/* * Copyright 2008 Freescale Semiconductor, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * Version 2 as published by the Free Software Foundation. */ /* * Generic driver for Freescale DDR/DDR2/DDR3 memory controller. * Based on code from spd_sdram.c * Author: James Yang [at freescale.com] */ #include #include #include "ddr.h" extern void fsl_ddr_set_lawbar( const common_timing_params_t *memctl_common_params, unsigned int memctl_interleaved, unsigned int ctrl_num); /* processor specific function */ extern void fsl_ddr_set_memctl_regs(const fsl_ddr_cfg_regs_t *regs, unsigned int ctrl_num); /* Board-specific functions defined in each board's ddr.c */ extern void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd, unsigned int ctrl_num); /* * ASSUMPTIONS: * - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller * - Same memory data bus width on all controllers * * NOTES: * * The memory controller and associated documentation use confusing * terminology when referring to the orgranization of DRAM. * * Here is a terminology translation table: * * memory controller/documention |industry |this code |signals * -------------------------------|-----------|-----------|----------------- * physical bank/bank |rank |rank |chip select (CS) * logical bank/sub-bank |bank |bank |bank address (BA) * page/row |row |page |row address * ??? |column |column |column address * * The naming confusion is further exacerbated by the descriptions of the * memory controller interleaving feature, where accesses are interleaved * _BETWEEN_ two seperate memory controllers. This is configured only in * CS0_CONFIG[INTLV_CTL] of each memory controller. * * memory controller documentation | number of chip selects * | per memory controller supported * --------------------------------|----------------------------------------- * cache line interleaving | 1 (CS0 only) * page interleaving | 1 (CS0 only) * bank interleaving | 1 (CS0 only) * superbank interleraving | depends on bank (chip select) * | interleraving [rank interleaving] * | mode used on every memory controller * * Even further confusing is the existence of the interleaving feature * _WITHIN_ each memory controller. The feature is referred to in * documentation as chip select interleaving or bank interleaving, * although it is configured in the DDR_SDRAM_CFG field. * * Name of field | documentation name | this code * -----------------------------|-----------------------|------------------ * DDR_SDRAM_CFG[BA_INTLV_CTL] | Bank (chip select) | rank interleaving * | interleaving */ #ifdef DEBUG const char *step_string_tbl[] = { "STEP_GET_SPD", "STEP_COMPUTE_DIMM_PARMS", "STEP_COMPUTE_COMMON_PARMS", "STEP_GATHER_OPTS", "STEP_ASSIGN_ADDRESSES", "STEP_COMPUTE_REGS", "STEP_PROGRAM_REGS", "STEP_ALL" }; const char * step_to_string(unsigned int step) { unsigned int s = __ilog2(step); if ((1 << s) != step) return step_string_tbl[7]; return step_string_tbl[s]; } #endif int step_assign_addresses(fsl_ddr_info_t *pinfo, unsigned int dbw_cap_adj[], unsigned int *memctl_interleaving, unsigned int *rank_interleaving) { int i, j; /* * If a reduced data width is requested, but the SPD * specifies a physically wider device, adjust the * computed dimm capacities accordingly before * assigning addresses. */ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { unsigned int found = 0; switch (pinfo->memctl_opts[i].data_bus_width) { case 2: /* 16-bit */ printf("can't handle 16-bit mode yet\n"); break; case 1: /* 32-bit */ for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) { unsigned int dw; dw = pinfo->dimm_params[i][j].data_width; if (pinfo->dimm_params[i][j].n_ranks && (dw == 72 || dw == 64)) { /* * FIXME: can't really do it * like this because this just * further reduces the memory */ found = 1; break; } } if (found) { dbw_cap_adj[i] = 1; } break; case 0: /* 64-bit */ break; default: printf("unexpected data bus width " "specified controller %u\n", i); return 1; } } /* * Check if all controllers are configured for memory * controller interleaving. */ j = 0; for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { if (pinfo->memctl_opts[i].memctl_interleaving) { j++; } } if (j == 2) { *memctl_interleaving = 1; printf("\nMemory controller interleaving enabled: "); switch (pinfo->memctl_opts[0].memctl_interleaving_mode) { case FSL_DDR_CACHE_LINE_INTERLEAVING: printf("Cache-line interleaving!\n"); break; case FSL_DDR_PAGE_INTERLEAVING: printf("Page interleaving!\n"); break; case FSL_DDR_BANK_INTERLEAVING: printf("Bank interleaving!\n"); break; case FSL_DDR_SUPERBANK_INTERLEAVING: printf("Super bank interleaving\n"); default: break; } } /* Check that all controllers are rank interleaving. */ j = 0; for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { if (pinfo->memctl_opts[i].ba_intlv_ctl) { j++; } } if (j == 2) { *rank_interleaving = 1; printf("Bank(chip-select) interleaving enabled: "); switch (pinfo->memctl_opts[0].ba_intlv_ctl & FSL_DDR_CS0_CS1_CS2_CS3) { case FSL_DDR_CS0_CS1_CS2_CS3: printf("CS0+CS1+CS2+CS3\n"); break; case FSL_DDR_CS0_CS1: printf("CS0+CS1\n"); break; case FSL_DDR_CS2_CS3: printf("CS2+CS3\n"); break; case FSL_DDR_CS0_CS1_AND_CS2_CS3: printf("CS0+CS1 and CS2+CS3\n"); default: break; } } if (*memctl_interleaving) { phys_addr_t addr; phys_size_t total_mem_per_ctlr = 0; /* * If interleaving between memory controllers, * make each controller start at a base address * of 0. * * Also, if bank interleaving (chip select * interleaving) is enabled on each memory * controller, CS0 needs to be programmed to * cover the entire memory range on that memory * controller * * Bank interleaving also implies that each * addressed chip select is identical in size. */ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { addr = 0; pinfo->common_timing_params[i].base_address = (phys_addr_t)addr; for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) { unsigned long long cap = pinfo->dimm_params[i][j].capacity; pinfo->dimm_params[i][j].base_address = addr; addr += (phys_addr_t)(cap >> dbw_cap_adj[i]); total_mem_per_ctlr += cap >> dbw_cap_adj[i]; } } pinfo->common_timing_params[0].total_mem = total_mem_per_ctlr; } else { /* * Simple linear assignment if memory * controllers are not interleaved. */ phys_size_t cur_memsize = 0; for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { phys_size_t total_mem_per_ctlr = 0; pinfo->common_timing_params[i].base_address = (phys_addr_t)cur_memsize; for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) { /* Compute DIMM base addresses. */ unsigned long long cap = pinfo->dimm_params[i][j].capacity; pinfo->dimm_params[i][j].base_address = (phys_addr_t)cur_memsize; cur_memsize += cap >> dbw_cap_adj[i]; total_mem_per_ctlr += cap >> dbw_cap_adj[i]; } pinfo->common_timing_params[i].total_mem = total_mem_per_ctlr; } } return 0; } phys_size_t fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step) { unsigned int i, j; unsigned int all_controllers_memctl_interleaving = 0; unsigned int all_controllers_rank_interleaving = 0; phys_size_t total_mem = 0; fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg; common_timing_params_t *timing_params = pinfo->common_timing_params; /* data bus width capacity adjust shift amount */ unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS]; for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { dbw_capacity_adjust[i] = 0; } debug("starting at step %u (%s)\n", start_step, step_to_string(start_step)); switch (start_step) { case STEP_GET_SPD: /* STEP 1: Gather all DIMM SPD data */ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i); } case STEP_COMPUTE_DIMM_PARMS: /* STEP 2: Compute DIMM parameters from SPD data */ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) { unsigned int retval; generic_spd_eeprom_t *spd = &(pinfo->spd_installed_dimms[i][j]); dimm_params_t *pdimm = &(pinfo->dimm_params[i][j]); retval = compute_dimm_parameters(spd, pdimm, i); if (retval == 2) { printf("Error: compute_dimm_parameters" " non-zero returned FATAL value " "for memctl=%u dimm=%u\n", i, j); return 0; } if (retval) { debug("Warning: compute_dimm_parameters" " non-zero return value for memctl=%u " "dimm=%u\n", i, j); } } } case STEP_COMPUTE_COMMON_PARMS: /* * STEP 3: Compute a common set of timing parameters * suitable for all of the DIMMs on each memory controller */ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { debug("Computing lowest common DIMM" " parameters for memctl=%u\n", i); compute_lowest_common_dimm_parameters( pinfo->dimm_params[i], &timing_params[i], CONFIG_DIMM_SLOTS_PER_CTLR); } case STEP_GATHER_OPTS: /* STEP 4: Gather configuration requirements from user */ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { debug("Reloading memory controller " "configuration options for memctl=%u\n", i); /* * This "reloads" the memory controller options * to defaults. If the user "edits" an option, * next_step points to the step after this, * which is currently STEP_ASSIGN_ADDRESSES. */ populate_memctl_options( timing_params[i].all_DIMMs_registered, &pinfo->memctl_opts[i], pinfo->dimm_params[i], i); } case STEP_ASSIGN_ADDRESSES: /* STEP 5: Assign addresses to chip selects */ step_assign_addresses(pinfo, dbw_capacity_adjust, &all_controllers_memctl_interleaving, &all_controllers_rank_interleaving); case STEP_COMPUTE_REGS: /* STEP 6: compute controller register values */ debug("FSL Memory ctrl cg register computation\n"); for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { if (timing_params[i].ndimms_present == 0) { memset(&ddr_reg[i], 0, sizeof(fsl_ddr_cfg_regs_t)); continue; } compute_fsl_memctl_config_regs( &pinfo->memctl_opts[i], &ddr_reg[i], &timing_params[i], pinfo->dimm_params[i], dbw_capacity_adjust[i]); } default: break; } /* Compute the total amount of memory. */ /* * If bank interleaving but NOT memory controller interleaving * CS_BNDS describe the quantity of memory on each memory * controller, so the total is the sum across. */ if (!all_controllers_memctl_interleaving && all_controllers_rank_interleaving) { total_mem = 0; for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { total_mem += timing_params[i].total_mem; } } else { /* * Compute the amount of memory available just by * looking for the highest valid CSn_BNDS value. * This allows us to also experiment with using * only CS0 when using dual-rank DIMMs. */ unsigned int max_end = 0; for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) { fsl_ddr_cfg_regs_t *reg = &ddr_reg[i]; if (reg->cs[j].config & 0x80000000) { unsigned int end; end = reg->cs[j].bnds & 0xFFF; if (end > max_end) { max_end = end; } } } } #if !defined(CONFIG_PHYS_64BIT) /* Check for 4G or more with a 32-bit phys_addr_t. Bad. */ if (max_end >= 0xff) { printf("This U-Boot only supports < 4G of DDR\n"); printf("You could rebuild it with CONFIG_PHYS_64BIT\n"); return 0; /* Ensure DDR setup failure. */ } #endif total_mem = 1 + (((unsigned long long)max_end << 24ULL) | 0xFFFFFFULL); } return total_mem; } /* * fsl_ddr_sdram() -- this is the main function to be called by * initdram() in the board file. * * It returns amount of memory configured in bytes. */ phys_size_t fsl_ddr_sdram(void) { unsigned int i; unsigned int memctl_interleaved; phys_size_t total_memory; fsl_ddr_info_t info; /* Reset info structure. */ memset(&info, 0, sizeof(fsl_ddr_info_t)); /* Compute it once normally. */ total_memory = fsl_ddr_compute(&info, STEP_GET_SPD); /* Check for memory controller interleaving. */ memctl_interleaved = 0; for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { memctl_interleaved += info.memctl_opts[i].memctl_interleaving; } if (memctl_interleaved) { if (memctl_interleaved == CONFIG_NUM_DDR_CONTROLLERS) { debug("memctl interleaving\n"); /* * Change the meaning of memctl_interleaved * to be "boolean". */ memctl_interleaved = 1; } else { printf("Warning: memctl interleaving not " "properly configured on all controllers\n"); memctl_interleaved = 0; for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) info.memctl_opts[i].memctl_interleaving = 0; debug("Recomputing with memctl_interleaving off.\n"); total_memory = fsl_ddr_compute(&info, STEP_ASSIGN_ADDRESSES); } } /* Program configuration registers. */ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { debug("Programming controller %u\n", i); if (info.common_timing_params[i].ndimms_present == 0) { debug("No dimms present on controller %u; " "skipping programming\n", i); continue; } fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]), i); } if (memctl_interleaved) { const unsigned int ctrl_num = 0; /* Only set LAWBAR1 if memory controller interleaving is on. */ fsl_ddr_set_lawbar(&info.common_timing_params[0], memctl_interleaved, ctrl_num); } else { /* * Memory controller interleaving is NOT on; * set each lawbar individually. */ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { fsl_ddr_set_lawbar(&info.common_timing_params[i], 0, i); } } debug("total_memory = %llu\n", (u64)total_memory); return total_memory; }