/* * (C) Copyright 2000-2008 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #ifdef CONFIG_PS2MULT #include #endif #if defined(CONFIG_OF_BOARD_SETUP) && defined(CONFIG_OF_LIBFDT) #include #endif extern flash_info_t flash_info[]; /* FLASH chips info */ DECLARE_GLOBAL_DATA_PTR; static long int dram_size (long int, long int *, long int); #define _NOT_USED_ 0xFFFFFFFF /* UPM initialization table for SDRAM: 40, 50, 66 MHz CLKOUT @ CAS latency 2, tWR=2 */ const uint sdram_table[] = { /* * Single Read. (Offset 0 in UPMA RAM) */ 0x1F0DFC04, 0xEEAFBC04, 0x11AF7C04, 0xEFBAFC00, 0x1FF5FC47, /* last */ /* * SDRAM Initialization (offset 5 in UPMA RAM) * * This is no UPM entry point. The following definition uses * the remaining space to establish an initialization * sequence, which is executed by a RUN command. * */ 0x1FF5FC34, 0xEFEABC34, 0x1FB57C35, /* last */ /* * Burst Read. (Offset 8 in UPMA RAM) */ 0x1F0DFC04, 0xEEAFBC04, 0x10AF7C04, 0xF0AFFC00, 0xF0AFFC00, 0xF1AFFC00, 0xEFBAFC00, 0x1FF5FC47, /* last */ _NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_, /* * Single Write. (Offset 18 in UPMA RAM) */ 0x1F0DFC04, 0xEEABBC00, 0x11B77C04, 0xEFFAFC44, 0x1FF5FC47, /* last */ _NOT_USED_, _NOT_USED_, _NOT_USED_, /* * Burst Write. (Offset 20 in UPMA RAM) */ 0x1F0DFC04, 0xEEABBC00, 0x10A77C00, 0xF0AFFC00, 0xF0AFFC00, 0xF0AFFC04, 0xE1BAFC44, 0x1FF5FC47, /* last */ _NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_, /* * Refresh (Offset 30 in UPMA RAM) */ 0x1FFD7C84, 0xFFFFFC04, 0xFFFFFC04, 0xFFFFFC04, 0xFFFFFC84, 0xFFFFFC07, /* last */ _NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_, /* * Exception. (Offset 3c in UPMA RAM) */ 0xFFFFFC07, /* last */ _NOT_USED_, _NOT_USED_, _NOT_USED_, }; /* ------------------------------------------------------------------------- */ /* * Check Board Identity: * * Test TQ ID string (TQM8xx...) * If present, check for "L" type (no second DRAM bank), * otherwise "L" type is assumed as default. * * Set board_type to 'L' for "L" type, 'M' for "M" type, 0 else. */ int checkboard (void) { char buf[64]; int i; int l = getenv_f("serial#", buf, sizeof(buf)); puts ("Board: "); if (l < 0 || strncmp(buf, "TQM8", 4)) { puts ("### No HW ID - assuming TQM8xxL\n"); return (0); } if ((buf[6] == 'L')) { /* a TQM8xxL type */ gd->board_type = 'L'; } if ((buf[6] == 'M')) { /* a TQM8xxM type */ gd->board_type = 'M'; } if ((buf[6] == 'D')) { /* a TQM885D type */ gd->board_type = 'D'; } for (i = 0; i < l; ++i) { if (buf[i] == ' ') break; putc (buf[i]); } #ifdef CONFIG_VIRTLAB2 puts (" (Virtlab2)"); #endif putc ('\n'); return (0); } /* ------------------------------------------------------------------------- */ phys_size_t initdram (int board_type) { volatile immap_t *immap = (immap_t *) CONFIG_SYS_IMMR; volatile memctl8xx_t *memctl = &immap->im_memctl; long int size8, size9, size10; long int size_b0 = 0; long int size_b1 = 0; upmconfig (UPMA, (uint *) sdram_table, sizeof (sdram_table) / sizeof (uint)); /* * Preliminary prescaler for refresh (depends on number of * banks): This value is selected for four cycles every 62.4 us * with two SDRAM banks or four cycles every 31.2 us with one * bank. It will be adjusted after memory sizing. */ memctl->memc_mptpr = CONFIG_SYS_MPTPR_2BK_8K; /* * The following value is used as an address (i.e. opcode) for * the LOAD MODE REGISTER COMMAND during SDRAM initialisation. If * the port size is 32bit the SDRAM does NOT "see" the lower two * address lines, i.e. mar=0x00000088 -> opcode=0x00000022 for * MICRON SDRAMs: * -> 0 00 010 0 010 * | | | | +- Burst Length = 4 * | | | +----- Burst Type = Sequential * | | +------- CAS Latency = 2 * | +----------- Operating Mode = Standard * +-------------- Write Burst Mode = Programmed Burst Length */ memctl->memc_mar = 0x00000088; /* * Map controller banks 2 and 3 to the SDRAM banks 2 and 3 at * preliminary addresses - these have to be modified after the * SDRAM size has been determined. */ memctl->memc_or2 = CONFIG_SYS_OR2_PRELIM; memctl->memc_br2 = CONFIG_SYS_BR2_PRELIM; #ifndef CONFIG_CAN_DRIVER if ((board_type != 'L') && (board_type != 'M') && (board_type != 'D') ) { /* only one SDRAM bank on L, M and D modules */ memctl->memc_or3 = CONFIG_SYS_OR3_PRELIM; memctl->memc_br3 = CONFIG_SYS_BR3_PRELIM; } #endif /* CONFIG_CAN_DRIVER */ memctl->memc_mamr = CONFIG_SYS_MAMR_8COL & (~(MAMR_PTAE)); /* no refresh yet */ udelay (200); /* perform SDRAM initializsation sequence */ memctl->memc_mcr = 0x80004105; /* SDRAM bank 0 */ udelay (1); memctl->memc_mcr = 0x80004230; /* SDRAM bank 0 - execute twice */ udelay (1); #ifndef CONFIG_CAN_DRIVER if ((board_type != 'L') && (board_type != 'M') && (board_type != 'D') ) { /* only one SDRAM bank on L, M and D modules */ memctl->memc_mcr = 0x80006105; /* SDRAM bank 1 */ udelay (1); memctl->memc_mcr = 0x80006230; /* SDRAM bank 1 - execute twice */ udelay (1); } #endif /* CONFIG_CAN_DRIVER */ memctl->memc_mamr |= MAMR_PTAE; /* enable refresh */ udelay (1000); /* * Check Bank 0 Memory Size for re-configuration * * try 8 column mode */ size8 = dram_size (CONFIG_SYS_MAMR_8COL, SDRAM_BASE2_PRELIM, SDRAM_MAX_SIZE); debug ("SDRAM Bank 0 in 8 column mode: %ld MB\n", size8 >> 20); udelay (1000); /* * try 9 column mode */ size9 = dram_size (CONFIG_SYS_MAMR_9COL, SDRAM_BASE2_PRELIM, SDRAM_MAX_SIZE); debug ("SDRAM Bank 0 in 9 column mode: %ld MB\n", size9 >> 20); udelay(1000); #if defined(CONFIG_SYS_MAMR_10COL) /* * try 10 column mode */ size10 = dram_size (CONFIG_SYS_MAMR_10COL, SDRAM_BASE2_PRELIM, SDRAM_MAX_SIZE); debug ("SDRAM Bank 0 in 10 column mode: %ld MB\n", size10 >> 20); #else size10 = 0; #endif /* CONFIG_SYS_MAMR_10COL */ if ((size8 < size10) && (size9 < size10)) { size_b0 = size10; } else if ((size8 < size9) && (size10 < size9)) { size_b0 = size9; memctl->memc_mamr = CONFIG_SYS_MAMR_9COL; udelay (500); } else { size_b0 = size8; memctl->memc_mamr = CONFIG_SYS_MAMR_8COL; udelay (500); } debug ("SDRAM Bank 0: %ld MB\n", size_b0 >> 20); #ifndef CONFIG_CAN_DRIVER if ((board_type != 'L') && (board_type != 'M') && (board_type != 'D') ) { /* only one SDRAM bank on L, M and D modules */ /* * Check Bank 1 Memory Size * use current column settings * [9 column SDRAM may also be used in 8 column mode, * but then only half the real size will be used.] */ size_b1 = dram_size (memctl->memc_mamr, (long int *)SDRAM_BASE3_PRELIM, SDRAM_MAX_SIZE); debug ("SDRAM Bank 1: %ld MB\n", size_b1 >> 20); } else { size_b1 = 0; } #endif /* CONFIG_CAN_DRIVER */ udelay (1000); /* * Adjust refresh rate depending on SDRAM type, both banks * For types > 128 MBit leave it at the current (fast) rate */ if ((size_b0 < 0x02000000) && (size_b1 < 0x02000000)) { /* reduce to 15.6 us (62.4 us / quad) */ memctl->memc_mptpr = CONFIG_SYS_MPTPR_2BK_4K; udelay (1000); } /* * Final mapping: map bigger bank first */ if (size_b1 > size_b0) { /* SDRAM Bank 1 is bigger - map first */ memctl->memc_or3 = ((-size_b1) & 0xFFFF0000) | CONFIG_SYS_OR_TIMING_SDRAM; memctl->memc_br3 = (CONFIG_SYS_SDRAM_BASE & BR_BA_MSK) | BR_MS_UPMA | BR_V; if (size_b0 > 0) { /* * Position Bank 0 immediately above Bank 1 */ memctl->memc_or2 = ((-size_b0) & 0xFFFF0000) | CONFIG_SYS_OR_TIMING_SDRAM; memctl->memc_br2 = ((CONFIG_SYS_SDRAM_BASE & BR_BA_MSK) | BR_MS_UPMA | BR_V) + size_b1; } else { unsigned long reg; /* * No bank 0 * * invalidate bank */ memctl->memc_br2 = 0; /* adjust refresh rate depending on SDRAM type, one bank */ reg = memctl->memc_mptpr; reg >>= 1; /* reduce to CONFIG_SYS_MPTPR_1BK_8K / _4K */ memctl->memc_mptpr = reg; } } else { /* SDRAM Bank 0 is bigger - map first */ memctl->memc_or2 = ((-size_b0) & 0xFFFF0000) | CONFIG_SYS_OR_TIMING_SDRAM; memctl->memc_br2 = (CONFIG_SYS_SDRAM_BASE & BR_BA_MSK) | BR_MS_UPMA | BR_V; if (size_b1 > 0) { /* * Position Bank 1 immediately above Bank 0 */ memctl->memc_or3 = ((-size_b1) & 0xFFFF0000) | CONFIG_SYS_OR_TIMING_SDRAM; memctl->memc_br3 = ((CONFIG_SYS_SDRAM_BASE & BR_BA_MSK) | BR_MS_UPMA | BR_V) + size_b0; } else { unsigned long reg; #ifndef CONFIG_CAN_DRIVER /* * No bank 1 * * invalidate bank */ memctl->memc_br3 = 0; #endif /* CONFIG_CAN_DRIVER */ /* adjust refresh rate depending on SDRAM type, one bank */ reg = memctl->memc_mptpr; reg >>= 1; /* reduce to CONFIG_SYS_MPTPR_1BK_8K / _4K */ memctl->memc_mptpr = reg; } } udelay (10000); #ifdef CONFIG_CAN_DRIVER /* UPM initialization for CAN @ CLKOUT <= 66 MHz */ /* Initialize OR3 / BR3 */ memctl->memc_or3 = CONFIG_SYS_OR3_CAN; memctl->memc_br3 = CONFIG_SYS_BR3_CAN; /* Initialize MBMR */ memctl->memc_mbmr = MBMR_GPL_B4DIS; /* GPL_B4 ouput line Disable */ /* Initialize UPMB for CAN: single read */ memctl->memc_mdr = 0xFFFFCC04; memctl->memc_mcr = 0x0100 | UPMB; memctl->memc_mdr = 0x0FFFD004; memctl->memc_mcr = 0x0101 | UPMB; memctl->memc_mdr = 0x0FFFC000; memctl->memc_mcr = 0x0102 | UPMB; memctl->memc_mdr = 0x3FFFC004; memctl->memc_mcr = 0x0103 | UPMB; memctl->memc_mdr = 0xFFFFDC07; memctl->memc_mcr = 0x0104 | UPMB; /* Initialize UPMB for CAN: single write */ memctl->memc_mdr = 0xFFFCCC04; memctl->memc_mcr = 0x0118 | UPMB; memctl->memc_mdr = 0xCFFCDC04; memctl->memc_mcr = 0x0119 | UPMB; memctl->memc_mdr = 0x3FFCC000; memctl->memc_mcr = 0x011A | UPMB; memctl->memc_mdr = 0xFFFCC004; memctl->memc_mcr = 0x011B | UPMB; memctl->memc_mdr = 0xFFFDC405; memctl->memc_mcr = 0x011C | UPMB; #endif /* CONFIG_CAN_DRIVER */ #ifdef CONFIG_ISP1362_USB /* Initialize OR5 / BR5 */ memctl->memc_or5 = CONFIG_SYS_OR5_ISP1362; memctl->memc_br5 = CONFIG_SYS_BR5_ISP1362; #endif /* CONFIG_ISP1362_USB */ return (size_b0 + size_b1); } /* ------------------------------------------------------------------------- */ /* * Check memory range for valid RAM. A simple memory test determines * the actually available RAM size between addresses `base' and * `base + maxsize'. Some (not all) hardware errors are detected: * - short between address lines * - short between data lines */ static long int dram_size (long int mamr_value, long int *base, long int maxsize) { volatile immap_t *immap = (immap_t *) CONFIG_SYS_IMMR; volatile memctl8xx_t *memctl = &immap->im_memctl; memctl->memc_mamr = mamr_value; return (get_ram_size(base, maxsize)); } /* ------------------------------------------------------------------------- */ #ifdef CONFIG_MISC_INIT_R extern void load_sernum_ethaddr(void); int misc_init_r (void) { volatile immap_t *immap = (immap_t *) CONFIG_SYS_IMMR; volatile memctl8xx_t *memctl = &immap->im_memctl; load_sernum_ethaddr(); #ifdef CONFIG_SYS_OR_TIMING_FLASH_AT_50MHZ int scy, trlx, flash_or_timing, clk_diff; scy = (CONFIG_SYS_OR_TIMING_FLASH_AT_50MHZ & OR_SCY_MSK) >> 4; if (CONFIG_SYS_OR_TIMING_FLASH_AT_50MHZ & OR_TRLX) { trlx = OR_TRLX; scy *= 2; } else { trlx = 0; } /* * We assume that each 10MHz of bus clock require 1-clk SCY * adjustment. */ clk_diff = (gd->bus_clk / 1000000) - 50; /* * We need proper rounding here. This is what the "+5" and "-5" * are here for. */ if (clk_diff >= 0) scy += (clk_diff + 5) / 10; else scy += (clk_diff - 5) / 10; /* * For bus frequencies above 50MHz, we want to use relaxed timing * (OR_TRLX). */ if (gd->bus_clk >= 50000000) trlx = OR_TRLX; else trlx = 0; if (trlx) scy /= 2; if (scy > 0xf) scy = 0xf; if (scy < 1) scy = 1; flash_or_timing = (scy << 4) | trlx | (CONFIG_SYS_OR_TIMING_FLASH_AT_50MHZ & ~(OR_TRLX | OR_SCY_MSK)); memctl->memc_or0 = flash_or_timing | (-flash_info[0].size & OR_AM_MSK); #else memctl->memc_or0 = CONFIG_SYS_OR_TIMING_FLASH | (-flash_info[0].size & OR_AM_MSK); #endif memctl->memc_br0 = (CONFIG_SYS_FLASH_BASE & BR_BA_MSK) | BR_MS_GPCM | BR_V; debug ("## BR0: 0x%08x OR0: 0x%08x\n", memctl->memc_br0, memctl->memc_or0); if (flash_info[1].size) { #ifdef CONFIG_SYS_OR_TIMING_FLASH_AT_50MHZ memctl->memc_or1 = flash_or_timing | (-flash_info[1].size & 0xFFFF8000); #else memctl->memc_or1 = CONFIG_SYS_OR_TIMING_FLASH | (-flash_info[1].size & 0xFFFF8000); #endif memctl->memc_br1 = ((CONFIG_SYS_FLASH_BASE + flash_info[0]. size) & BR_BA_MSK) | BR_MS_GPCM | BR_V; debug ("## BR1: 0x%08x OR1: 0x%08x\n", memctl->memc_br1, memctl->memc_or1); } else { memctl->memc_br1 = 0; /* invalidate bank */ debug ("## DISABLE BR1: 0x%08x OR1: 0x%08x\n", memctl->memc_br1, memctl->memc_or1); } # ifdef CONFIG_IDE_LED /* Configure PA15 as output port */ immap->im_ioport.iop_padir |= 0x0001; immap->im_ioport.iop_paodr |= 0x0001; immap->im_ioport.iop_papar &= ~0x0001; immap->im_ioport.iop_padat &= ~0x0001; /* turn it off */ # endif #ifdef CONFIG_NSCU /* wake up ethernet module */ immap->im_ioport.iop_pcpar &= ~0x0004; /* GPIO pin */ immap->im_ioport.iop_pcdir |= 0x0004; /* output */ immap->im_ioport.iop_pcso &= ~0x0004; /* for clarity */ immap->im_ioport.iop_pcdat |= 0x0004; /* enable */ #endif /* CONFIG_NSCU */ return (0); } #endif /* CONFIG_MISC_INIT_R */ # ifdef CONFIG_IDE_LED void ide_led (uchar led, uchar status) { volatile immap_t *immap = (immap_t *) CONFIG_SYS_IMMR; /* We have one led for both pcmcia slots */ if (status) { /* led on */ immap->im_ioport.iop_padat |= 0x0001; } else { immap->im_ioport.iop_padat &= ~0x0001; } } # endif #ifdef CONFIG_LCD_INFO #include #include #include void lcd_show_board_info(void) { char temp[32]; lcd_printf ("%s (%s - %s)\n", U_BOOT_VERSION, U_BOOT_DATE, U_BOOT_TIME); lcd_printf ("(C) 2008 DENX Software Engineering GmbH\n"); lcd_printf (" Wolfgang DENK, wd@denx.de\n"); #ifdef CONFIG_LCD_INFO_BELOW_LOGO lcd_printf ("MPC823 CPU at %s MHz\n", strmhz(temp, gd->cpu_clk)); lcd_printf (" %ld MB RAM, %ld MB Flash\n", gd->ram_size >> 20, gd->bd->bi_flashsize >> 20 ); #else /* leave one blank line */ lcd_printf ("\nMPC823 CPU at %s MHz, %ld MB RAM, %ld MB Flash\n", strmhz(temp, gd->cpu_clk), gd->ram_size >> 20, gd->bd->bi_flashsize >> 20 ); #endif /* CONFIG_LCD_INFO_BELOW_LOGO */ } #endif /* CONFIG_LCD_INFO */ /* * Device Tree Support */ #if defined(CONFIG_OF_BOARD_SETUP) && defined(CONFIG_OF_LIBFDT) int fdt_set_node_and_value (void *blob, char *nodename, char *regname, void *var, int size) { int ret = 0; int nodeoffset = 0; nodeoffset = fdt_path_offset (blob, nodename); if (nodeoffset >= 0) { ret = fdt_setprop (blob, nodeoffset, regname, var, size); if (ret < 0) { printf("ft_blob_update(): " "cannot set %s/%s property; err: %s\n", nodename, regname, fdt_strerror (ret)); } } else { printf("ft_blob_update(): " "cannot find %s node err:%s\n", nodename, fdt_strerror (nodeoffset)); } return ret; } int fdt_del_node_name (void *blob, char *nodename) { int ret = 0; int nodeoffset = 0; nodeoffset = fdt_path_offset (blob, nodename); if (nodeoffset >= 0) { ret = fdt_del_node (blob, nodeoffset); if (ret < 0) { printf("%s: cannot delete %s; err: %s\n", __func__, nodename, fdt_strerror (ret)); } } else { printf("%s: cannot find %s node err:%s\n", __func__, nodename, fdt_strerror (nodeoffset)); } return ret; } int fdt_del_prop_name (void *blob, char *nodename, char *propname) { int ret = 0; int nodeoffset = 0; nodeoffset = fdt_path_offset (blob, nodename); if (nodeoffset >= 0) { ret = fdt_delprop (blob, nodeoffset, propname); if (ret < 0) { printf("%s: cannot delete %s %s; err: %s\n", __func__, nodename, propname, fdt_strerror (ret)); } } else { printf("%s: cannot find %s node err:%s\n", __func__, nodename, fdt_strerror (nodeoffset)); } return ret; } /* * update "brg" property in the blob */ void ft_blob_update (void *blob, bd_t *bd) { uchar enetaddr[6]; ulong brg_data = 0; /* BRG */ brg_data = cpu_to_be32(bd->bi_busfreq); fdt_set_node_and_value(blob, "/soc/cpm", "brg-frequency", &brg_data, sizeof(brg_data)); /* MAC addr */ if (eth_getenv_enetaddr("ethaddr", enetaddr)) { fdt_set_node_and_value(blob, "ethernet0", "local-mac-address", enetaddr, sizeof(u8) * 6); } if (hwconfig_arg_cmp("fec", "off")) { /* no FEC on this plattform, delete DTS nodes */ fdt_del_node_name (blob, "ethernet1"); fdt_del_node_name (blob, "mdio1"); /* also the aliases entries */ fdt_del_prop_name (blob, "/aliases", "ethernet1"); fdt_del_prop_name (blob, "/aliases", "mdio1"); } else { /* adjust local-mac-address for FEC ethernet */ if (eth_getenv_enetaddr("eth1addr", enetaddr)) { fdt_set_node_and_value(blob, "ethernet1", "local-mac-address", enetaddr, sizeof(u8) * 6); } } } void ft_board_setup(void *blob, bd_t *bd) { ft_cpu_setup(blob, bd); ft_blob_update(blob, bd); } #endif /* defined(CONFIG_OF_BOARD_SETUP) && defined(CONFIG_OF_LIBFDT) */ /* ---------------------------------------------------------------------------- */ /* TK885D specific initializaion */ /* ---------------------------------------------------------------------------- */ #ifdef CONFIG_TK885D #include int last_stage_init(void) { const unsigned char phy[] = {CONFIG_FEC1_PHY, CONFIG_FEC2_PHY}; unsigned short reg; int ret, i = 100; char *s; mii_init(); /* Without this delay 0xff is read from the UART buffer later in * abortboot() and autoboot is aborted */ udelay(10000); while (tstc() && i--) (void)getc(); /* Check if auto-negotiation is prohibited */ s = getenv("phy_auto_nego"); if (!s || !strcmp(s, "on")) /* Nothing to do - autonegotiation by default */ return 0; for (i = 0; i < 2; i++) { ret = miiphy_read("FEC", phy[i], MII_BMCR, ®); if (ret) { printf("Cannot read BMCR on PHY %d\n", phy[i]); return 0; } /* Auto-negotiation off, hard set full duplex, 100Mbps */ ret = miiphy_write("FEC", phy[i], MII_BMCR, (reg | BMCR_SPEED100 | BMCR_FULLDPLX) & ~BMCR_ANENABLE); if (ret) { printf("Cannot write BMCR on PHY %d\n", phy[i]); return 0; } } return 0; } #endif