/* * board.c * * Board functions for TI AM43XX based boards * * Copyright (C) 2013, Texas Instruments, Incorporated - http://www.ti.com/ * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include "board.h" DECLARE_GLOBAL_DATA_PTR; /* * Read header information from EEPROM into global structure. */ static int read_eeprom(struct am43xx_board_id *header) { /* Check if baseboard eeprom is available */ if (i2c_probe(CONFIG_SYS_I2C_EEPROM_ADDR)) { printf("Could not probe the EEPROM at 0x%x\n", CONFIG_SYS_I2C_EEPROM_ADDR); return -ENODEV; } /* read the eeprom using i2c */ if (i2c_read(CONFIG_SYS_I2C_EEPROM_ADDR, 0, 2, (uchar *)header, sizeof(struct am43xx_board_id))) { printf("Could not read the EEPROM\n"); return -EIO; } if (header->magic != 0xEE3355AA) { /* * read the eeprom using i2c again, * but use only a 1 byte address */ if (i2c_read(CONFIG_SYS_I2C_EEPROM_ADDR, 0, 1, (uchar *)header, sizeof(struct am43xx_board_id))) { printf("Could not read the EEPROM at 0x%x\n", CONFIG_SYS_I2C_EEPROM_ADDR); return -EIO; } if (header->magic != 0xEE3355AA) { printf("Incorrect magic number (0x%x) in EEPROM\n", header->magic); return -EINVAL; } } strncpy(am43xx_board_name, (char *)header->name, sizeof(header->name)); am43xx_board_name[sizeof(header->name)] = 0; return 0; } #ifdef CONFIG_SPL_BUILD #define NUM_OPPS 6 const struct dpll_params dpll_mpu[NUM_CRYSTAL_FREQ][NUM_OPPS] = { { /* 19.2 MHz */ {-1, -1, -1, -1, -1, -1, -1}, /* OPP 50 */ {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */ {-1, -1, -1, -1, -1, -1, -1}, /* OPP 100 */ {-1, -1, -1, -1, -1, -1, -1}, /* OPP 120 */ {-1, -1, -1, -1, -1, -1, -1}, /* OPP TB */ {-1, -1, -1, -1, -1, -1, -1} /* OPP NT */ }, { /* 24 MHz */ {300, 23, 1, -1, -1, -1, -1}, /* OPP 50 */ {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */ {600, 23, 1, -1, -1, -1, -1}, /* OPP 100 */ {720, 23, 1, -1, -1, -1, -1}, /* OPP 120 */ {800, 23, 1, -1, -1, -1, -1}, /* OPP TB */ {1000, 23, 1, -1, -1, -1, -1} /* OPP NT */ }, { /* 25 MHz */ {300, 24, 1, -1, -1, -1, -1}, /* OPP 50 */ {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */ {600, 24, 1, -1, -1, -1, -1}, /* OPP 100 */ {720, 24, 1, -1, -1, -1, -1}, /* OPP 120 */ {800, 24, 1, -1, -1, -1, -1}, /* OPP TB */ {1000, 24, 1, -1, -1, -1, -1} /* OPP NT */ }, { /* 26 MHz */ {300, 25, 1, -1, -1, -1, -1}, /* OPP 50 */ {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */ {600, 25, 1, -1, -1, -1, -1}, /* OPP 100 */ {720, 25, 1, -1, -1, -1, -1}, /* OPP 120 */ {800, 25, 1, -1, -1, -1, -1}, /* OPP TB */ {1000, 25, 1, -1, -1, -1, -1} /* OPP NT */ }, }; const struct dpll_params dpll_core[NUM_CRYSTAL_FREQ] = { {-1, -1, -1, -1, -1, -1, -1}, /* 19.2 MHz */ {1000, 23, -1, -1, 10, 8, 4}, /* 24 MHz */ {1000, 24, -1, -1, 10, 8, 4}, /* 25 MHz */ {1000, 25, -1, -1, 10, 8, 4} /* 26 MHz */ }; const struct dpll_params dpll_per[NUM_CRYSTAL_FREQ] = { {-1, -1, -1, -1, -1, -1, -1}, /* 19.2 MHz */ {960, 23, 5, -1, -1, -1, -1}, /* 24 MHz */ {960, 24, 5, -1, -1, -1, -1}, /* 25 MHz */ {960, 25, 5, -1, -1, -1, -1} /* 26 MHz */ }; const struct dpll_params epos_evm_dpll_ddr = { 266, 24, 1, -1, 1, -1, -1}; const struct dpll_params gp_evm_dpll_ddr = { 400, 23, 1, -1, 1, -1, -1}; const struct ctrl_ioregs ioregs_lpddr2 = { .cm0ioctl = LPDDR2_ADDRCTRL_IOCTRL_VALUE, .cm1ioctl = LPDDR2_ADDRCTRL_WD0_IOCTRL_VALUE, .cm2ioctl = LPDDR2_ADDRCTRL_WD1_IOCTRL_VALUE, .dt0ioctl = LPDDR2_DATA0_IOCTRL_VALUE, .dt1ioctl = LPDDR2_DATA0_IOCTRL_VALUE, .dt2ioctrl = LPDDR2_DATA0_IOCTRL_VALUE, .dt3ioctrl = LPDDR2_DATA0_IOCTRL_VALUE, .emif_sdram_config_ext = 0x1, }; const struct emif_regs emif_regs_lpddr2 = { .sdram_config = 0x808012BA, .ref_ctrl = 0x0000040D, .sdram_tim1 = 0xEA86B411, .sdram_tim2 = 0x103A094A, .sdram_tim3 = 0x0F6BA37F, .read_idle_ctrl = 0x00050000, .zq_config = 0x50074BE4, .temp_alert_config = 0x0, .emif_rd_wr_lvl_rmp_win = 0x0, .emif_rd_wr_lvl_rmp_ctl = 0x0, .emif_rd_wr_lvl_ctl = 0x0, .emif_ddr_phy_ctlr_1 = 0x0E084006, .emif_rd_wr_exec_thresh = 0x00000405, .emif_ddr_ext_phy_ctrl_1 = 0x04010040, .emif_ddr_ext_phy_ctrl_2 = 0x00500050, .emif_ddr_ext_phy_ctrl_3 = 0x00500050, .emif_ddr_ext_phy_ctrl_4 = 0x00500050, .emif_ddr_ext_phy_ctrl_5 = 0x00500050 }; const u32 ext_phy_ctrl_const_base_lpddr2[] = { 0x00500050, 0x00350035, 0x00350035, 0x00350035, 0x00350035, 0x00350035, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x40001000, 0x08102040 }; const struct ctrl_ioregs ioregs_ddr3 = { .cm0ioctl = DDR3_ADDRCTRL_IOCTRL_VALUE, .cm1ioctl = DDR3_ADDRCTRL_WD0_IOCTRL_VALUE, .cm2ioctl = DDR3_ADDRCTRL_WD1_IOCTRL_VALUE, .dt0ioctl = DDR3_DATA0_IOCTRL_VALUE, .dt1ioctl = DDR3_DATA0_IOCTRL_VALUE, .dt2ioctrl = DDR3_DATA0_IOCTRL_VALUE, .dt3ioctrl = DDR3_DATA0_IOCTRL_VALUE, .emif_sdram_config_ext = 0x0043, }; const struct emif_regs ddr3_emif_regs_400Mhz = { .sdram_config = 0x638413B2, .ref_ctrl = 0x00000C30, .sdram_tim1 = 0xEAAAD4DB, .sdram_tim2 = 0x266B7FDA, .sdram_tim3 = 0x107F8678, .read_idle_ctrl = 0x00050000, .zq_config = 0x50074BE4, .temp_alert_config = 0x0, .emif_ddr_phy_ctlr_1 = 0x0E084008, .emif_ddr_ext_phy_ctrl_1 = 0x08020080, .emif_ddr_ext_phy_ctrl_2 = 0x00400040, .emif_ddr_ext_phy_ctrl_3 = 0x00400040, .emif_ddr_ext_phy_ctrl_4 = 0x00400040, .emif_ddr_ext_phy_ctrl_5 = 0x00400040, .emif_rd_wr_lvl_rmp_win = 0x0, .emif_rd_wr_lvl_rmp_ctl = 0x0, .emif_rd_wr_lvl_ctl = 0x0, .emif_rd_wr_exec_thresh = 0x00000405 }; const u32 ext_phy_ctrl_const_base_ddr3[] = { 0x00400040, 0x00350035, 0x00350035, 0x00350035, 0x00350035, 0x00350035, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00340034, 0x00340034, 0x00340034, 0x00340034, 0x00340034, 0x0, 0x0, 0x40000000, 0x08102040 }; void emif_get_ext_phy_ctrl_const_regs(const u32 **regs, u32 *size) { if (board_is_eposevm()) { *regs = ext_phy_ctrl_const_base_lpddr2; *size = ARRAY_SIZE(ext_phy_ctrl_const_base_lpddr2); } else if (board_is_gpevm()) { *regs = ext_phy_ctrl_const_base_ddr3; *size = ARRAY_SIZE(ext_phy_ctrl_const_base_ddr3); } return; } const struct dpll_params *get_dpll_ddr_params(void) { struct am43xx_board_id header; enable_i2c0_pin_mux(); i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED, CONFIG_SYS_OMAP24_I2C_SLAVE); if (read_eeprom(&header) < 0) puts("Could not get board ID.\n"); if (board_is_eposevm()) return &epos_evm_dpll_ddr; else if (board_is_gpevm()) return &gp_evm_dpll_ddr; puts(" Board not supported\n"); return NULL; } /* * get_sys_clk_index : returns the index of the sys_clk read from * ctrl status register. This value is either * read from efuse or sysboot pins. */ static u32 get_sys_clk_index(void) { struct ctrl_stat *ctrl = (struct ctrl_stat *)CTRL_BASE; u32 ind = readl(&ctrl->statusreg), src; src = (ind & CTRL_CRYSTAL_FREQ_SRC_MASK) >> CTRL_CRYSTAL_FREQ_SRC_SHIFT; if (src == CTRL_CRYSTAL_FREQ_SRC_EFUSE) /* Value read from EFUSE */ return ((ind & CTRL_CRYSTAL_FREQ_SELECTION_MASK) >> CTRL_CRYSTAL_FREQ_SELECTION_SHIFT); else /* Value read from SYS BOOT pins */ return ((ind & CTRL_SYSBOOT_15_14_MASK) >> CTRL_SYSBOOT_15_14_SHIFT); } /* * get_opp_offset: * Returns the index for safest OPP of the device to boot. * max_off: Index of the MAX OPP in DEV ATTRIBUTE register. * min_off: Index of the MIN OPP in DEV ATTRIBUTE register. * This data is read from dev_attribute register which is e-fused. * A'1' in bit indicates OPP disabled and not available, a '0' indicates * OPP available. Lowest OPP starts with min_off. So returning the * bit with rightmost '0'. */ static int get_opp_offset(int max_off, int min_off) { struct ctrl_stat *ctrl = (struct ctrl_stat *)CTRL_BASE; int opp = readl(&ctrl->dev_attr), offset, i; for (i = max_off; i >= min_off; i--) { offset = opp & (1 << i); if (!offset) return i; } return min_off; } const struct dpll_params *get_dpll_mpu_params(void) { int opp = get_opp_offset(DEV_ATTR_MAX_OFFSET, DEV_ATTR_MIN_OFFSET); u32 ind = get_sys_clk_index(); return &dpll_mpu[ind][opp]; } const struct dpll_params *get_dpll_core_params(void) { int ind = get_sys_clk_index(); return &dpll_core[ind]; } const struct dpll_params *get_dpll_per_params(void) { int ind = get_sys_clk_index(); return &dpll_per[ind]; } void set_uart_mux_conf(void) { enable_uart0_pin_mux(); } void set_mux_conf_regs(void) { enable_board_pin_mux(); } static void enable_vtt_regulator(void) { u32 temp; /* enable module */ writel(GPIO_CTRL_ENABLEMODULE, AM33XX_GPIO0_BASE + OMAP_GPIO_CTRL); /* enable output for GPIO0_22 */ writel(GPIO_SETDATAOUT(GPIO_22), AM33XX_GPIO0_BASE + OMAP_GPIO_SETDATAOUT); temp = readl(AM33XX_GPIO0_BASE + OMAP_GPIO_OE); temp = temp & ~(GPIO_OE_ENABLE(GPIO_22)); writel(temp, AM33XX_GPIO0_BASE + OMAP_GPIO_OE); } void sdram_init(void) { /* * EPOS EVM has 1GB LPDDR2 connected to EMIF. * GP EMV has 1GB DDR3 connected to EMIF * along with VTT regulator. */ if (board_is_eposevm()) { config_ddr(0, &ioregs_lpddr2, NULL, NULL, &emif_regs_lpddr2, 0); } else if (board_is_gpevm()) { enable_vtt_regulator(); config_ddr(0, &ioregs_ddr3, NULL, NULL, &ddr3_emif_regs_400Mhz, 0); } } #endif int board_init(void) { gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100; return 0; } #ifdef CONFIG_BOARD_LATE_INIT int board_late_init(void) { #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG char safe_string[HDR_NAME_LEN + 1]; struct am43xx_board_id header; if (read_eeprom(&header) < 0) puts("Could not get board ID.\n"); /* Now set variables based on the header. */ strncpy(safe_string, (char *)header.name, sizeof(header.name)); safe_string[sizeof(header.name)] = 0; setenv("board_name", safe_string); strncpy(safe_string, (char *)header.version, sizeof(header.version)); safe_string[sizeof(header.version)] = 0; setenv("board_rev", safe_string); #endif return 0; } #endif