/* * Copyright 2004 Freescale Semiconductor. * (C) Copyright 2003 Motorola Inc. * Xianghua Xiao (X.Xiao@motorola.com) * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * * Change log: * * 20050101: Eran Liberty (liberty@freescale.com) * Initial file creating (porting from 85XX & 8260) */ #include #include #include #include #include #include #ifdef CONFIG_SPD_EEPROM #if defined(CONFIG_DDR_ECC) extern void dma_init(void); extern uint dma_check(void); extern int dma_xfer(void *dest, uint count, void *src); #endif #ifndef CFG_READ_SPD #define CFG_READ_SPD i2c_read #endif /* * Convert picoseconds into clock cycles (rounding up if needed). */ int picos_to_clk(int picos) { int clks; clks = picos / (2000000000 / (get_bus_freq(0) / 1000)); if (picos % (2000000000 / (get_bus_freq(0) / 1000)) != 0) { clks++; } return clks; } unsigned int banksize(unsigned char row_dens) { return ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24; } long int spd_sdram(int(read_spd)(uint addr)) { volatile immap_t *immap = (immap_t *)CFG_IMMRBAR; volatile ddr8349_t *ddr = &immap->ddr; volatile law8349_t *ecm = &immap->sysconf.ddrlaw[0]; spd_eeprom_t spd; unsigned tmp, tmp1; unsigned int memsize; unsigned int law_size; unsigned char caslat; unsigned int trfc, trfc_clk, trfc_low; #warning Current spd_sdram does not fit its usage... adjust implementation or API... CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) & spd, sizeof (spd)); if (spd.nrows > 2) { puts("DDR:Only two chip selects are supported on ADS.\n"); return 0; } if (spd.nrow_addr < 12 || spd.nrow_addr > 14 || spd.ncol_addr < 8 || spd.ncol_addr > 11) { puts("DDR:Row or Col number unsupported.\n"); return 0; } ddr->csbnds[2].csbnds = (banksize(spd.row_dens) >> 24) - 1; ddr->cs_config[2] = ( 1 << 31 | (spd.nrow_addr - 12) << 8 | (spd.ncol_addr - 8) ); debug("\n"); debug("cs2_bnds = 0x%08x\n",ddr->csbnds[2].csbnds); debug("cs2_config = 0x%08x\n",ddr->cs_config[2]); if (spd.nrows == 2) { ddr->csbnds[3].csbnds = ( (banksize(spd.row_dens) >> 8) | ((banksize(spd.row_dens) >> 23) - 1) ); ddr->cs_config[3] = ( 1<<31 | (spd.nrow_addr-12) << 8 | (spd.ncol_addr-8) ); debug("cs3_bnds = 0x%08x\n",ddr->csbnds[3].csbnds); debug("cs3_config = 0x%08x\n",ddr->cs_config[3]); } if (spd.mem_type != 0x07) { puts("No DDR module found!\n"); return 0; } /* * Figure out memory size in Megabytes. */ memsize = spd.nrows * banksize(spd.row_dens) / 0x100000; /* * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. */ law_size = 19 + __ilog2(memsize); /* * Set up LAWBAR for all of DDR. */ ecm->bar = ((CFG_DDR_SDRAM_BASE>>12) & 0xfffff); ecm->ar = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size)); debug("DDR:bar=0x%08x\n", ecm->bar); debug("DDR:ar=0x%08x\n", ecm->ar); /* * find the largest CAS */ if(spd.cas_lat & 0x40) { caslat = 7; } else if (spd.cas_lat & 0x20) { caslat = 6; } else if (spd.cas_lat & 0x10) { caslat = 5; } else if (spd.cas_lat & 0x08) { caslat = 4; } else if (spd.cas_lat & 0x04) { caslat = 3; } else if (spd.cas_lat & 0x02) { caslat = 2; } else if (spd.cas_lat & 0x01) { caslat = 1; } else { puts("DDR:no valid CAS Latency information.\n"); return 0; } tmp = 20000 / (((spd.clk_cycle & 0xF0) >> 4) * 10 + (spd.clk_cycle & 0x0f)); debug("DDR:Module maximum data rate is: %dMhz\n", tmp); tmp1 = get_bus_freq(0) / 1000000; if (tmp1 < 230 && tmp1 >= 90 && tmp >= 230) { /* 90~230 range, treated as DDR 200 */ if (spd.clk_cycle3 == 0xa0) caslat -= 2; else if(spd.clk_cycle2 == 0xa0) caslat--; } else if (tmp1 < 280 && tmp1 >= 230 && tmp >= 280) { /* 230-280 range, treated as DDR 266 */ if (spd.clk_cycle3 == 0x75) caslat -= 2; else if (spd.clk_cycle2 == 0x75) caslat--; } else if (tmp1 < 350 && tmp1 >= 280 && tmp >= 350) { /* 280~350 range, treated as DDR 333 */ if (spd.clk_cycle3 == 0x60) caslat -= 2; else if (spd.clk_cycle2 == 0x60) caslat--; } else if (tmp1 < 90 || tmp1 >= 350) { /* DDR rate out-of-range */ puts("DDR:platform frequency is not fit for DDR rate\n"); return 0; } /* * note: caslat must also be programmed into ddr->sdram_mode * register. * * note: WRREC(Twr) and WRTORD(Twtr) are not in SPD, * use conservative value here. */ trfc = spd.trfc * 1000; /* up to ps */ trfc_clk = picos_to_clk(trfc); trfc_low = (trfc_clk - 8) & 0xf; ddr->timing_cfg_1 = (((picos_to_clk(spd.trp * 250) & 0x07) << 28 ) | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24 ) | ((picos_to_clk(spd.trcd * 250) & 0x07) << 20 ) | ((caslat & 0x07) << 16 ) | (trfc_low << 12 ) | ( 0x300 ) | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) | 1); ddr->timing_cfg_2 = 0x00000800; debug("DDR:timing_cfg_1=0x%08x\n", ddr->timing_cfg_1); debug("DDR:timing_cfg_2=0x%08x\n", ddr->timing_cfg_2); /* * Only DDR I is supported * DDR I and II have different mode-register-set definition */ /* burst length is always 4 */ switch(caslat) { case 2: ddr->sdram_mode = 0x52; /* 1.5 */ break; case 3: ddr->sdram_mode = 0x22; /* 2.0 */ break; case 4: ddr->sdram_mode = 0x62; /* 2.5 */ break; case 5: ddr->sdram_mode = 0x32; /* 3.0 */ break; default: puts("DDR:only CAS Latency 1.5, 2.0, 2.5, 3.0 is supported.\n"); return 0; } debug("DDR:sdram_mode=0x%08x\n", ddr->sdram_mode); switch(spd.refresh) { case 0x00: case 0x80: tmp = picos_to_clk(15625000); break; case 0x01: case 0x81: tmp = picos_to_clk(3900000); break; case 0x02: case 0x82: tmp = picos_to_clk(7800000); break; case 0x03: case 0x83: tmp = picos_to_clk(31300000); break; case 0x04: case 0x84: tmp = picos_to_clk(62500000); break; case 0x05: case 0x85: tmp = picos_to_clk(125000000); break; default: tmp = 0x512; break; } /* * Set BSTOPRE to 0x100 for page mode * If auto-charge is used, set BSTOPRE = 0 */ ddr->sdram_interval = ((tmp & 0x3fff) << 16) | 0x100; debug("DDR:sdram_interval=0x%08x\n", ddr->sdram_interval); /* * Is this an ECC DDR chip? */ #if defined(CONFIG_DDR_ECC) if (spd.config == 0x02) { ddr->err_disable = 0x0000000d; ddr->err_sbe = 0x00ff0000; } debug("DDR:err_disable=0x%08x\n", ddr->err_disable); debug("DDR:err_sbe=0x%08x\n", ddr->err_sbe); #endif asm("sync;isync"); udelay(500); /* * SS_EN=1, * CLK_ADJST = 2-MCK/MCK_B, is lauched 1/2 of one SDRAM * clock cycle after address/command */ ddr->sdram_clk_cntl = 0x82000000; /* * Figure out the settings for the sdram_cfg register. Build up * the entire register in 'tmp' before writing since the write into * the register will actually enable the memory controller, and all * settings must be done before enabling. * * sdram_cfg[0] = 1 (ddr sdram logic enable) * sdram_cfg[1] = 1 (self-refresh-enable) * sdram_cfg[6:7] = 2 (SDRAM type = DDR SDRAM) */ tmp = 0xc2000000; /* * sdram_cfg[3] = RD_EN - registered DIMM enable * A value of 0x26 indicates micron registered DIMMS (micron.com) */ if (spd.mod_attr == 0x26) { tmp |= 0x10000000; } #if defined(CONFIG_DDR_ECC) /* * If the user wanted ECC (enabled via sdram_cfg[2]) */ if (spd.config == 0x02) { tmp |= 0x20000000; } #endif #if defined(CONFIG_DDR_2T_TIMING) /* * Enable 2T timing by setting sdram_cfg[16]. */ tmp |= SDRAM_CFG_2T_EN; #endif ddr->sdram_cfg = tmp; asm("sync;isync"); udelay(500); debug("DDR:sdram_cfg=0x%08x\n", ddr->sdram_cfg); return memsize;/*in MBytes*/ } #endif /* CONFIG_SPD_EEPROM */ #if defined(CONFIG_DDR_ECC) /* * Initialize all of memory for ECC, then enable errors. */ void ddr_enable_ecc(unsigned int dram_size) { #ifndef FIXME uint *p = 0; uint i = 0; volatile immap_t *immap = (immap_t *)CFG_IMMRBAR; volatile ccsr_ddr_t *ddr= &immap->im_ddr; dma_init(); for (*p = 0; p < (uint *)(8 * 1024); p++) { if (((unsigned int)p & 0x1f) == 0) { ppcDcbz((unsigned long) p); } *p = (unsigned int)0xdeadbeef; if (((unsigned int)p & 0x1c) == 0x1c) { ppcDcbf((unsigned long) p); } } /* 8K */ dma_xfer((uint *)0x2000, 0x2000, (uint *)0); /* 16K */ dma_xfer((uint *)0x4000, 0x4000, (uint *)0); /* 32K */ dma_xfer((uint *)0x8000, 0x8000, (uint *)0); /* 64K */ dma_xfer((uint *)0x10000, 0x10000, (uint *)0); /* 128k */ dma_xfer((uint *)0x20000, 0x20000, (uint *)0); /* 256k */ dma_xfer((uint *)0x40000, 0x40000, (uint *)0); /* 512k */ dma_xfer((uint *)0x80000, 0x80000, (uint *)0); /* 1M */ dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 2M */ dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 4M */ dma_xfer((uint *)0x400000, 0x400000, (uint *)0); for (i = 1; i < dram_size / 0x800000; i++) { dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0); } /* * Enable errors for ECC. */ ddr->err_disable = 0x00000000; asm("sync;isync"); #endif } #endif /* CONFIG_DDR_ECC */