/* * (C) Copyright 2003 * Martin Krause, TQ-Systems GmbH, martin.krause@tqs.de. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #undef DEBUG #include #include #include #include /* * TRAB board specific commands. Especially commands for burn-in and function * test. */ #if defined(CONFIG_CMD_BSP) /* limits for valid range of VCC5V in mV */ #define VCC5V_MIN 4500 #define VCC5V_MAX 5500 /* * Test strings for EEPROM test. Length of string 2 must not exceed length of * string 1. Otherwise a buffer overrun could occur! */ #define EEPROM_TEST_STRING_1 "0987654321 :tset a si siht" #define EEPROM_TEST_STRING_2 "this is a test: 1234567890" /* * min/max limits for valid contact temperature during burn in test (in * degree Centigrade * 100) */ #define MIN_CONTACT_TEMP -1000 #define MAX_CONTACT_TEMP +9000 /* blinking frequency of status LED */ #define LED_BLINK_FREQ 5 /* delay time between burn in cycles in seconds */ #ifndef BURN_IN_CYCLE_DELAY /* if not defined in include/configs/trab.h */ #define BURN_IN_CYCLE_DELAY 5 #endif /* physical SRAM parameters */ #define SRAM_ADDR 0x02000000 /* GCS1 */ #define SRAM_SIZE 0x40000 /* 256 kByte */ /* CPLD-Register for controlling TRAB hardware functions */ #define CPLD_BUTTONS ((volatile unsigned long *)0x04020000) #define CPLD_FILL_LEVEL ((volatile unsigned long *)0x04008000) #define CPLD_ROTARY_SWITCH ((volatile unsigned long *)0x04018000) #define CPLD_RS485_RE ((volatile unsigned long *)0x04028000) /* I2C EEPROM device address */ #define I2C_EEPROM_DEV_ADDR 0x54 /* EEPROM address map */ #define EE_ADDR_TEST 192 #define EE_ADDR_MAX_CYCLES 256 #define EE_ADDR_STATUS 258 #define EE_ADDR_PASS_CYCLES 259 #define EE_ADDR_FIRST_ERROR_CYCLE 261 #define EE_ADDR_FIRST_ERROR_NUM 263 #define EE_ADDR_FIRST_ERROR_NAME 264 #define EE_ADDR_ACT_CYCLE 280 /* Bit definitions for ADCCON */ #define ADC_ENABLE_START 0x1 #define ADC_READ_START 0x2 #define ADC_STDBM 0x4 #define ADC_INP_AIN0 (0x0 << 3) #define ADC_INP_AIN1 (0x1 << 3) #define ADC_INP_AIN2 (0x2 << 3) #define ADC_INP_AIN3 (0x3 << 3) #define ADC_INP_AIN4 (0x4 << 3) #define ADC_INP_AIN5 (0x5 << 3) #define ADC_INP_AIN6 (0x6 << 3) #define ADC_INP_AIN7 (0x7 << 3) #define ADC_PRSCEN 0x4000 #define ADC_ECFLG 0x800 /* misc */ /* externals */ extern int memory_post_tests (unsigned long start, unsigned long size); extern int i2c_write (uchar, uint, int , uchar* , int); extern int i2c_read (uchar, uint, int , uchar* , int); extern void tsc2000_reg_init (void); extern s32 tsc2000_contact_temp (void); extern void spi_init(void); /* function declarations */ int do_dip (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]); int do_vcc5v (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]); int do_burn_in (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]); int do_contact_temp (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]); int do_burn_in_status (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]); int i2c_write_multiple (uchar chip, uint addr, int alen, uchar *buffer, int len); int i2c_read_multiple (uchar chip, uint addr, int alen, uchar *buffer, int len); int do_temp_log (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]); /* helper functions */ static void adc_init (void); static int adc_read (unsigned int channel); static int read_dip (void); static int read_vcc5v (void); static int test_dip (void); static int test_vcc5v (void); static int test_rotary_switch (void); static int test_sram (void); static int test_eeprom (void); static int test_contact_temp (void); static void led_set (unsigned int); static void led_blink (void); static void led_init (void); static void sdelay (unsigned long seconds); /* delay in seconds */ static int dummy (void); static int read_max_cycles(void); static void test_function_table_init (void); static void global_vars_init (void); static int global_vars_write_to_eeprom (void); /* globals */ u16 max_cycles; u8 status; u16 pass_cycles; u16 first_error_cycle; u8 first_error_num; char first_error_name[16]; u16 act_cycle; typedef struct test_function_s { char *name; int (*pf)(void); } test_function_t; /* max number of Burn In Functions */ #define BIF_MAX 6 /* table with burn in functions */ test_function_t test_function[BIF_MAX]; int do_burn_in (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) { int i; int cycle_status; if (argc > 1) { printf ("Usage:\n%s\n", cmdtp->usage); return 1; } led_init (); global_vars_init (); test_function_table_init (); spi_init (); if (global_vars_write_to_eeprom () != 0) { printf ("%s: error writing global_vars to eeprom\n", __FUNCTION__); return (1); } if (read_max_cycles () != 0) { printf ("%s: error reading max_cycles from eeprom\n", __FUNCTION__); return (1); } if (max_cycles == 0) { printf ("%s: error, burn in max_cycles = 0\n", __FUNCTION__); return (1); } status = 0; for (act_cycle = 1; act_cycle <= max_cycles; act_cycle++) { cycle_status = 0; /* * avoid timestamp overflow problem after about 68 minutes of * udelay() time. */ reset_timer_masked (); for (i = 0; i < BIF_MAX; i++) { /* call test function */ if ((*test_function[i].pf)() != 0) { printf ("error in %s test\n", test_function[i].name); /* is it the first error? */ if (status == 0) { status = 1; first_error_cycle = act_cycle; /* do not use error_num 0 */ first_error_num = i+1; strncpy (first_error_name, test_function[i].name, sizeof (first_error_name)); led_set (0); } cycle_status = 1; } } /* were all tests of actual cycle OK? */ if (cycle_status == 0) pass_cycles++; /* set status LED if no error is occoured since yet */ if (status == 0) led_set (1); printf ("%s: cycle %d finished\n", __FUNCTION__, act_cycle); /* pause between cycles */ sdelay (BURN_IN_CYCLE_DELAY); } if (global_vars_write_to_eeprom () != 0) { led_set (0); printf ("%s: error writing global_vars to eeprom\n", __FUNCTION__); status = 1; } if (status == 0) { led_blink (); /* endless loop!! */ return (0); } else { led_set (0); return (1); } } U_BOOT_CMD( burn_in, 1, 1, do_burn_in, "burn_in - start burn-in test application on TRAB\n", "\n" " - start burn-in test application\n" " The burn-in test could took a while to finish!\n" " The content of the onboard EEPROM is modified!\n" ); int do_dip (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) { int i, dip; if (argc > 1) { printf ("Usage:\n%s\n", cmdtp->usage); return 1; } if ((dip = read_dip ()) == -1) { return 1; } for (i = 0; i < 4; i++) { if ((dip & (1 << i)) == 0) printf("0"); else printf("1"); } printf("\n"); return 0; } U_BOOT_CMD( dip, 1, 1, do_dip, "dip - read dip switch on TRAB\n", "\n" " - read state of dip switch (S1) on TRAB board\n" " read sequence: 1-2-3-4; ON=1; OFF=0; e.g.: \"0100\"\n" ); int do_vcc5v (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) { int vcc5v; if (argc > 1) { printf ("Usage:\n%s\n", cmdtp->usage); return 1; } if ((vcc5v = read_vcc5v ()) == -1) { return (1); } printf ("%d", (vcc5v / 1000)); printf (".%d", (vcc5v % 1000) / 100); printf ("%d V\n", (vcc5v % 100) / 10) ; return 0; } U_BOOT_CMD( vcc5v, 1, 1, do_vcc5v, "vcc5v - read VCC5V on TRAB\n", "\n" " - read actual value of voltage VCC5V\n" ); int do_contact_temp (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) { int contact_temp; if (argc > 1) { printf ("Usage:\n%s\n", cmdtp->usage); return 1; } spi_init (); contact_temp = tsc2000_contact_temp(); printf ("%d degree C * 100\n", contact_temp) ; return 0; } U_BOOT_CMD( c_temp, 1, 1, do_contact_temp, "c_temp - read contact temperature on TRAB\n", "\n" " - reads the onboard temperature (=contact temperature)\n" ); int do_burn_in_status (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) { if (argc > 1) { printf ("Usage:\n%s\n", cmdtp->usage); return 1; } if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_STATUS, 1, (unsigned char*) &status, 1)) { return (1); } if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_PASS_CYCLES, 1, (unsigned char*) &pass_cycles, 2)) { return (1); } if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_CYCLE, 1, (unsigned char*) &first_error_cycle, 2)) { return (1); } if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NUM, 1, (unsigned char*) &first_error_num, 1)) { return (1); } if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NAME, 1, (unsigned char*)first_error_name, sizeof (first_error_name))) { return (1); } if (read_max_cycles () != 0) { return (1); } printf ("max_cycles = %d\n", max_cycles); printf ("status = %d\n", status); printf ("pass_cycles = %d\n", pass_cycles); printf ("first_error_cycle = %d\n", first_error_cycle); printf ("first_error_num = %d\n", first_error_num); printf ("first_error_name = %.*s\n",(int) sizeof(first_error_name), first_error_name); return 0; } U_BOOT_CMD( bis, 1, 1, do_burn_in_status, "bis - print burn in status on TRAB\n", "\n" " - prints the status variables of the last burn in test\n" " stored in the onboard EEPROM on TRAB board\n" ); static int read_dip (void) { unsigned int result = 0; int adc_val; int i; /*********************************************************** DIP switch connection (according to wa4-cpu.sp.301.pdf, page 3): SW1 - AIN4 SW2 - AIN5 SW3 - AIN6 SW4 - AIN7 "On" DIP switch position short-circuits the voltage from the input channel (i.e. '0' conversion result means "on"). *************************************************************/ for (i = 7; i > 3; i--) { if ((adc_val = adc_read (i)) == -1) { printf ("%s: Channel %d could not be read\n", __FUNCTION__, i); return (-1); } /* * Input voltage (switch open) is 1.8 V. * (Vin_High/VRef)*adc_res = (1,8V/2,5V)*1023) = 736 * Set trigger at halve that value. */ if (adc_val < 368) result |= (1 << (i-4)); } return (result); } static int read_vcc5v (void) { s32 result; /* VCC5V is connected to channel 2 */ if ((result = adc_read (2)) == -1) { printf ("%s: VCC5V could not be read\n", __FUNCTION__); return (-1); } /* * Calculate voltage value. Split in two parts because there is no * floating point support. VCC5V is connected over an resistor divider: * VCC5V=ADCval*2,5V/1023*(10K+30K)/10K. */ result = result * 10 * 1000 / 1023; /* result in mV */ return (result); } static int test_dip (void) { static int first_run = 1; static int first_dip; if (first_run) { if ((first_dip = read_dip ()) == -1) { return (1); } first_run = 0; debug ("%s: first_dip=%d\n", __FUNCTION__, first_dip); } if (first_dip != read_dip ()) { return (1); } else { return (0); } } static int test_vcc5v (void) { int vcc5v; if ((vcc5v = read_vcc5v ()) == -1) { return (1); } if ((vcc5v > VCC5V_MAX) || (vcc5v < VCC5V_MIN)) { printf ("%s: vcc5v[V/100]=%d\n", __FUNCTION__, vcc5v); return (1); } else { return (0); } } static int test_rotary_switch (void) { static int first_run = 1; static int first_rs; if (first_run) { /* * clear bits in CPLD, because they have random values after * power-up or reset. */ *CPLD_ROTARY_SWITCH |= (1 << 16) | (1 << 17); first_rs = ((*CPLD_ROTARY_SWITCH >> 16) & 0x7); first_run = 0; debug ("%s: first_rs=%d\n", __FUNCTION__, first_rs); } if (first_rs != ((*CPLD_ROTARY_SWITCH >> 16) & 0x7)) { return (1); } else { return (0); } } static int test_sram (void) { return (memory_post_tests (SRAM_ADDR, SRAM_SIZE)); } static int test_eeprom (void) { unsigned char temp[sizeof (EEPROM_TEST_STRING_1)]; int result = 0; /* write test string 1, read back and verify */ if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1, (unsigned char*)EEPROM_TEST_STRING_1, sizeof (EEPROM_TEST_STRING_1))) { return (1); } if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1, temp, sizeof (EEPROM_TEST_STRING_1))) { return (1); } if (strcmp ((char *)temp, EEPROM_TEST_STRING_1) != 0) { result = 1; printf ("%s: error; read_str = \"%s\"\n", __FUNCTION__, temp); } /* write test string 2, read back and verify */ if (result == 0) { if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1, (unsigned char*)EEPROM_TEST_STRING_2, sizeof (EEPROM_TEST_STRING_2))) { return (1); } if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1, temp, sizeof (EEPROM_TEST_STRING_2))) { return (1); } if (strcmp ((char *)temp, EEPROM_TEST_STRING_2) != 0) { result = 1; printf ("%s: error; read str = \"%s\"\n", __FUNCTION__, temp); } } return (result); } static int test_contact_temp (void) { int contact_temp; contact_temp = tsc2000_contact_temp (); if ((contact_temp < MIN_CONTACT_TEMP) || (contact_temp > MAX_CONTACT_TEMP)) return (1); else return (0); } int i2c_write_multiple (uchar chip, uint addr, int alen, uchar *buffer, int len) { int i; if (alen != 1) { printf ("%s: addr len other than 1 not supported\n", __FUNCTION__); return (1); } for (i = 0; i < len; i++) { if (i2c_write (chip, addr+i, alen, buffer+i, 1)) { printf ("%s: could not write to i2c device %d" ", addr %d\n", __FUNCTION__, chip, addr); return (1); } #if 0 printf ("chip=%#x, addr+i=%#x+%d=%p, alen=%d, *buffer+i=" "%#x+%d=%p=\"%.1s\"\n", chip, addr, i, addr+i, alen, buffer, i, buffer+i, buffer+i); #endif udelay (30000); } return (0); } int i2c_read_multiple ( uchar chip, uint addr, int alen, uchar *buffer, int len) { int i; if (alen != 1) { printf ("%s: addr len other than 1 not supported\n", __FUNCTION__); return (1); } for (i = 0; i < len; i++) { if (i2c_read (chip, addr+i, alen, buffer+i, 1)) { printf ("%s: could not read from i2c device %#x" ", addr %d\n", __FUNCTION__, chip, addr); return (1); } } return (0); } static int adc_read (unsigned int channel) { int j = 1000; /* timeout value for wait loop in us */ int result; S3C2400_ADC *padc; padc = S3C2400_GetBase_ADC(); channel &= 0x7; adc_init (); padc->ADCCON &= ~ADC_STDBM; /* select normal mode */ padc->ADCCON &= ~(0x7 << 3); /* clear the channel bits */ padc->ADCCON |= ((channel << 3) | ADC_ENABLE_START); while (j--) { if ((padc->ADCCON & ADC_ENABLE_START) == 0) break; udelay (1); } if (j == 0) { printf("%s: ADC timeout\n", __FUNCTION__); padc->ADCCON |= ADC_STDBM; /* select standby mode */ return -1; } result = padc->ADCDAT & 0x3FF; padc->ADCCON |= ADC_STDBM; /* select standby mode */ debug ("%s: channel %d, result[DIGIT]=%d\n", __FUNCTION__, (padc->ADCCON >> 3) & 0x7, result); /* * Wait for ADC to be ready for next conversion. This delay value was * estimated, because the datasheet does not specify a value. */ udelay (1000); return (result); } static void adc_init (void) { S3C2400_ADC *padc; padc = S3C2400_GetBase_ADC(); padc->ADCCON &= ~(0xff << 6); /* clear prescaler bits */ padc->ADCCON |= ((65 << 6) | ADC_PRSCEN); /* set prescaler */ /* * Wait some time to avoid problem with very first call of * adc_read(). Without this delay, sometimes the first read * adc value is 0. Perhaps because the adjustment of prescaler * takes some clock cycles? */ udelay (1000); return; } static void led_set (unsigned int state) { S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); led_init (); switch (state) { case 0: /* turn LED off */ gpio->PADAT |= (1 << 12); break; case 1: /* turn LED on */ gpio->PADAT &= ~(1 << 12); break; default: break; } } static void led_blink (void) { led_init (); /* blink LED. This function does not return! */ while (1) { reset_timer_masked (); led_set (1); udelay (1000000 / LED_BLINK_FREQ / 2); led_set (0); udelay (1000000 / LED_BLINK_FREQ / 2); } } static void led_init (void) { S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); /* configure GPA12 as output and set to High -> LED off */ gpio->PACON &= ~(1 << 12); gpio->PADAT |= (1 << 12); } static void sdelay (unsigned long seconds) { unsigned long i; for (i = 0; i < seconds; i++) { udelay (1000000); } } static int global_vars_write_to_eeprom (void) { if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_STATUS, 1, (unsigned char*) &status, 1)) { return (1); } if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_PASS_CYCLES, 1, (unsigned char*) &pass_cycles, 2)) { return (1); } if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_CYCLE, 1, (unsigned char*) &first_error_cycle, 2)) { return (1); } if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NUM, 1, (unsigned char*) &first_error_num, 1)) { return (1); } if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NAME, 1, (unsigned char*) first_error_name, sizeof(first_error_name))) { return (1); } return (0); } static void global_vars_init (void) { status = 1; /* error */ pass_cycles = 0; first_error_cycle = 0; first_error_num = 0; first_error_name[0] = '\0'; act_cycle = 0; max_cycles = 0; } static void test_function_table_init (void) { int i; for (i = 0; i < BIF_MAX; i++) test_function[i].pf = dummy; /* * the length of "name" must not exceed 16, including the '\0' * termination. See also the EEPROM address map. */ test_function[0].pf = test_dip; test_function[0].name = "dip"; test_function[1].pf = test_vcc5v; test_function[1].name = "vcc5v"; test_function[2].pf = test_rotary_switch; test_function[2].name = "rotary_switch"; test_function[3].pf = test_sram; test_function[3].name = "sram"; test_function[4].pf = test_eeprom; test_function[4].name = "eeprom"; test_function[5].pf = test_contact_temp; test_function[5].name = "contact_temp"; } static int read_max_cycles (void) { if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_MAX_CYCLES, 1, (unsigned char *) &max_cycles, 2) != 0) { return (1); } return (0); } static int dummy(void) { return (0); } int do_temp_log (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) { int contact_temp; int delay = 0; #if defined(CONFIG_CMD_DATE) struct rtc_time tm; #endif if (argc > 2) { printf ("Usage:\n%s\n", cmdtp->usage); return 1; } if (argc > 1) { delay = simple_strtoul(argv[1], NULL, 10); } spi_init (); while (1) { #if defined(CONFIG_CMD_DATE) rtc_get (&tm); printf ("%4d-%02d-%02d %2d:%02d:%02d - ", tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec); #endif contact_temp = tsc2000_contact_temp(); printf ("%d\n", contact_temp) ; if (delay != 0) /* * reset timer to avoid timestamp overflow problem * after about 68 minutes of udelay() time. */ reset_timer_masked (); sdelay (delay); } return 0; } U_BOOT_CMD( tlog, 2, 1, do_temp_log, "tlog - log contact temperature [1/100 C] to console (endlessly)\n", "delay\n" " - contact temperature [1/100 C] is printed endlessly to console\n" " specifies the seconds to wait between two measurements\n" " For each measurment a timestamp is printeted\n" ); #endif