_DRAMADDRW_ROWBITS_LSB; int ret; writel(rows, &sysmgr_regs->iswgrp_handoff[4]); sdr_load_regs(cfg); /* saving this value to SYSMGR.ISWGRP.HANDOFF.FPGA2SDR */ writel(cfg->fpgaport_rst, &sysmgr_regs->iswgrp_handoff[3]); /* only enable if the FPGA is programmed */ if (fpgamgr_test_fpga_ready()) { ret = sdram_write_verify(&sdr_ctrl->fpgaport_rst, cfg->fpgaport_rst); if (ret) return ret; } /* Restore the SDR PHY Register if valid */ if (sdr_phy_reg != 0xffffffff) writel(sdr_phy_reg, &sdr_ctrl->phy_ctrl0); /* Final step - apply configuration changes */ debug("Configuring STATICCFG\n"); clrsetbits_le32(&sdr_ctrl->static_cfg, SDR_CTRLGRP_STATICCFG_APPLYCFG_MASK, 1 << SDR_CTRLGRP_STATICCFG_APPLYCFG_LSB); sdram_set_protection_config(0, sdram_calculate_size() - 1); sdram_dump_protection_config(); return 0; } /** * sdram_calculate_size() - Calculate SDRAM size * * Calculate SDRAM device size based on SDRAM controller parameters. * Size is specified in bytes. */ unsigned long sdram_calculate_size(void) { unsigned long temp; unsigned long row, bank, col, cs, width; const struct socfpga_sdram_config *cfg = socfpga_get_sdram_config(); const unsigned int csbits = ((cfg->dram_addrw & SDR_CTRLGRP_DRAMADDRW_CSBITS_MASK) >> SDR_CTRLGRP_DRAMADDRW_CSBITS_LSB) + 1; const unsigned int rowbits = (cfg->dram_addrw & SDR_CTRLGRP_DRAMADDRW_ROWBITS_MASK) >> SDR_CTRLGRP_DRAMADDRW_ROWBITS_LSB; temp = readl(&sdr_ctrl->dram_addrw); col = (temp & SDR_CTRLGRP_DRAMADDRW_COLBITS_MASK) >> SDR_CTRLGRP_DRAMADDRW_COLBITS_LSB; /* * SDRAM Failure When Accessing Non-Existent Memory * Use ROWBITS from Quartus/QSys to calculate SDRAM size * since the FB specifies we modify ROWBITs to work around SDRAM * controller issue. */ row = readl(&sysmgr_regs->iswgrp_handoff[4]); if (row == 0) row = rowbits; /* * If the stored handoff value for rows is greater than * the field width in the sdr.dramaddrw register then * something is very wrong. Revert to using the the #define * value handed off by the SOCEDS tool chain instead of * using a broken value. */ if (row > 31) row = rowbits; bank = (temp & SDR_CTRLGRP_DRAMADDRW_BANKBITS_MASK) >> SDR_CTRLGRP_DRAMADDRW_BANKBITS_LSB; /* * SDRAM Failure When Accessing Non-Existent Memory * Use CSBITs from Quartus/QSys to calculate SDRAM size * since the FB specifies we modify CSBITs to work around SDRAM * controller issue. */ cs = csbits; width = readl(&sdr_ctrl->dram_if_width); /* ECC would not be calculated as its not addressible */ if (width == SDRAM_WIDTH_32BIT_WITH_ECC) width = 32; if (width == SDRAM_WIDTH_16BIT_WITH_ECC) width = 16; /* calculate the SDRAM size base on this info */ temp = 1 << (row + bank + col); temp = temp * cs * (width / 8); debug("%s returns %ld\n", __func__, temp); return temp; }