/* * (C) Copyright 2006 Freescale Semiconductor, Inc. * * (C) Copyright 2006 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * Copyright (C) 2004-2006 Freescale Semiconductor, Inc. * (C) Copyright 2003 Motorola Inc. * Xianghua Xiao (X.Xiao@motorola.com) * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #include #include #ifdef CONFIG_SPD_EEPROM DECLARE_GLOBAL_DATA_PTR; #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRC) extern void dma_init(void); extern uint dma_check(void); extern int dma_xfer(void *dest, uint count, void *src); #endif #ifndef CFG_READ_SPD #define CFG_READ_SPD i2c_read #endif /* * Convert picoseconds into clock cycles (rounding up if needed). */ int picos_to_clk(int picos) { unsigned int ddr_bus_clk; int clks; ddr_bus_clk = gd->ddr_clk >> 1; clks = picos / ((1000000000 / ddr_bus_clk) * 1000); if (picos % ((1000000000 / ddr_bus_clk) * 1000) != 0) clks++; return clks; } unsigned int banksize(unsigned char row_dens) { return ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24; } int read_spd(uint addr) { return ((int) addr); } #undef SPD_DEBUG #ifdef SPD_DEBUG static void spd_debug(spd_eeprom_t *spd) { printf ("\nDIMM type: %-18.18s\n", spd->mpart); printf ("SPD size: %d\n", spd->info_size); printf ("EEPROM size: %d\n", 1 << spd->chip_size); printf ("Memory type: %d\n", spd->mem_type); printf ("Row addr: %d\n", spd->nrow_addr); printf ("Column addr: %d\n", spd->ncol_addr); printf ("# of rows: %d\n", spd->nrows); printf ("Row density: %d\n", spd->row_dens); printf ("# of banks: %d\n", spd->nbanks); printf ("Data width: %d\n", 256 * spd->dataw_msb + spd->dataw_lsb); printf ("Chip width: %d\n", spd->primw); printf ("Refresh rate: %02X\n", spd->refresh); printf ("CAS latencies: %02X\n", spd->cas_lat); printf ("Write latencies: %02X\n", spd->write_lat); printf ("tRP: %d\n", spd->trp); printf ("tRCD: %d\n", spd->trcd); printf ("\n"); } #endif /* SPD_DEBUG */ long int spd_sdram() { volatile immap_t *immap = (immap_t *)CFG_IMMR; volatile ddr83xx_t *ddr = &immap->ddr; volatile law83xx_t *ecm = &immap->sysconf.ddrlaw[0]; spd_eeprom_t spd; unsigned int memsize; unsigned int law_size; unsigned char caslat, caslat_ctrl; unsigned char burstlen; unsigned int max_bus_clk; unsigned int max_data_rate, effective_data_rate; unsigned int ddrc_clk; unsigned int refresh_clk; unsigned sdram_cfg; unsigned int ddrc_ecc_enable; /* Read SPD parameters with I2C */ CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) & spd, sizeof (spd)); #ifdef SPD_DEBUG spd_debug(&spd); #endif /* Check the memory type */ if (spd.mem_type != SPD_MEMTYPE_DDR) { printf("DDR: Module mem type is %02X\n", spd.mem_type); return 0; } /* Check the number of physical bank */ if (spd.nrows > 2) { printf("DDR: The number of physical bank is %02X\n", spd.nrows); return 0; } /* Check if the number of row of the module is in the range of DDRC */ if (spd.nrow_addr < 12 || spd.nrow_addr > 14) { printf("DDR: Row number is out of range of DDRC, row=%02X\n", spd.nrow_addr); return 0; } /* Check if the number of col of the module is in the range of DDRC */ if (spd.ncol_addr < 8 || spd.ncol_addr > 11) { printf("DDR: Col number is out of range of DDRC, col=%02X\n", spd.ncol_addr); return 0; } /* Setup DDR chip select register */ #ifdef CFG_83XX_DDR_USES_CS0 ddr->csbnds[0].csbnds = (banksize(spd.row_dens) >> 24) - 1; ddr->cs_config[0] = ( 1 << 31 | (spd.nrow_addr - 12) << 8 | (spd.ncol_addr - 8) ); debug("\n"); debug("cs0_bnds = 0x%08x\n",ddr->csbnds[0].csbnds); debug("cs0_config = 0x%08x\n",ddr->cs_config[0]); if (spd.nrows == 2) { ddr->csbnds[1].csbnds = ( (banksize(spd.row_dens) >> 8) | ((banksize(spd.row_dens) >> 23) - 1) ); ddr->cs_config[1] = ( 1<<31 | (spd.nrow_addr-12) << 8 | (spd.ncol_addr-8) ); debug("cs1_bnds = 0x%08x\n",ddr->csbnds[1].csbnds); debug("cs1_config = 0x%08x\n",ddr->cs_config[1]); } #else ddr->csbnds[2].csbnds = (banksize(spd.row_dens) >> 24) - 1; ddr->cs_config[2] = ( 1 << 31 | (spd.nrow_addr - 12) << 8 | (spd.ncol_addr - 8) ); debug("\n"); debug("cs2_bnds = 0x%08x\n",ddr->csbnds[2].csbnds); debug("cs2_config = 0x%08x\n",ddr->cs_config[2]); if (spd.nrows == 2) { ddr->csbnds[3].csbnds = ( (banksize(spd.row_dens) >> 8) | ((banksize(spd.row_dens) >> 23) - 1) ); ddr->cs_config[3] = ( 1<<31 | (spd.nrow_addr-12) << 8 | (spd.ncol_addr-8) ); debug("cs3_bnds = 0x%08x\n",ddr->csbnds[3].csbnds); debug("cs3_config = 0x%08x\n",ddr->cs_config[3]); } #endif if (spd.mem_type != 0x07) { puts("No DDR module found!\n"); return 0; } /* * Figure out memory size in Megabytes. */ memsize = spd.nrows * banksize(spd.row_dens) / 0x100000; /* * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. */ law_size = 19 + __ilog2(memsize); /* * Set up LAWBAR for all of DDR. */ ecm->bar = ((CFG_DDR_SDRAM_BASE>>12) & 0xfffff); ecm->ar = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size)); debug("DDR:bar=0x%08x\n", ecm->bar); debug("DDR:ar=0x%08x\n", ecm->ar); /* * Find the largest CAS by locating the highest 1 bit * in the spd.cas_lat field. Translate it to a DDR * controller field value: * * CAS Lat DDR I Ctrl * Clocks SPD Bit Value * -------+--------+--------- * 1.0 0 001 * 1.5 1 010 * 2.0 2 011 * 2.5 3 100 * 3.0 4 101 * 3.5 5 110 * 4.0 6 111 */ caslat = __ilog2(spd.cas_lat); if (caslat > 6 ) { printf("DDR: Invalid SPD CAS Latency, caslat=%02X\n", spd.cas_lat); return 0; } max_bus_clk = 1000 *10 / (((spd.clk_cycle & 0xF0) >> 4) * 10 + (spd.clk_cycle & 0x0f)); max_data_rate = max_bus_clk * 2; debug("DDR:Module maximum data rate is: %dMhz\n", max_data_rate); ddrc_clk = gd->ddr_clk / 1000000; if (max_data_rate >= 390) { /* it is DDR 400 */ if (ddrc_clk <= 410 && ddrc_clk > 350) { /* DDR controller clk at 350~410 */ effective_data_rate = 400; /* 5ns */ caslat = caslat; } else if (ddrc_clk <= 350 && ddrc_clk > 280) { /* DDR controller clk at 280~350 */ effective_data_rate = 333; /* 6ns */ if (spd.clk_cycle2 == 0x60) caslat = caslat - 1; else caslat = caslat; } else if (ddrc_clk <= 280 && ddrc_clk > 230) { /* DDR controller clk at 230~280 */ effective_data_rate = 266; /* 7.5ns */ if (spd.clk_cycle3 == 0x75) caslat = caslat - 2; else if (spd.clk_cycle2 == 0x60) caslat = caslat - 1; else caslat = caslat; } else if (ddrc_clk <= 230 && ddrc_clk > 90) { /* DDR controller clk at 90~230 */ effective_data_rate = 200; /* 10ns */ if (spd.clk_cycle3 == 0x75) caslat = caslat - 2; else if (spd.clk_cycle2 == 0x60) caslat = caslat - 1; else caslat = caslat; } } else if (max_data_rate >= 323) { /* it is DDR 333 */ if (ddrc_clk <= 350 && ddrc_clk > 280) { /* DDR controller clk at 280~350 */ effective_data_rate = 333; /* 6ns */ caslat = caslat; } else if (ddrc_clk <= 280 && ddrc_clk > 230) { /* DDR controller clk at 230~280 */ effective_data_rate = 266; /* 7.5ns */ if (spd.clk_cycle2 == 0x75) caslat = caslat - 1; else caslat = caslat; } else if (ddrc_clk <= 230 && ddrc_clk > 90) { /* DDR controller clk at 90~230 */ effective_data_rate = 200; /* 10ns */ if (spd.clk_cycle3 == 0xa0) caslat = caslat - 2; else if (spd.clk_cycle2 == 0x75) caslat = caslat - 1; else caslat = caslat; } } else if (max_data_rate >= 256) { /* it is DDR 266 */ if (ddrc_clk <= 350 && ddrc_clk > 280) { /* DDR controller clk at 280~350 */ printf("DDR: DDR controller freq is more than " "max data rate of the module\n"); return 0; } else if (ddrc_clk <= 280 && ddrc_clk > 230) { /* DDR controller clk at 230~280 */ effective_data_rate = 266; /* 7.5ns */ caslat = caslat; } else if (ddrc_clk <= 230 && ddrc_clk > 90) { /* DDR controller clk at 90~230 */ effective_data_rate = 200; /* 10ns */ if (spd.clk_cycle2 == 0xa0) caslat = caslat - 1; } } else if (max_data_rate >= 190) { /* it is DDR 200 */ if (ddrc_clk <= 350 && ddrc_clk > 230) { /* DDR controller clk at 230~350 */ printf("DDR: DDR controller freq is more than " "max data rate of the module\n"); return 0; } else if (ddrc_clk <= 230 && ddrc_clk > 90) { /* DDR controller clk at 90~230 */ effective_data_rate = 200; /* 10ns */ caslat = caslat; } } debug("DDR:Effective data rate is: %dMhz\n", effective_data_rate); debug("DDR:The MSB 1 of CAS Latency is: %d\n", caslat); /* * Errata DDR6 work around: input enable 2 cycles earlier. * including MPC834x Rev1.0/1.1 and MPC8360 Rev1.1/1.2. */ if (caslat == 2) ddr->debug_reg = 0x201c0000; /* CL=2 */ else if (caslat == 3) ddr->debug_reg = 0x202c0000; /* CL=2.5 */ else if (caslat == 4) ddr->debug_reg = 0x202c0000; /* CL=3.0 */ __asm__ __volatile__ ("sync"); debug("Errata DDR6 (debug_reg=0x%08x)\n", ddr->debug_reg); /* * note: caslat must also be programmed into ddr->sdram_mode * register. * * note: WRREC(Twr) and WRTORD(Twtr) are not in SPD, * use conservative value here. */ caslat_ctrl = (caslat + 1) & 0x07; /* see as above */ ddr->timing_cfg_1 = (((picos_to_clk(spd.trp * 250) & 0x07) << 28 ) | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24 ) | ((picos_to_clk(spd.trcd * 250) & 0x07) << 20 ) | ((caslat_ctrl & 0x07) << 16 ) | (((picos_to_clk(spd.trfc * 1000) - 8) & 0x0f) << 12 ) | ( 0x300 ) | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) | 1); ddr->timing_cfg_2 = 0x00000800; debug("DDR:timing_cfg_1=0x%08x\n", ddr->timing_cfg_1); debug("DDR:timing_cfg_2=0x%08x\n", ddr->timing_cfg_2); /* Setup init value, but not enable */ ddr->sdram_cfg = 0x42000000; /* Check DIMM data bus width */ if (spd.dataw_lsb == 0x20) { burstlen = 0x03; /* 32 bit data bus, burst len is 8 */ printf("\n DDR DIMM: data bus width is 32 bit"); } else { burstlen = 0x02; /* Others act as 64 bit bus, burst len is 4 */ printf("\n DDR DIMM: data bus width is 64 bit"); } /* Is this an ECC DDR chip? */ if (spd.config == 0x02) printf(" with ECC\n"); else printf(" without ECC\n"); /* Burst length is always 4 for 64 bit data bus, 8 for 32 bit data bus, Burst type is sequential */ switch (caslat) { case 1: ddr->sdram_mode = 0x50 | burstlen; /* CL=1.5 */ break; case 2: ddr->sdram_mode = 0x20 | burstlen; /* CL=2.0 */ break; case 3: ddr->sdram_mode = 0x60 | burstlen; /* CL=2.5 */ break; case 4: ddr->sdram_mode = 0x30 | burstlen; /* CL=3.0 */ break; default: printf("DDR:only CL 1.5, 2.0, 2.5, 3.0 is supported\n"); return 0; } debug("DDR:sdram_mode=0x%08x\n", ddr->sdram_mode); switch (spd.refresh) { case 0x00: case 0x80: refresh_clk = picos_to_clk(15625000); break; case 0x01: case 0x81: refresh_clk = picos_to_clk(3900000); break; case 0x02: case 0x82: refresh_clk = picos_to_clk(7800000); break; case 0x03: case 0x83: refresh_clk = picos_to_clk(31300000); break; case 0x04: case 0x84: refresh_clk = picos_to_clk(62500000); break; case 0x05: case 0x85: refresh_clk = picos_to_clk(125000000); break; default: refresh_clk = 0x512; break; } /* * Set BSTOPRE to 0x100 for page mode * If auto-charge is used, set BSTOPRE = 0 */ ddr->sdram_interval = ((refresh_clk & 0x3fff) << 16) | 0x100; debug("DDR:sdram_interval=0x%08x\n", ddr->sdram_interval); /* SS_EN = 0, source synchronous disable * CLK_ADJST = 0, MCK/MCK# is launched aligned with addr/cmd */ ddr->sdram_clk_cntl = 0x00000000; debug("DDR:sdram_clk_cntl=0x%08x\n", ddr->sdram_clk_cntl); asm("sync;isync"); udelay(600); /* * Figure out the settings for the sdram_cfg register. Build up * the value in 'sdram_cfg' before writing since the write into * the register will actually enable the memory controller, and all * settings must be done before enabling. * * sdram_cfg[0] = 1 (ddr sdram logic enable) * sdram_cfg[1] = 1 (self-refresh-enable) * sdram_cfg[6:7] = 2 (SDRAM type = DDR SDRAM) * sdram_cfg[12] = 0 (32_BE =0 , 64 bit bus mode) * sdram_cfg[13] = 0 (8_BE =0, 4-beat bursts) */ sdram_cfg = 0xC2000000; /* sdram_cfg[3] = RD_EN - registered DIMM enable */ if (spd.mod_attr & 0x02) sdram_cfg |= 0x10000000; /* The DIMM is 32bit width */ if (spd.dataw_lsb == 0x20) sdram_cfg |= 0x000C0000; ddrc_ecc_enable = 0; #if defined(CONFIG_DDR_ECC) /* Enable ECC with sdram_cfg[2] */ if (spd.config == 0x02) { sdram_cfg |= 0x20000000; ddrc_ecc_enable = 1; /* disable error detection */ ddr->err_disable = ~ECC_ERROR_ENABLE; /* set single bit error threshold to maximum value, * reset counter to zero */ ddr->err_sbe = (255 << ECC_ERROR_MAN_SBET_SHIFT) | (0 << ECC_ERROR_MAN_SBEC_SHIFT); } debug("DDR:err_disable=0x%08x\n", ddr->err_disable); debug("DDR:err_sbe=0x%08x\n", ddr->err_sbe); #endif printf(" DDRC ECC mode: %s\n", ddrc_ecc_enable ? "ON":"OFF"); #if defined(CONFIG_DDR_2T_TIMING) /* * Enable 2T timing by setting sdram_cfg[16]. */ sdram_cfg |= SDRAM_CFG_2T_EN; #endif /* Enable controller, and GO! */ ddr->sdram_cfg = sdram_cfg; asm("sync;isync"); udelay(500); debug("DDR:sdram_cfg=0x%08x\n", ddr->sdram_cfg); return memsize; /*in MBytes*/ } #endif /* CONFIG_SPD_EEPROM */ #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRC) /* * Use timebase counter, get_timer() is not availabe * at this point of initialization yet. */ static __inline__ unsigned long get_tbms (void) { unsigned long tbl; unsigned long tbu1, tbu2; unsigned long ms; unsigned long long tmp; ulong tbclk = get_tbclk(); /* get the timebase ticks */ do { asm volatile ("mftbu %0":"=r" (tbu1):); asm volatile ("mftb %0":"=r" (tbl):); asm volatile ("mftbu %0":"=r" (tbu2):); } while (tbu1 != tbu2); /* convert ticks to ms */ tmp = (unsigned long long)(tbu1); tmp = (tmp << 32); tmp += (unsigned long long)(tbl); ms = tmp/(tbclk/1000); return ms; } /* * Initialize all of memory for ECC, then enable errors. */ /* #define CONFIG_DDR_ECC_INIT_VIA_DMA */ void ddr_enable_ecc(unsigned int dram_size) { volatile immap_t *immap = (immap_t *)CFG_IMMR; volatile ddr83xx_t *ddr= &immap->ddr; unsigned long t_start, t_end; register u64 *p; register uint size; unsigned int pattern[2]; #if defined(CONFIG_DDR_ECC_INIT_VIA_DMA) uint i; #endif icache_enable(); t_start = get_tbms(); pattern[0] = 0xdeadbeef; pattern[1] = 0xdeadbeef; #if !defined(CONFIG_DDR_ECC_INIT_VIA_DMA) debug("ddr init: CPU FP write method\n"); size = dram_size; for (p = 0; p < (u64*)(size); p++) { ppcDWstore((u32*)p, pattern); } __asm__ __volatile__ ("sync"); #else debug("ddr init: DMA method\n"); size = 0x2000; for (p = 0; p < (u64*)(size); p++) { ppcDWstore((u32*)p, pattern); } __asm__ __volatile__ ("sync"); /* Initialise DMA for direct transfer */ dma_init(); /* Start DMA to transfer */ dma_xfer((uint *)0x2000, 0x2000, (uint *)0); /* 8K */ dma_xfer((uint *)0x4000, 0x4000, (uint *)0); /* 16K */ dma_xfer((uint *)0x8000, 0x8000, (uint *)0); /* 32K */ dma_xfer((uint *)0x10000, 0x10000, (uint *)0); /* 64K */ dma_xfer((uint *)0x20000, 0x20000, (uint *)0); /* 128K */ dma_xfer((uint *)0x40000, 0x40000, (uint *)0); /* 256K */ dma_xfer((uint *)0x80000, 0x80000, (uint *)0); /* 512K */ dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 1M */ dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 2M */ dma_xfer((uint *)0x400000, 0x400000, (uint *)0); /* 4M */ for (i = 1; i < dram_size / 0x800000; i++) { dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0); } #endif t_end = get_tbms(); icache_disable(); debug("\nREADY!!\n"); debug("ddr init duration: %ld ms\n", t_end - t_start); /* Clear All ECC Errors */ if ((ddr->err_detect & ECC_ERROR_DETECT_MME) == ECC_ERROR_DETECT_MME) ddr->err_detect |= ECC_ERROR_DETECT_MME; if ((ddr->err_detect & ECC_ERROR_DETECT_MBE) == ECC_ERROR_DETECT_MBE) ddr->err_detect |= ECC_ERROR_DETECT_MBE; if ((ddr->err_detect & ECC_ERROR_DETECT_SBE) == ECC_ERROR_DETECT_SBE) ddr->err_detect |= ECC_ERROR_DETECT_SBE; if ((ddr->err_detect & ECC_ERROR_DETECT_MSE) == ECC_ERROR_DETECT_MSE) ddr->err_detect |= ECC_ERROR_DETECT_MSE; /* Disable ECC-Interrupts */ ddr->err_int_en &= ECC_ERR_INT_DISABLE; /* Enable errors for ECC */ ddr->err_disable &= ECC_ERROR_ENABLE; __asm__ __volatile__ ("sync"); __asm__ __volatile__ ("isync"); } #endif /* CONFIG_DDR_ECC */