/* * (C) Copyright 2006 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * Copyright (c) 2005 Cisco Systems. All rights reserved. * Roland Dreier * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #if defined(CONFIG_440SPE) && defined(CONFIG_PCI) #include "440spe_pcie.h" enum { PTYPE_ENDPOINT = 0x0, PTYPE_LEGACY_ENDPOINT = 0x1, PTYPE_ROOT_PORT = 0x4, LNKW_X1 = 0x1, LNKW_X4 = 0x4, LNKW_X8 = 0x8 }; static int pcie_read_config(struct pci_controller *hose, unsigned int devfn, int offset, int len, u32 *val) { *val = 0; /* * 440SPE implements only one function per port */ if (!((PCI_FUNC(devfn) == 0) && (PCI_DEV(devfn) == 1))) return 0; devfn = PCI_BDF(0,0,0); offset += devfn << 4; switch (len) { case 1: *val = in_8(hose->cfg_data + offset); break; case 2: *val = in_le16((u16 *)(hose->cfg_data + offset)); break; default: *val = in_le32((u32 *)(hose->cfg_data + offset)); break; } return 0; } static int pcie_write_config(struct pci_controller *hose, unsigned int devfn, int offset, int len, u32 val) { /* * 440SPE implements only one function per port */ if (!((PCI_FUNC(devfn) == 0) && (PCI_DEV(devfn) == 1))) return 0; devfn = PCI_BDF(0,0,0); offset += devfn << 4; switch (len) { case 1: out_8(hose->cfg_data + offset, val); break; case 2: out_le16((u16 *)(hose->cfg_data + offset), val); break; default: out_le32((u32 *)(hose->cfg_data + offset), val); break; } return 0; } int pcie_read_config_byte(struct pci_controller *hose,pci_dev_t dev,int offset,u8 *val) { u32 v; int rv; rv = pcie_read_config(hose, dev, offset, 1, &v); *val = (u8)v; return rv; } int pcie_read_config_word(struct pci_controller *hose,pci_dev_t dev,int offset,u16 *val) { u32 v; int rv; rv = pcie_read_config(hose, dev, offset, 2, &v); *val = (u16)v; return rv; } int pcie_read_config_dword(struct pci_controller *hose,pci_dev_t dev,int offset,u32 *val) { u32 v; int rv; rv = pcie_read_config(hose, dev, offset, 3, &v); *val = (u32)v; return rv; } int pcie_write_config_byte(struct pci_controller *hose,pci_dev_t dev,int offset,u8 val) { return pcie_write_config(hose,(u32)dev,offset,1,val); } int pcie_write_config_word(struct pci_controller *hose,pci_dev_t dev,int offset,u16 val) { return pcie_write_config(hose,(u32)dev,offset,2,(u32 )val); } int pcie_write_config_dword(struct pci_controller *hose,pci_dev_t dev,int offset,u32 val) { return pcie_write_config(hose,(u32)dev,offset,3,(u32 )val); } static void ppc440spe_setup_utl(u32 port) { volatile void *utl_base = NULL; /* * Map UTL registers */ switch (port) { case 0: mtdcr(DCRN_PEGPL_REGBAH(PCIE0), 0x0000000c); mtdcr(DCRN_PEGPL_REGBAL(PCIE0), 0x20000000); mtdcr(DCRN_PEGPL_REGMSK(PCIE0), 0x00007001); mtdcr(DCRN_PEGPL_SPECIAL(PCIE0), 0x68782800); break; case 1: mtdcr(DCRN_PEGPL_REGBAH(PCIE1), 0x0000000c); mtdcr(DCRN_PEGPL_REGBAL(PCIE1), 0x20001000); mtdcr(DCRN_PEGPL_REGMSK(PCIE1), 0x00007001); mtdcr(DCRN_PEGPL_SPECIAL(PCIE1), 0x68782800); break; case 2: mtdcr(DCRN_PEGPL_REGBAH(PCIE2), 0x0000000c); mtdcr(DCRN_PEGPL_REGBAL(PCIE2), 0x20002000); mtdcr(DCRN_PEGPL_REGMSK(PCIE2), 0x00007001); mtdcr(DCRN_PEGPL_SPECIAL(PCIE2), 0x68782800); break; } utl_base = (unsigned int *)(CFG_PCIE_BASE + 0x1000 * port); /* * Set buffer allocations and then assert VRB and TXE. */ out_be32(utl_base + PEUTL_OUTTR, 0x08000000); out_be32(utl_base + PEUTL_INTR, 0x02000000); out_be32(utl_base + PEUTL_OPDBSZ, 0x10000000); out_be32(utl_base + PEUTL_PBBSZ, 0x53000000); out_be32(utl_base + PEUTL_IPHBSZ, 0x08000000); out_be32(utl_base + PEUTL_IPDBSZ, 0x10000000); out_be32(utl_base + PEUTL_RCIRQEN, 0x00f00000); out_be32(utl_base + PEUTL_PCTL, 0x80800066); } static int check_error(void) { u32 valPE0, valPE1, valPE2; int err = 0; /* SDR0_PEGPLLLCT1 reset */ if (!(valPE0 = SDR_READ(PESDR0_PLLLCT1) & 0x01000000)) { printf("PCIE: SDR0_PEGPLLLCT1 reset error 0x%x\n", valPE0); } valPE0 = SDR_READ(PESDR0_RCSSET); valPE1 = SDR_READ(PESDR1_RCSSET); valPE2 = SDR_READ(PESDR2_RCSSET); /* SDR0_PExRCSSET rstgu */ if (!(valPE0 & 0x01000000) || !(valPE1 & 0x01000000) || !(valPE2 & 0x01000000)) { printf("PCIE: SDR0_PExRCSSET rstgu error\n"); err = -1; } /* SDR0_PExRCSSET rstdl */ if (!(valPE0 & 0x00010000) || !(valPE1 & 0x00010000) || !(valPE2 & 0x00010000)) { printf("PCIE: SDR0_PExRCSSET rstdl error\n"); err = -1; } /* SDR0_PExRCSSET rstpyn */ if ((valPE0 & 0x00001000) || (valPE1 & 0x00001000) || (valPE2 & 0x00001000)) { printf("PCIE: SDR0_PExRCSSET rstpyn error\n"); err = -1; } /* SDR0_PExRCSSET hldplb */ if ((valPE0 & 0x10000000) || (valPE1 & 0x10000000) || (valPE2 & 0x10000000)) { printf("PCIE: SDR0_PExRCSSET hldplb error\n"); err = -1; } /* SDR0_PExRCSSET rdy */ if ((valPE0 & 0x00100000) || (valPE1 & 0x00100000) || (valPE2 & 0x00100000)) { printf("PCIE: SDR0_PExRCSSET rdy error\n"); err = -1; } /* SDR0_PExRCSSET shutdown */ if ((valPE0 & 0x00000100) || (valPE1 & 0x00000100) || (valPE2 & 0x00000100)) { printf("PCIE: SDR0_PExRCSSET shutdown error\n"); err = -1; } return err; } /* * Initialize PCI Express core */ int ppc440spe_init_pcie(void) { int time_out = 20; /* Set PLL clock receiver to LVPECL */ SDR_WRITE(PESDR0_PLLLCT1, SDR_READ(PESDR0_PLLLCT1) | 1 << 28); if (check_error()) return -1; if (!(SDR_READ(PESDR0_PLLLCT2) & 0x10000)) { printf("PCIE: PESDR_PLLCT2 resistance calibration failed (0x%08x)\n", SDR_READ(PESDR0_PLLLCT2)); return -1; } /* De-assert reset of PCIe PLL, wait for lock */ SDR_WRITE(PESDR0_PLLLCT1, SDR_READ(PESDR0_PLLLCT1) & ~(1 << 24)); udelay(3); while (time_out) { if (!(SDR_READ(PESDR0_PLLLCT3) & 0x10000000)) { time_out--; udelay(1); } else break; } if (!time_out) { printf("PCIE: VCO output not locked\n"); return -1; } return 0; } /* * Yucca board as End point and root point setup * and * testing inbound and out bound windows * * YUCCA board can be plugged into another yucca board or you can get PCI-E * cable which can be used to setup loop back from one port to another port. * Please rememeber that unless there is a endpoint plugged in to root port it * will not initialize. It is the same in case of endpoint , unless there is * root port attached it will not initialize. * * In this release of software all the PCI-E ports are configured as either * endpoint or rootpoint.In future we will have support for selective ports * setup as endpoint and root point in single board. * * Once your board came up as root point , you can verify by reading * /proc/bus/pci/devices. Where you can see the configuration registers * of end point device attached to the port. * * Enpoint cofiguration can be verified by connecting Yucca board to any * host or another yucca board. Then try to scan the device. In case of * linux use "lspci" or appripriate os command. * * How do I verify the inbound and out bound windows ?(yucca to yucca) * in this configuration inbound and outbound windows are setup to access * sram memroy area. SRAM is at 0x4 0000 0000 , on PLB bus. This address * is mapped at 0x90000000. From u-boot prompt write data 0xb000 0000, * This is waere your POM(PLB out bound memory window) mapped. then * read the data from other yucca board's u-boot prompt at address * 0x9000 0000(SRAM). Data should match. * In case of inbound , write data to u-boot command prompt at 0xb000 0000 * which is mapped to 0x4 0000 0000. Now on rootpoint yucca u-boot prompt check * data at 0x9000 0000(SRAM).Data should match. */ int ppc440spe_init_pcie_rootport(int port) { static int core_init; volatile u32 val = 0; int attempts; if (!core_init) { ++core_init; if (ppc440spe_init_pcie()) return -1; } /* * Initialize various parts of the PCI Express core for our port: * * - Set as a root port and enable max width * (PXIE0 -> X8, PCIE1 and PCIE2 -> X4). * - Set up UTL configuration. * - Increase SERDES drive strength to levels suggested by AMCC. * - De-assert RSTPYN, RSTDL and RSTGU. * * NOTICE for revB chip: PESDRn_UTLSET2 is not set - we leave it with * default setting 0x11310000. The register has new fields, * PESDRn_UTLSET2[LKINE] in particular: clearing it leads to PCIE core * hang. */ switch (port) { case 0: SDR_WRITE(PESDR0_DLPSET, 1 << 24 | PTYPE_ROOT_PORT << 20 | LNKW_X8 << 12); SDR_WRITE(PESDR0_UTLSET1, 0x21222222); if (!ppc440spe_revB()) SDR_WRITE(PESDR0_UTLSET2, 0x11000000); SDR_WRITE(PESDR0_HSSL0SET1, 0x35000000); SDR_WRITE(PESDR0_HSSL1SET1, 0x35000000); SDR_WRITE(PESDR0_HSSL2SET1, 0x35000000); SDR_WRITE(PESDR0_HSSL3SET1, 0x35000000); SDR_WRITE(PESDR0_HSSL4SET1, 0x35000000); SDR_WRITE(PESDR0_HSSL5SET1, 0x35000000); SDR_WRITE(PESDR0_HSSL6SET1, 0x35000000); SDR_WRITE(PESDR0_HSSL7SET1, 0x35000000); SDR_WRITE(PESDR0_RCSSET, (SDR_READ(PESDR0_RCSSET) & ~(1 << 24 | 1 << 16)) | 1 << 12); break; case 1: SDR_WRITE(PESDR1_DLPSET, 1 << 24 | PTYPE_ROOT_PORT << 20 | LNKW_X4 << 12); SDR_WRITE(PESDR1_UTLSET1, 0x21222222); if (!ppc440spe_revB()) SDR_WRITE(PESDR1_UTLSET2, 0x11000000); SDR_WRITE(PESDR1_HSSL0SET1, 0x35000000); SDR_WRITE(PESDR1_HSSL1SET1, 0x35000000); SDR_WRITE(PESDR1_HSSL2SET1, 0x35000000); SDR_WRITE(PESDR1_HSSL3SET1, 0x35000000); SDR_WRITE(PESDR1_RCSSET, (SDR_READ(PESDR1_RCSSET) & ~(1 << 24 | 1 << 16)) | 1 << 12); break; case 2: SDR_WRITE(PESDR2_DLPSET, 1 << 24 | PTYPE_ROOT_PORT << 20 | LNKW_X4 << 12); SDR_WRITE(PESDR2_UTLSET1, 0x21222222); if (!ppc440spe_revB()) SDR_WRITE(PESDR2_UTLSET2, 0x11000000); SDR_WRITE(PESDR2_HSSL0SET1, 0x35000000); SDR_WRITE(PESDR2_HSSL1SET1, 0x35000000); SDR_WRITE(PESDR2_HSSL2SET1, 0x35000000); SDR_WRITE(PESDR2_HSSL3SET1, 0x35000000); SDR_WRITE(PESDR2_RCSSET, (SDR_READ(PESDR2_RCSSET) & ~(1 << 24 | 1 << 16)) | 1 << 12); break; } /* * Notice: the following delay has critical impact on device * initialization - if too short (<50ms) the link doesn't get up. */ mdelay(100); switch (port) { case 0: val = SDR_READ(PESDR0_RCSSTS); break; case 1: val = SDR_READ(PESDR1_RCSSTS); break; case 2: val = SDR_READ(PESDR2_RCSSTS); break; } if (val & (1 << 20)) { printf("PCIE%d: PGRST failed %08x\n", port, val); return -1; } /* * Verify link is up */ val = 0; switch (port) { case 0: val = SDR_READ(PESDR0_LOOP); break; case 1: val = SDR_READ(PESDR1_LOOP); break; case 2: val = SDR_READ(PESDR2_LOOP); break; } if (!(val & 0x00001000)) { printf("PCIE%d: link is not up.\n", port); return -1; } /* * Setup UTL registers - but only on revA! * We use default settings for revB chip. */ if (!ppc440spe_revB()) ppc440spe_setup_utl(port); /* * We map PCI Express configuration access into the 512MB regions * * NOTICE: revB is very strict about PLB real addressess and ranges to * be mapped for config space; it seems to only work with d_nnnn_nnnn * range (hangs the core upon config transaction attempts when set * otherwise) while revA uses c_nnnn_nnnn. * * For revA: * PCIE0: 0xc_4000_0000 * PCIE1: 0xc_8000_0000 * PCIE2: 0xc_c000_0000 * * For revB: * PCIE0: 0xd_0000_0000 * PCIE1: 0xd_2000_0000 * PCIE2: 0xd_4000_0000 */ switch (port) { case 0: if (ppc440spe_revB()) { mtdcr(DCRN_PEGPL_CFGBAH(PCIE0), 0x0000000d); mtdcr(DCRN_PEGPL_CFGBAL(PCIE0), 0x00000000); } else { /* revA */ mtdcr(DCRN_PEGPL_CFGBAH(PCIE0), 0x0000000c); mtdcr(DCRN_PEGPL_CFGBAL(PCIE0), 0x40000000); } mtdcr(DCRN_PEGPL_CFGMSK(PCIE0), 0xe0000001); /* 512MB region, valid */ break; case 1: if (ppc440spe_revB()) { mtdcr(DCRN_PEGPL_CFGBAH(PCIE1), 0x0000000d); mtdcr(DCRN_PEGPL_CFGBAL(PCIE1), 0x20000000); } else { mtdcr(DCRN_PEGPL_CFGBAH(PCIE1), 0x0000000c); mtdcr(DCRN_PEGPL_CFGBAL(PCIE1), 0x80000000); } mtdcr(DCRN_PEGPL_CFGMSK(PCIE1), 0xe0000001); /* 512MB region, valid */ break; case 2: if (ppc440spe_revB()) { mtdcr(DCRN_PEGPL_CFGBAH(PCIE2), 0x0000000d); mtdcr(DCRN_PEGPL_CFGBAL(PCIE2), 0x40000000); } else { mtdcr(DCRN_PEGPL_CFGBAH(PCIE2), 0x0000000c); mtdcr(DCRN_PEGPL_CFGBAL(PCIE2), 0xc0000000); } mtdcr(DCRN_PEGPL_CFGMSK(PCIE2), 0xe0000001); /* 512MB region, valid */ break; } /* * Check for VC0 active and assert RDY. */ attempts = 10; switch (port) { case 0: while(!(SDR_READ(PESDR0_RCSSTS) & (1 << 16))) { if (!(attempts--)) { printf("PCIE0: VC0 not active\n"); return -1; } mdelay(1000); } SDR_WRITE(PESDR0_RCSSET, SDR_READ(PESDR0_RCSSET) | 1 << 20); break; case 1: while(!(SDR_READ(PESDR1_RCSSTS) & (1 << 16))) { if (!(attempts--)) { printf("PCIE1: VC0 not active\n"); return -1; } mdelay(1000); } SDR_WRITE(PESDR1_RCSSET, SDR_READ(PESDR1_RCSSET) | 1 << 20); break; case 2: while(!(SDR_READ(PESDR2_RCSSTS) & (1 << 16))) { if (!(attempts--)) { printf("PCIE2: VC0 not active\n"); return -1; } mdelay(1000); } SDR_WRITE(PESDR2_RCSSET, SDR_READ(PESDR2_RCSSET) | 1 << 20); break; } mdelay(100); return 0; } int ppc440spe_init_pcie_endport(int port) { static int core_init; volatile u32 val = 0; int attempts; if (!core_init) { ++core_init; if (ppc440spe_init_pcie()) return -1; } /* * Initialize various parts of the PCI Express core for our port: * * - Set as a end port and enable max width * (PXIE0 -> X8, PCIE1 and PCIE2 -> X4). * - Set up UTL configuration. * - Increase SERDES drive strength to levels suggested by AMCC. * - De-assert RSTPYN, RSTDL and RSTGU. * * NOTICE for revB chip: PESDRn_UTLSET2 is not set - we leave it with * default setting 0x11310000. The register has new fields, * PESDRn_UTLSET2[LKINE] in particular: clearing it leads to PCIE core * hang. */ switch (port) { case 0: SDR_WRITE(PESDR0_DLPSET, 1 << 24 | PTYPE_LEGACY_ENDPOINT << 20 | LNKW_X8 << 12); SDR_WRITE(PESDR0_UTLSET1, 0x20222222); if (!ppc440spe_revB()) SDR_WRITE(PESDR0_UTLSET2, 0x11000000); SDR_WRITE(PESDR0_HSSL0SET1, 0x35000000); SDR_WRITE(PESDR0_HSSL1SET1, 0x35000000); SDR_WRITE(PESDR0_HSSL2SET1, 0x35000000); SDR_WRITE(PESDR0_HSSL3SET1, 0x35000000); SDR_WRITE(PESDR0_HSSL4SET1, 0x35000000); SDR_WRITE(PESDR0_HSSL5SET1, 0x35000000); SDR_WRITE(PESDR0_HSSL6SET1, 0x35000000); SDR_WRITE(PESDR0_HSSL7SET1, 0x35000000); SDR_WRITE(PESDR0_RCSSET, (SDR_READ(PESDR0_RCSSET) & ~(1 << 24 | 1 << 16)) | 1 << 12); break; case 1: SDR_WRITE(PESDR1_DLPSET, 1 << 24 | PTYPE_LEGACY_ENDPOINT << 20 | LNKW_X4 << 12); SDR_WRITE(PESDR1_UTLSET1, 0x20222222); if (!ppc440spe_revB()) SDR_WRITE(PESDR1_UTLSET2, 0x11000000); SDR_WRITE(PESDR1_HSSL0SET1, 0x35000000); SDR_WRITE(PESDR1_HSSL1SET1, 0x35000000); SDR_WRITE(PESDR1_HSSL2SET1, 0x35000000); SDR_WRITE(PESDR1_HSSL3SET1, 0x35000000); SDR_WRITE(PESDR1_RCSSET, (SDR_READ(PESDR1_RCSSET) & ~(1 << 24 | 1 << 16)) | 1 << 12); break; case 2: SDR_WRITE(PESDR2_DLPSET, 1 << 24 | PTYPE_LEGACY_ENDPOINT << 20 | LNKW_X4 << 12); SDR_WRITE(PESDR2_UTLSET1, 0x20222222); if (!ppc440spe_revB()) SDR_WRITE(PESDR2_UTLSET2, 0x11000000); SDR_WRITE(PESDR2_HSSL0SET1, 0x35000000); SDR_WRITE(PESDR2_HSSL1SET1, 0x35000000); SDR_WRITE(PESDR2_HSSL2SET1, 0x35000000); SDR_WRITE(PESDR2_HSSL3SET1, 0x35000000); SDR_WRITE(PESDR2_RCSSET, (SDR_READ(PESDR2_RCSSET) & ~(1 << 24 | 1 << 16)) | 1 << 12); break; } /* * Notice: the following delay has critical impact on device * initialization - if too short (<50ms) the link doesn't get up. */ mdelay(100); switch (port) { case 0: val = SDR_READ(PESDR0_RCSSTS); break; case 1: val = SDR_READ(PESDR1_RCSSTS); break; case 2: val = SDR_READ(PESDR2_RCSSTS); break; } if (val & (1 << 20)) { printf("PCIE%d: PGRST failed %08x\n", port, val); return -1; } /* * Verify link is up */ val = 0; switch (port) { case 0: val = SDR_READ(PESDR0_LOOP); break; case 1: val = SDR_READ(PESDR1_LOOP); break; case 2: val = SDR_READ(PESDR2_LOOP); break; } if (!(val & 0x00001000)) { printf("PCIE%d: link is not up.\n", port); return -1; } /* * Setup UTL registers - but only on revA! * We use default settings for revB chip. */ if (!ppc440spe_revB()) ppc440spe_setup_utl(port); /* * We map PCI Express configuration access into the 512MB regions * * NOTICE: revB is very strict about PLB real addressess and ranges to * be mapped for config space; it seems to only work with d_nnnn_nnnn * range (hangs the core upon config transaction attempts when set * otherwise) while revA uses c_nnnn_nnnn. * * For revA: * PCIE0: 0xc_4000_0000 * PCIE1: 0xc_8000_0000 * PCIE2: 0xc_c000_0000 * * For revB: * PCIE0: 0xd_0000_0000 * PCIE1: 0xd_2000_0000 * PCIE2: 0xd_4000_0000 */ switch (port) { case 0: if (ppc440spe_revB()) { mtdcr(DCRN_PEGPL_CFGBAH(PCIE0), 0x0000000d); mtdcr(DCRN_PEGPL_CFGBAL(PCIE0), 0x00000000); } else { /* revA */ mtdcr(DCRN_PEGPL_CFGBAH(PCIE0), 0x0000000c); mtdcr(DCRN_PEGPL_CFGBAL(PCIE0), 0x40000000); } mtdcr(DCRN_PEGPL_CFGMSK(PCIE0), 0xe0000001); /* 512MB region, valid */ break; case 1: if (ppc440spe_revB()) { mtdcr(DCRN_PEGPL_CFGBAH(PCIE1), 0x0000000d); mtdcr(DCRN_PEGPL_CFGBAL(PCIE1), 0x20000000); } else { mtdcr(DCRN_PEGPL_CFGBAH(PCIE1), 0x0000000c); mtdcr(DCRN_PEGPL_CFGBAL(PCIE1), 0x80000000); } mtdcr(DCRN_PEGPL_CFGMSK(PCIE1), 0xe0000001); /* 512MB region, valid */ break; case 2: if (ppc440spe_revB()) { mtdcr(DCRN_PEGPL_CFGBAH(PCIE2), 0x0000000d); mtdcr(DCRN_PEGPL_CFGBAL(PCIE2), 0x40000000); } else { mtdcr(DCRN_PEGPL_CFGBAH(PCIE2), 0x0000000c); mtdcr(DCRN_PEGPL_CFGBAL(PCIE2), 0xc0000000); } mtdcr(DCRN_PEGPL_CFGMSK(PCIE2), 0xe0000001); /* 512MB region, valid */ break; } /* * Check for VC0 active and assert RDY. */ attempts = 10; switch (port) { case 0: while(!(SDR_READ(PESDR0_RCSSTS) & (1 << 16))) { if (!(attempts--)) { printf("PCIE0: VC0 not active\n"); return -1; } mdelay(1000); } SDR_WRITE(PESDR0_RCSSET, SDR_READ(PESDR0_RCSSET) | 1 << 20); break; case 1: while(!(SDR_READ(PESDR1_RCSSTS) & (1 << 16))) { if (!(attempts--)) { printf("PCIE1: VC0 not active\n"); return -1; } mdelay(1000); } SDR_WRITE(PESDR1_RCSSET, SDR_READ(PESDR1_RCSSET) | 1 << 20); break; case 2: while(!(SDR_READ(PESDR2_RCSSTS) & (1 << 16))) { if (!(attempts--)) { printf("PCIE2: VC0 not active\n"); return -1; } mdelay(1000); } SDR_WRITE(PESDR2_RCSSET, SDR_READ(PESDR2_RCSSET) | 1 << 20); break; } mdelay(100); return 0; } void ppc440spe_setup_pcie_rootpoint(struct pci_controller *hose, int port) { volatile void *mbase = NULL; volatile void *rmbase = NULL; pci_set_ops(hose, pcie_read_config_byte, pcie_read_config_word, pcie_read_config_dword, pcie_write_config_byte, pcie_write_config_word, pcie_write_config_dword); switch (port) { case 0: mbase = (u32 *)CFG_PCIE0_XCFGBASE; rmbase = (u32 *)CFG_PCIE0_CFGBASE; hose->cfg_data = (u8 *)CFG_PCIE0_CFGBASE; break; case 1: mbase = (u32 *)CFG_PCIE1_XCFGBASE; rmbase = (u32 *)CFG_PCIE1_CFGBASE; hose->cfg_data = (u8 *)CFG_PCIE1_CFGBASE; break; case 2: mbase = (u32 *)CFG_PCIE2_XCFGBASE; rmbase = (u32 *)CFG_PCIE2_CFGBASE; hose->cfg_data = (u8 *)CFG_PCIE2_CFGBASE; break; } /* * Set bus numbers on our root port */ out_8((u8 *)mbase + PCI_PRIMARY_BUS, 0); out_8((u8 *)mbase + PCI_SECONDARY_BUS, 1); out_8((u8 *)mbase + PCI_SUBORDINATE_BUS, 1); /* * Set up outbound translation to hose->mem_space from PLB * addresses at an offset of 0xd_0000_0000. We set the low * bits of the mask to 11 to turn off splitting into 8 * subregions and to enable the outbound translation. */ out_le32(mbase + PECFG_POM0LAH, 0x00000000); out_le32(mbase + PECFG_POM0LAL, 0x00000000); switch (port) { case 0: mtdcr(DCRN_PEGPL_OMR1BAH(PCIE0), 0x0000000d); mtdcr(DCRN_PEGPL_OMR1BAL(PCIE0), CFG_PCIE_MEMBASE + port * CFG_PCIE_MEMSIZE); mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE0), 0x7fffffff); mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE0), ~(CFG_PCIE_MEMSIZE - 1) | 3); break; case 1: mtdcr(DCRN_PEGPL_OMR1BAH(PCIE1), 0x0000000d); mtdcr(DCRN_PEGPL_OMR1BAL(PCIE1), (CFG_PCIE_MEMBASE + port * CFG_PCIE_MEMSIZE)); mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE1), 0x7fffffff); mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE1), ~(CFG_PCIE_MEMSIZE - 1) | 3); break; case 2: mtdcr(DCRN_PEGPL_OMR1BAH(PCIE2), 0x0000000d); mtdcr(DCRN_PEGPL_OMR1BAL(PCIE2), (CFG_PCIE_MEMBASE + port * CFG_PCIE_MEMSIZE)); mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE2), 0x7fffffff); mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE2), ~(CFG_PCIE_MEMSIZE - 1) | 3); break; } /* Set up 16GB inbound memory window at 0 */ out_le32(mbase + PCI_BASE_ADDRESS_0, 0); out_le32(mbase + PCI_BASE_ADDRESS_1, 0); out_le32(mbase + PECFG_BAR0HMPA, 0x7fffffc); out_le32(mbase + PECFG_BAR0LMPA, 0); out_le32(mbase + PECFG_PIM01SAH, 0xffff0000); out_le32(mbase + PECFG_PIM01SAL, 0x00000000); out_le32(mbase + PECFG_PIM0LAL, 0); out_le32(mbase + PECFG_PIM0LAH, 0); out_le32(mbase + PECFG_PIM1LAL, 0x00000000); out_le32(mbase + PECFG_PIM1LAH, 0x00000004); out_le32(mbase + PECFG_PIMEN, 0x1); /* Enable I/O, Mem, and Busmaster cycles */ out_le16((u16 *)(mbase + PCI_COMMAND), in_le16((u16 *)(mbase + PCI_COMMAND)) | PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); printf("PCIE:%d successfully set as rootpoint\n",port); } int ppc440spe_setup_pcie_endpoint(struct pci_controller *hose, int port) { volatile void *mbase = NULL; int attempts = 0; pci_set_ops(hose, pcie_read_config_byte, pcie_read_config_word, pcie_read_config_dword, pcie_write_config_byte, pcie_write_config_word, pcie_write_config_dword); switch (port) { case 0: mbase = (u32 *)CFG_PCIE0_XCFGBASE; hose->cfg_data = (u8 *)CFG_PCIE0_CFGBASE; break; case 1: mbase = (u32 *)CFG_PCIE1_XCFGBASE; hose->cfg_data = (u8 *)CFG_PCIE1_CFGBASE; break; case 2: mbase = (u32 *)CFG_PCIE2_XCFGBASE; hose->cfg_data = (u8 *)CFG_PCIE2_CFGBASE; break; } /* * Set up outbound translation to hose->mem_space from PLB * addresses at an offset of 0xd_0000_0000. We set the low * bits of the mask to 11 to turn off splitting into 8 * subregions and to enable the outbound translation. */ out_le32(mbase + PECFG_POM0LAH, 0x00001ff8); out_le32(mbase + PECFG_POM0LAL, 0x00001000); switch (port) { case 0: mtdcr(DCRN_PEGPL_OMR1BAH(PCIE0), 0x0000000d); mtdcr(DCRN_PEGPL_OMR1BAL(PCIE0), CFG_PCIE_MEMBASE + port * CFG_PCIE_MEMSIZE); mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE0), 0x7fffffff); mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE0), ~(CFG_PCIE_MEMSIZE - 1) | 3); break; case 1: mtdcr(DCRN_PEGPL_OMR1BAH(PCIE1), 0x0000000d); mtdcr(DCRN_PEGPL_OMR1BAL(PCIE1), (CFG_PCIE_MEMBASE + port * CFG_PCIE_MEMSIZE)); mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE1), 0x7fffffff); mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE1), ~(CFG_PCIE_MEMSIZE - 1) | 3); break; case 2: mtdcr(DCRN_PEGPL_OMR1BAH(PCIE2), 0x0000000d); mtdcr(DCRN_PEGPL_OMR1BAL(PCIE2), (CFG_PCIE_MEMBASE + port * CFG_PCIE_MEMSIZE)); mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE2), 0x7fffffff); mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE2), ~(CFG_PCIE_MEMSIZE - 1) | 3); break; } /* Set up 16GB inbound memory window at 0 */ out_le32(mbase + PCI_BASE_ADDRESS_0, 0); out_le32(mbase + PCI_BASE_ADDRESS_1, 0); out_le32(mbase + PECFG_BAR0HMPA, 0x7fffffc); out_le32(mbase + PECFG_BAR0LMPA, 0); out_le32(mbase + PECFG_PIM0LAL, 0x00000000); out_le32(mbase + PECFG_PIM0LAH, 0x00000004); /* pointing to SRAM */ out_le32(mbase + PECFG_PIMEN, 0x1); /* Enable I/O, Mem, and Busmaster cycles */ out_le16((u16 *)(mbase + PCI_COMMAND), in_le16((u16 *)(mbase + PCI_COMMAND)) | PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); out_le16(mbase + 0x200,0xcaad); /* Setting vendor ID */ out_le16(mbase + 0x202,0xfeed); /* Setting device ID */ attempts = 10; switch (port) { case 0: while (!(SDR_READ(PESDR0_RCSSTS) & (1 << 8))) { if (!(attempts--)) { printf("PCIE0: BMEN is not active\n"); return -1; } mdelay(1000); } break; case 1: while (!(SDR_READ(PESDR1_RCSSTS) & (1 << 8))) { if (!(attempts--)) { printf("PCIE1: BMEN is not active\n"); return -1; } mdelay(1000); } break; case 2: while (!(SDR_READ(PESDR2_RCSSTS) & (1 << 8))) { if (!(attempts--)) { printf("PCIE2: BMEN is not active\n"); return -1; } mdelay(1000); } break; } printf("PCIE:%d successfully set as endpoint\n",port); return 0; } #endif /* CONFIG_440SPE && CONFIG_PCI */