/* * NAND driver for TI DaVinci based boards. * * Copyright (C) 2007 Sergey Kubushyn * * Based on Linux DaVinci NAND driver by TI. Original copyright follows: */ /* * * linux/drivers/mtd/nand/nand_davinci.c * * NAND Flash Driver * * Copyright (C) 2006 Texas Instruments. * * ---------------------------------------------------------------------------- * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * ---------------------------------------------------------------------------- * * Overview: * This is a device driver for the NAND flash device found on the * DaVinci board which utilizes the Samsung k9k2g08 part. * Modifications: ver. 1.0: Feb 2005, Vinod/Sudhakar - * */ #include #include #ifdef CFG_USE_NAND #if !defined(CONFIG_NAND_LEGACY) #include #include #include extern struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE]; static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct nand_chip *this = mtd->priv; u_int32_t IO_ADDR_W = (u_int32_t)this->IO_ADDR_W; IO_ADDR_W &= ~(MASK_ALE|MASK_CLE); if (ctrl & NAND_CTRL_CHANGE) { if ( ctrl & NAND_CLE ) IO_ADDR_W |= MASK_CLE; if ( ctrl & NAND_ALE ) IO_ADDR_W |= MASK_ALE; this->IO_ADDR_W = (void __iomem *) IO_ADDR_W; } if (cmd != NAND_CMD_NONE) writeb(cmd, this->IO_ADDR_W); } /* Set WP on deselect, write enable on select */ static void nand_davinci_select_chip(struct mtd_info *mtd, int chip) { #define GPIO_SET_DATA01 0x01c67018 #define GPIO_CLR_DATA01 0x01c6701c #define GPIO_NAND_WP (1 << 4) #ifdef SONATA_BOARD_GPIOWP if (chip < 0) { REG(GPIO_CLR_DATA01) |= GPIO_NAND_WP; } else { REG(GPIO_SET_DATA01) |= GPIO_NAND_WP; } #endif } #ifdef CFG_NAND_HW_ECC #ifdef CFG_DAVINCI_BROKEN_ECC /* Linux-compatible ECC uses MTD defaults. */ /* These layouts are not compatible with Linux or RBL/UBL. */ #ifdef CFG_NAND_LARGEPAGE static struct nand_ecclayout davinci_nand_ecclayout = { .eccbytes = 12, .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58}, .oobfree = { {.offset = 2, .length = 6}, {.offset = 12, .length = 12}, {.offset = 28, .length = 12}, {.offset = 44, .length = 12}, {.offset = 60, .length = 4} } }; #elif defined(CFG_NAND_SMALLPAGE) static struct nand_ecclayout davinci_nand_ecclayout = { .eccbytes = 3, .eccpos = {0, 1, 2}, .oobfree = { {.offset = 6, .length = 2}, {.offset = 8, .length = 8} } }; #else #error "Either CFG_NAND_LARGEPAGE or CFG_NAND_SMALLPAGE must be defined!" #endif #endif /* CFG_DAVINCI_BROKEN_ECC */ static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode) { emifregs emif_addr; int dummy; emif_addr = (emifregs)DAVINCI_ASYNC_EMIF_CNTRL_BASE; dummy = emif_addr->NANDF1ECC; dummy = emif_addr->NANDF2ECC; dummy = emif_addr->NANDF3ECC; dummy = emif_addr->NANDF4ECC; emif_addr->NANDFCR |= (1 << 8); } static u_int32_t nand_davinci_readecc(struct mtd_info *mtd, u_int32_t region) { u_int32_t ecc = 0; emifregs emif_base_addr; emif_base_addr = (emifregs)DAVINCI_ASYNC_EMIF_CNTRL_BASE; if (region == 1) ecc = emif_base_addr->NANDF1ECC; else if (region == 2) ecc = emif_base_addr->NANDF2ECC; else if (region == 3) ecc = emif_base_addr->NANDF3ECC; else if (region == 4) ecc = emif_base_addr->NANDF4ECC; return(ecc); } static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { u_int32_t tmp; #ifdef CFG_DAVINCI_BROKEN_ECC /* * This is not how you should read ECCs on large page Davinci devices. * The region parameter gets you ECCs for flash chips on different chip * selects, not the 4x512 byte pages in a 2048 byte page. * * Preserved for backwards compatibility though. */ int region, n; struct nand_chip *this = mtd->priv; n = (this->ecc.size/512); region = 1; while (n--) { tmp = nand_davinci_readecc(mtd, region); *ecc_code++ = tmp; *ecc_code++ = tmp >> 16; *ecc_code++ = ((tmp >> 8) & 0x0f) | ((tmp >> 20) & 0xf0); region++; } #else const int region = 1; tmp = nand_davinci_readecc(mtd, region); /* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */ tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4); /* Invert so that erased block ECC is correct */ tmp = ~tmp; *ecc_code++ = tmp; *ecc_code++ = tmp >> 8; *ecc_code++ = tmp >> 16; #endif /* CFG_DAVINCI_BROKEN_ECC */ return(0); } #ifdef CFG_DAVINCI_BROKEN_ECC static void nand_davinci_gen_true_ecc(u_int8_t *ecc_buf) { u_int32_t tmp = ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xf0) << 20) | ((ecc_buf[2] & 0x0f) << 8); ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) | P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp)); ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) | P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp)); ecc_buf[2] = ~( P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) | P1e(tmp) | P2048o(tmp) | P2048e(tmp)); } static int nand_davinci_compare_ecc(u_int8_t *ecc_nand, u_int8_t *ecc_calc, u_int8_t *page_data) { u_int32_t i; u_int8_t tmp0_bit[8], tmp1_bit[8], tmp2_bit[8]; u_int8_t comp0_bit[8], comp1_bit[8], comp2_bit[8]; u_int8_t ecc_bit[24]; u_int8_t ecc_sum = 0; u_int8_t find_bit = 0; u_int32_t find_byte = 0; int is_ecc_ff; is_ecc_ff = ((*ecc_nand == 0xff) && (*(ecc_nand + 1) == 0xff) && (*(ecc_nand + 2) == 0xff)); nand_davinci_gen_true_ecc(ecc_nand); nand_davinci_gen_true_ecc(ecc_calc); for (i = 0; i <= 2; i++) { *(ecc_nand + i) = ~(*(ecc_nand + i)); *(ecc_calc + i) = ~(*(ecc_calc + i)); } for (i = 0; i < 8; i++) { tmp0_bit[i] = *ecc_nand % 2; *ecc_nand = *ecc_nand / 2; } for (i = 0; i < 8; i++) { tmp1_bit[i] = *(ecc_nand + 1) % 2; *(ecc_nand + 1) = *(ecc_nand + 1) / 2; } for (i = 0; i < 8; i++) { tmp2_bit[i] = *(ecc_nand + 2) % 2; *(ecc_nand + 2) = *(ecc_nand + 2) / 2; } for (i = 0; i < 8; i++) { comp0_bit[i] = *ecc_calc % 2; *ecc_calc = *ecc_calc / 2; } for (i = 0; i < 8; i++) { comp1_bit[i] = *(ecc_calc + 1) % 2; *(ecc_calc + 1) = *(ecc_calc + 1) / 2; } for (i = 0; i < 8; i++) { comp2_bit[i] = *(ecc_calc + 2) % 2; *(ecc_calc + 2) = *(ecc_calc + 2) / 2; } for (i = 0; i< 6; i++) ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2]; for (i = 0; i < 8; i++) ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i]; for (i = 0; i < 8; i++) ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i]; ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0]; ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1]; for (i = 0; i < 24; i++) ecc_sum += ecc_bit[i]; switch (ecc_sum) { case 0: /* Not reached because this function is not called if ECC values are equal */ return 0; case 1: /* Uncorrectable error */ MTDDEBUG (MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n"); return(-1); case 12: /* Correctable error */ find_byte = (ecc_bit[23] << 8) + (ecc_bit[21] << 7) + (ecc_bit[19] << 6) + (ecc_bit[17] << 5) + (ecc_bit[15] << 4) + (ecc_bit[13] << 3) + (ecc_bit[11] << 2) + (ecc_bit[9] << 1) + ecc_bit[7]; find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1]; MTDDEBUG (MTD_DEBUG_LEVEL0, "Correcting single bit ECC " "error at offset: %d, bit: %d\n", find_byte, find_bit); page_data[find_byte] ^= (1 << find_bit); return(0); default: if (is_ecc_ff) { if (ecc_calc[0] == 0 && ecc_calc[1] == 0 && ecc_calc[2] == 0) return(0); } MTDDEBUG (MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n"); return(-1); } } #endif /* CFG_DAVINCI_BROKEN_ECC */ static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { struct nand_chip *this = mtd->priv; #ifdef CFG_DAVINCI_BROKEN_ECC int block_count = 0, i, rc; block_count = (this->ecc.size/512); for (i = 0; i < block_count; i++) { if (memcmp(read_ecc, calc_ecc, 3) != 0) { rc = nand_davinci_compare_ecc(read_ecc, calc_ecc, dat); if (rc < 0) { return(rc); } } read_ecc += 3; calc_ecc += 3; dat += 512; } #else u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) | (read_ecc[2] << 16); u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) | (calc_ecc[2] << 16); u_int32_t diff = ecc_calc ^ ecc_nand; if (diff) { if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) { /* Correctable error */ if ((diff >> (12 + 3)) < this->ecc.size) { uint8_t find_bit = 1 << ((diff >> 12) & 7); uint32_t find_byte = diff >> (12 + 3); dat[find_byte] ^= find_bit; MTDDEBUG(MTD_DEBUG_LEVEL0, "Correcting single " "bit ECC error at offset: %d, bit: " "%d\n", find_byte, find_bit); return 1; } else { return -1; } } else if (!(diff & (diff - 1))) { /* Single bit ECC error in the ECC itself, nothing to fix */ MTDDEBUG(MTD_DEBUG_LEVEL0, "Single bit ECC error in " "ECC.\n"); return 1; } else { /* Uncorrectable error */ MTDDEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n"); return -1; } } #endif /* CFG_DAVINCI_BROKEN_ECC */ return(0); } #endif /* CFG_NAND_HW_ECC */ static int nand_davinci_dev_ready(struct mtd_info *mtd) { emifregs emif_addr; emif_addr = (emifregs)DAVINCI_ASYNC_EMIF_CNTRL_BASE; return(emif_addr->NANDFSR & 0x1); } static int nand_davinci_waitfunc(struct mtd_info *mtd, struct nand_chip *this) { while(!nand_davinci_dev_ready(mtd)) {;} *NAND_CE0CLE = NAND_STATUS; return(*NAND_CE0DATA); } static void nand_flash_init(void) { u_int32_t acfg1 = 0x3ffffffc; u_int32_t acfg2 = 0x3ffffffc; u_int32_t acfg3 = 0x3ffffffc; u_int32_t acfg4 = 0x3ffffffc; emifregs emif_regs; /*------------------------------------------------------------------* * NAND FLASH CHIP TIMEOUT @ 459 MHz * * * * AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz * * AEMIF.CLK period = 1/76.5 MHz = 13.1 ns * * * *------------------------------------------------------------------*/ acfg1 = 0 | (0 << 31 ) /* selectStrobe */ | (0 << 30 ) /* extWait */ | (1 << 26 ) /* writeSetup 10 ns */ | (3 << 20 ) /* writeStrobe 40 ns */ | (1 << 17 ) /* writeHold 10 ns */ | (1 << 13 ) /* readSetup 10 ns */ | (5 << 7 ) /* readStrobe 60 ns */ | (1 << 4 ) /* readHold 10 ns */ | (3 << 2 ) /* turnAround ?? ns */ | (0 << 0 ) /* asyncSize 8-bit bus */ ; emif_regs = (emifregs)DAVINCI_ASYNC_EMIF_CNTRL_BASE; emif_regs->AWCCR |= 0x10000000; emif_regs->AB1CR = acfg1; /* 0x08244128 */; emif_regs->AB2CR = acfg2; emif_regs->AB3CR = acfg3; emif_regs->AB4CR = acfg4; emif_regs->NANDFCR = 0x00000101; } int board_nand_init(struct nand_chip *nand) { nand->IO_ADDR_R = (void __iomem *)NAND_CE0DATA; nand->IO_ADDR_W = (void __iomem *)NAND_CE0DATA; nand->chip_delay = 0; nand->select_chip = nand_davinci_select_chip; #ifdef CFG_NAND_USE_FLASH_BBT nand->options = NAND_USE_FLASH_BBT; #endif #ifdef CFG_NAND_HW_ECC nand->ecc.mode = NAND_ECC_HW; #ifdef CFG_DAVINCI_BROKEN_ECC nand->ecc.layout = &davinci_nand_ecclayout; #ifdef CFG_NAND_LARGEPAGE nand->ecc.size = 2048; nand->ecc.bytes = 12; #elif defined(CFG_NAND_SMALLPAGE) nand->ecc.size = 512; nand->ecc.bytes = 3; #else #error "Either CFG_NAND_LARGEPAGE or CFG_NAND_SMALLPAGE must be defined!" #endif #else nand->ecc.size = 512; nand->ecc.bytes = 3; #endif /* CFG_DAVINCI_BROKEN_ECC */ nand->ecc.calculate = nand_davinci_calculate_ecc; nand->ecc.correct = nand_davinci_correct_data; nand->ecc.hwctl = nand_davinci_enable_hwecc; #else nand->ecc.mode = NAND_ECC_SOFT; #endif /* CFG_NAND_HW_ECC */ /* Set address of hardware control function */ nand->cmd_ctrl = nand_davinci_hwcontrol; nand->dev_ready = nand_davinci_dev_ready; nand->waitfunc = nand_davinci_waitfunc; nand_flash_init(); return(0); } #else #error "U-Boot legacy NAND support not available for DaVinci chips" #endif #endif /* CFG_USE_NAND */